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The number of collaborative robots that perform different tasks in close proximity to
humans is increasing. Previous studies showed that enabling non-expert users to program
a cobot reduces the cost of robot maintenance and reprogramming. Since this approach is
based on an interaction between the cobot and human partners, in this study, we
investigate whether making this interaction more transparent can improve the
interaction and lead to better performance for non-expert users. To evaluate the
proposed methodology, an experiment with 67 participants is conducted. The
obtained results show that providing explanation leads to higher performance, in terms
of efficiency and efficacy, i.e., the number of times the task is completed without teaching a
wrong instruction to the cobot is two times higher when explanations are provided. In
addition, providing explanation also increases users’ satisfaction and trust in working with
the cobot.
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1 INTRODUCTION

Themainmethod to teach a new task to a cobot is reprogramming, i.e., a programmer writes new code for
the cobot to achieve a specific objective. However, this approach is expensive (Bloss, 2016) and needs a lot
of tuning so that a slight change in the procedure, e.g., changing the order of objects in the case of an
assembly task, can cause the cobot to fail in accomplishing the assembly, if the original program is used,
even if the cobot is able to perform all necessary sub-tasks. One solution to both reduce the cost of teaching
cobots new tasks and increase their flexibility (being able to perform different but similar tasks) is enabling
their human partners to teach them new tasks, such that a cobot learns new high-level tasks from a non-
programmer, e.g., an operator in a workshop, who knows the necessary steps to perform the task but does
not know how to program the cobot (Billard et al., 2016; Huang and Cakmak, 2017; Stenmark et al., 2017).
This way, the costs of cobot maintenance are reduced by transferring behaviors instead of reprogramming
them (DeWinter et al., 2019). However, this approach requires interactions between cobots and humans,
where cobots can clarify, explain, and justify their behaviors for the human partners, and the human
partners can transfer their knowledge through feedback to the cobots to help them perform their tasks.
Thus, there is a strong need for an efficient mechanism that allows a natural and user-friendly interaction
between humanpartners and cobots. Hence, in this study, a Transparent Graphical User Interface (T-GUI)
is designed to provide a bidirectional interaction between a cobot and a human partner such that the cobot
can explain why it applies a particular strategy to accomplish a particular task, and the human partner can
track the cobot’s actions and provide instructions to it.

One methodology that has previously been used to enable cobots (and other artificial agents and
systems) to explain their learned behavior is Explainable Artificial Intelligence (XAI), which tries to
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enable artificial agents to provide a human understandable
explanation that expresses the rationale of the agent and
makes it more transparent, so that the agent appears more
trustworthy and working with it becomes easier (Adadi and
Berrada, 2018; Doran et al., 2017). Thus, one can expect that
endowing a cobot with explainability also has the same effect,
i.e., enables the cobot to explain and justify its actions, which
increases the user’s performance and trust in the cobot.

While XAI is not well defined (Doshi-Velez andKim, 2017), some
researchers tried to define its related notions. For instance, Adadi and
Berrada (2018) defined accountability, responsibility, and
transparency as XAI’s three main pillars. Doran et al. (2017) also
characterized three other notions for it, i.e., opacity,
comprehensibility, and interpretability, where interpretability
implies model transparency. Interpretability can be influenced by
different factors such as model’s transparency and impacts different
measurable outcomes, such as trust (Poursabzi-Sangdeh et al., 2018).
Thereby, among different notions of XAI, interpretability, and more
precisely, transparency, is what we need to enable a cobot to explain
its strategy for its human partner. To endow the proposed T-GUI
with transparency (as its prime functionality), the knowledge that the
cobot acquired during learning how to solve its task (Section 3) is
used to produce human-understandable explanations, that explain
and justify its actions.

Additionally, since we aimed for bidirectional interactions in
which the human partner can also teach new tasks to the cobot,
not all necessary assembly instructions are coded into the cobot’s
controller, so that it is not able to finish its assembly task due to
the lack of required knowledge. Therefore, the proposed T-GUI
has another functionality (in addition to explainability) that
enables human partners to transfer their knowledge and teach
new instructions to the cobot to enable it to accomplish the task
that it was not able to perform independently.

To evaluate the efficiency and transparency of the proposed
methodology, an experiment is conducted in which the focus was
on evaluating users’ ability in teaching correct instructions to the
cobot. In addition through provided subjective evaluations, users’
trust in the cobot and their satisfaction with the cobot’s behavior
were measured. In this manner, the following questions can be
answered: do the provided explanations through the proposed
T-GUI, increase the users’.

• performance?
• trust in the cobot’s actions?
• satisfaction of working with the cobot?

The remainder of this paper is organized as follows: Section 2
reviews related work. The proposed methodology is explained in
Section 3. Section 4 describes the employed experiment and the
obtained results. Section 5 discusses the obtained results in more
detail and Section 6, finally, concludes this paper.

2 RELATED WORK

A variety of models has been proposed in different studies to
improve the collaboration between cobots and humans through

transparency for different tasks, like cobot teaching and human-
cobot collaboration. For example, Chao et al. (2010) proposed a
model to enable a robot to learn from a human teacher. Since the
author believed the human teacher needs to know in which step
the robot is to provide themost informative instructions for it, she
proposed a transparent learning process in which the level of the
robot’s understanding can be determined in every step. To
achieve this, the robot is able to express its uncertainty by
related gestures. To evaluate the proposed model, a scenario is
used in which users teach names of four symbolic objects to the
robot, and later ask the robot whether it remembers these names.
The robot is able to answer in five scales, i.e., certain-yes,
uncertain-yes, uncertain, uncertain no, or certain-no. To show
certain yes or no, it uses nodding and head-shaking, respectively,
to show uncertain yes and no, it employs combinations of
simultaneous head and body gestures, and for expressing
uncertainty it utilizes shrugging. In this way, the human
teacher can understand at which level the robot’s
understanding is. Although this model enables human teachers
to understand whether the robot has learned the task or not, the
reason why it did not learn yet is not provided. Additionally, the
model does not allow the user to provide support in form of
feedback to the robot when it made a mistake, instead the user has
to teach the whole task again until the robot finally learns it. In
contrast, the proposed model in this study enables the cobot to
justify its actions by explaining the reason it is applying them, and
the human teacher can directly provide missing instructions to
enable the cobot to learn how to continue its task to accomplish it
correctly, which speeds up the learning process.

Following the work of Hayes and Scassellati (2016), Roncone
et al. (2017) improved the transparent task planner originally
proposed by Hayes and Scassellati (2016), which enables both
humans and cobots to reason and communicate about the role of
each other so that the other agent can act accordingly. To this end,
a hierarchical graphical representation of the task is provided to
model the task at an abstract level without details of the
implementation. In the task’s graphical representation, each
sub-task or atomic action, e.g., mounting an object, is shown
as a block.While the level of the hierarchy determines the order of
sub-tasks/actions, different operators are proposed to show the
relation between them, i.e., “→” indicates sequential tasks, “‖”
determines parallel tasks, and “∨” is used to show alternative
tasks. During task execution, the cobot can provide feedback to
the human partner by highlighting its estimation of the current
sub-task, i.e., coloring the related block in the graphical
presentation. So that the cognitive load of the human partner,
i.e., taking care of roles, is reduced and the task is completed in a
shorter time. The main drawback of the study by Roncone et al.
(2017) is that the interaction is unidirectional, i.e., the cobot can
express its status to the human partner, but the human partner
cannot transfer knowledge or missing information to the cobot.
In contrast, the model proposed in this paper enables the human
partner to add missing instructions to the cobot.

Edmonds et al. (2019) proposed a framework to generate
explanations about cobots’ internal decisions. To examine the
framework, a scenario is used in which a robot learns from
human demonstrations how to open medicine bottles. To this
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end, three different models are used: 1) a symbolic action planner,
which serves as a symbolic representation of the task, 2) a haptic
prediction model, which acquires knowledge of the task, e.g.,
imposed forces and observed human poses, and 3) an improved
Earley parsing algorithm which jointly leverages the other two
models. In addition, the framework is able to generate
explanations. For this, the symbolic action planner provides a
mechanistic explanation by visualizing multiple action sequences
to describe the process of opening a bottle, i.e., the internal robot
gripper state for different actions like approaching the bottle,
grasping it, pushing it, etc. The haptic prediction model, on the
other hand, provides a functional explanation by visualizing the
essential haptic signals to determine the next action. The
proposed framework generates explanations in two forms,
i.e., a text summary and a visualized description. Based on the
obtained results, the latter form is more effective in promoting
human trust. Similar to the other mentioned studies, the provided
explanations clarify the robot’s actions and status for the human
partner, but the employed models do not allow the human
partner to interact and transfer knowledge to the robot, i.e., it
is a unidirectional interaction, while our model provides a
bidirectional interaction through which cobots can provide
explanations and human partners can provide instructions.

(Interactive) reinforcement learning is one of the most applied
learning models to teach new tasks to cobots, however, in large
search spaces, RL-based approaches require a long time to learn.
Thus, Senft et al. (2017) proposed a model to make a robot’s
learning procedure faster. To this end, he proposed a suggestion
and correction system in which a human, as a teacher, provides
feedback on a robot’s progress in baking a cake. To bake the cake
correctly, the robot should be able to select the correct object in
every state, otherwise, the task fails. Since the robot indicates its
next action by gazing toward the selected objects or location, the
human teacher can estimate its next action, and in case, the robot
is going to select an incorrect object, the teacher can intervene by
recommending the correct object. For instance, if the robot is
gazing at a spoon to indicate that it is going to select the spoon to
put it in an oven instead of a bowl containing batter, the teacher
can select the correct object through right-clicking on the bowl (in
the simulation world) to teach the correct action for this state to
the robot. Although the study allowed human partners to transfer
their knowledge to the robot, the robot cannot express its
decision-making rationale to the human partner, i.e., it lacks
transparency.

Previous studies showed that making the cobots’ controllers
transparent increases their acceptability, predictability, and
trustworthiness. However, to the best of our knowledge, there
is no comprehensive model that enables cobots to both reason
about their actions and empower human partners to teach cobots
new tasks.

3 METHODOLOGY

In our previous work (De Winter et al., 2019), we applied an
Interactive Reinforcement Learning (IRL) model to enable a
cobot to assemble the Cranfield benchmark (Collins et al.,

1985). The Cranfield benchmark comprises of 9 objects: base
plate, top plate, square peg (×2), round peg (×2), pendulum,
separator, and shaft (Figure 1). To assemble the Cranfield
benchmark, the cobot needs to follow 16 constraints
(Table 1). These constraints come from the fact that when
assembling the Cranfield benchmark, the placement of some
objects is a prerequisite for the placement of other objects,
while for some objects the order of the placement is not
important. For instance, the assembly can only start with one
of the plates, however, once one of the plates is placed, round
pegs, square pegs, and shaft (5 objects) can be placed, while
pendulum, separator, and top plate can not be assembled yet.
Therefore, in some states of the assembly, several objects can be
assembled in parallel, while in some other states, objects should
be assembled in a specific order.

The challenge in (De Winter et al., 2019) was to teach the
cobot the correct order of the objects to assemble the Cranfield
benchmark correctly, which IRL was able to achieve. The applied
IRL model generates a Q-table, which shows the appropriateness
of selecting each object in different states. This appropriateness
value is determined based on the number of violated constraints.
Since the applied task is fully constrained, the applied IRL model
converges to an assembly sequence that does not violate any
constraint. Thus, the cobot can finish the assembly task correctly.

However, if some of the instructions are missing, it is possible
that the cobot is not able to completely learn the desired task, in
which case it is necessary that the human can provide support,
which in turn requires the human to understand the previously
executed actions of the cobot. Therefore, we propose a T-GUI
which allows the cobot to explain its actions and the human to
provide missing instructions to help the cobot finish the task.
Both components are explained in more detail in the following
subsections.

3.1 Cobot’s Explanation for Human Partner
Since there are multiple ways the Cranfield benchmark can be
assembled, the human might not immediately understand
why the robot is performing a specific action, i.e., picking
one object instead of another, when both can theoretically be
assembled in parallel, so that it is beneficial, if the robot is able
to provide an explanation. To this end, a button which is
labeled as “Why did you select this object?” is provided in the
proposed T-GUI (Figure 2A) to enable the human partner to
ask for an explanation. To answer this question and generate
an appropriate explanation, the cobot utilizes previously
obtained constraints that indicate in which state which
object can be assembled. All generated explanations have
the following structure: “After assembling list-of-already-
assembled-objects, possible objects for assembly are: list-of-
possible-objects-in-this-state”. For instance, if base plate and
square pegs are assembled, selecting the separator provides a
positive reward, thus if the user asks the cobot why it selected
the separator for assembly, the cobot can explain: “After
assembling base plate and square pegs, possible objects for
assembly are: separator, round peg2, and shaft.” (Figures
2C,D). Thus, by providing this explanation, the human
partner can understand which objects are available options
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for assembly and adjust her expectation, which is the first
contribution of this study.

3.2 Transferring Human Knowledge to
Cobots
The list of constraints that are defined for an assembly task is used
as instructions that a cobot can follow to accomplish its task.

However, if this list is not fully available before starting the task
(due to different reasons, e.g., it is a new task with extra
constraints, the human partner does not know all the
constraints, or she has forgotten to encode some of them), the
cobot can not finish its task correctly, because it is able to select an
object that does not violate any of the known constraints but will
eventually block the assembly task. In such a situation, if the
human partner transfers her knowledge of potential constraints
(as new instructions) to the cobot, it can learn to accomplish the
task. Thus, the provided T-GUI contains another button, which is
labeled as “Add a new instruction” (Figure 3A) through which
the user can add a new instruction to the list of the instructions
known by the cobot (Figure 3B).

To illustrate such a situation, five constraints of the Cranfield
benchmark assembly task are eliminated from the list of
instructions initially provided to the cobot, which are: “square
peg1 before separator”, “square peg2 before separator”, “shaft
before top plate”, “pendulum before top plate”, and “round peg2
before top plate”. In fact, the necessary instructions which have to

FIGURE 1 | The architecture of the proposedmethodology (left) and objects of the Cranfield benchmark (right). The human partner is able to see the cobot’s action
and assembly state. Further, the human partner can ask the cobot to explain its actions, which leads to the cobot producing a sentence to explain the reason for the
performed action (Section 3.1). In addition, the human partner can directly teach a new instruction to the cobot to enable it to restart the learning procedure with more
knowledge about the task, which eventually enables it to complete the task (Section 3.2).

TABLE 1 | The list of required constraints for assembling the Cranfield benchmark.

# Constraint # Constraint

1 Base Plate before Square peg 1 9 Round peg1 before Top Plate
2 Base Plate before Square peg 2 10 Round peg2 before Top Plate
3 Base Plate before Round peg 1 11 Square peg1 before Separator
4 Base Plate before Round peg 2 12 Square peg2 before Separator
5 Base Plate before Shaft 13 Separator before Top Plate
6 Base Plate before Pendulum 14 Shaft before Pendulum
7 Base Plate before Separator 15 Shaft before Top Plate
8 Base Plate before Top Plate 16 Pendulum before Top Plate

FIGURE 2 | Sub-figure (A) shows the default interface, where participants can watch a video showing the cobot is assembling Cranfield benchmark. Meanwhile the
button “Why did you select this object?” also is shown, which gives participants the chance to read the cobot’s explanation about its action. By clicking on this button, the
video stops, and based on the experiment (between-subjects or within-subjects) one of the other three sub-figures, i.e., (B–D), appears. Sub-figures (B, C) are related to
the between-subjects design experiment, so that for half of the participants only (B) is shown, and for the other half only (C) is shown. Sub-figure (D) is shown in the
within-subjects design experiment, i.e., participants can see explanations generated by the baseline model and the proposed model at the same time. In any sub-figure,
by clicking on “Got it” button, the explanation/s disappears, and the video continues (users can again ask the robot for explaining its next actions by clicking on “Why did
you select this object?“.
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be considered to start the assembly are given, and the other
instructions are chosen by random. In this manner, it is possible
that the cobot first places the separator before square pegs (due to
lack of constraint “square pegs before separator” (Figure 2A) and
then assembles the top plate, which causes some objects to remain
unassembled.

Once the cobot stops the assembly, if there are some
unassembled objects, the human partner can add a new
instruction to help the cobot to assemble the remaining
objects via the “Add a new instruction” button (Figure 3A).
After clicking on this button, three instructions are shown to the
user as possible options to teach to the cobot1, however, only one
of them is correct. The two incorrect instructions are used to
ensure that participants understand the goal of the experiment
and aim to help the cobot by selecting the correct instruction. The
provided instructions have one of the following structures: “list-
of-prerequisite-objects before list-of-possible-objects” or “list-of-
possible-objects after list-of-prerequisite-objects”, e.g., “square
pegs before separator”, or “separator after square pegs”,
respectively.

After the user added a new instruction, the cobot restarts the
assembly taking into account the new instruction. Thus, using the
provided T-GUI, the human partner is able to teach a new
instruction to the cobot without knowing how to program the
robot, thereby, enabling the cobot to do a new task or make a
previously impossible task feasible, which represents the second
contribution of this study.

4 EXPERIMENTAL SETUP AND OBTAINED
RESULTS

To evaluate the efficiency and transparency of the proposed
T-GUI an experiment is designed in which a cobot can grasp,

transfer, and place all Cranfield benchmark objects individually,
and explain the reason for its actions2. However, due to several
missing constraints (constraints 10, 11, 12, 15, and 16 in Table 1)
it can only partially perform the assembly task, i.e., the assembly
stops while some objects are still unassembled.

For evaluation purposes, the provided explanation in the
T-GUI is compared with a baseline explanation in baseline
GUI (B-GUI). B-GUI illustrates a model through which the
human partner can transfer knowledge to the cobot, but it is
not transparent, i.e., the cobot is not able to explain its strategy to
the human partner. Hence, the B-GUI contains the same buttons
as the proposed T-GUI except that in response to “Why did you
select this object?” it only says “I am programmed to select this
object” because it is how cobots usually perform a task, i.e., by
following hard-coded instructions.

To explain the experimental procedure for participants, we
made a story in which our platform, i.e., Franka4 is introduced as
a robotic arm that wants to assemble its toy (Cranfield
benchmark), but it does not know how to do it, however,
participants are able to help it by teaching some instructions
to it. In addition, participants are told that they can ask Franka
why it selects a specific object in a specific state to understand its
strategy.

Due to COVID-19, the experiment could not be run on-site.
Thus, an online version of the experiment is provided and
participants are recruited through Amazon Mechanical Turk
(AMT)3 (Crowston, 2012).

As the experiment is conducted online, all possible actions of
the cobot in all possible conditions are taped, and based on which
instruction the participants teach to the cobot, the related video is

FIGURE 3 | If the cobot stops the assembly task while some objects remain unassembled (A), the user can click on “Add a new instruction” button which leads to a
new window (B), where a new instruction can be taught. In the new window (B), the user can see the latest status of the assembly task, the name of different objects, the
correctly assembled form of the Cranfield benchmark, and three instructions from which the user can teach one to the cobot (only one instruction is correct). Each
instruction provides information about the correct assembly order of two objects, e.g., yellow base Plate before red Round peg. It is worth mentioning that this
interface is the same for both B-GUI and T-GUI (Section 4).

1To have a uniform input, predefined options are used instead of text input.

2Details about the employed method and the obtained data are available upon
demand.
4Available at https://www.franka.de/technology.
3Participants provided their consent before starting the experiment, and IRB
approval is not required in our university.
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shown to them so that they have the feeling that the cobot is
performing the taught instruction.

To evaluate the proposed methodology, both objective and
subjective evaluations are used. For objective evaluation, the
number of participants who were able to add all missing
instructions without adding any wrong instructions is checked.
For the subjective evaluation, participants are asked to indicate
their level of agreement on two scales of explanation satisfaction
and trust, recommended for XAI models, from 1 to 5, where 1
indicates “strongly agree” and 5 indicates “strongly disagree”. The
applied scales are selected from (Hoffman et al., 2018), which try
to measure the participants’ impression about different concepts
of a cobot’s behavior and explanation interface, e.g., how much
the proposed T-GUI is increasing trust in the cobot and
satisfaction with the interaction (Table 2).

The experiment was conducted in two designs that are
explained in the following subsections.

4.1 Experiment I: Between-Subjects Design
First, a between-subjects design experiment is conducted, where
half of the participants interacted with the B-GUI (Figure 2B),
and the other half interacted with the proposed T-GUI
(Figure 2C). Overall, 71 participants participated in this
experiment, however, 29 sessions are discarded due to failure
in truth estimation. For instance, we collected the number of
times a user had clicked on “Why did you select this object?” and
discarded sessions in which the user never clicked on this button,
since the applied questionnaires are about the explanations which
are only shown after clicking on this button.

We also designed some related questions like “Do you know
programming?” and “Did you ever program a cobot?“, to verify if

the participants read the questions carefully. Sessions in which
users answered “no” and “yes”, respectively, for these questions
are discarded. Additionally, we tracked the time each user spent
answering the questionnaires, and if this time is not acceptable,
we discarded the session. For instance, the average time for
answering 16 questions is 95 s for the accepted sessions, while
sessions in which users spent less than 75 s are discarded, a
double-check also shows that for these very short sessions most of
the time only one rate is selected for all of the statements. In the
end, 42 sessions are kept, i.e., 21 participants for the baseline and
21 participants for the proposed method. 18 participants are self-
reported as female and 24 as male. Their ages ranged between 22
and 46 (M = 30.77, SD = 5.92), and none of them had related
education or occupational background.

4.1.1 Results of Objective Evaluation
The results of the objective evaluation show that in the
experiment with B-GUI, nine participants, and in the
experiment with the proposed T-GUI, 18 participants selected
the correct instructions. Thus, one can conclude, providing
explanations clarifies the task and helps participants to better
understand the task and thereby give correct instructions.

4.1.2 Results of Subjective Evaluation
To evaluate the proposed GUIs subjectively, we asked users’
impressions through the two scales of explanation satisfaction
and trust (Table 2). As obtained results by Shapiro-Wilk test for
normality reject the null hypothesis (Table 3), to verify whether
participants’ rating to the proposed model and the baseline model
are significantly different, Mann-Whiteny U test is applied over
participants’ ratings to the models (Table 3), which showed there

TABLE 2 | Illustration of the applied statements which are selected from (Hoffman et al., 2018) and the comparison of the obtainedmean and standard deviation in each item
for the proposed and baseline models for the two used experimental designs. Following, Hoffman et al. (2018), 1 indicates strongly agree and 5 indicates strongly
disagree, therefore, the lower the rating, the better are the results, except for statement number 14, which is inverse coded.

# Statement Between subjects design Within subjects design

B-GUI T-GUI B-GUI T-GUI Wilcoxon
test

M STD M STD M STD M STD Z P

Saticification 1 From the explanation, I understand how the cobot works 1.94 1.02 1.78 0.79 1.87 0.94 1.37 0.63 −2.44 0.015
2 This explanation of how the cobot works is satisfying 2.31 1.41 2.13 0.81 1.66 0.63 1.37 0.48 −2.07 0.038
3 This explanation of how the cobot works has sufficient detail 2.36 1.3 2.13 1.05 2.45 1.02 1.7 0.93 −3.31 0.001
4 This explanation of how the cobot works seems complete 2.47 1.42 2.3 1.06 2.12 1.07 1.75 0.82 −1.98 0.048
5 This explanation of how the cobot works tells me how to use it 2.47 1.3 2.13 1.04 2.08 1.21 1.5 0.91 −2.14 0.032
6 This explanation of how the cobot works is useful to my goals 2.73 1.28 2.3 0.87 2.38 1.06 1.63 0.95 −3.35 0.001
7 This explanation of the cobot shows me how accurate the cobot is 2 1 1.86 0.86 2.33 0.96 1.5 0.76 −2.96 0.003
8 This explanation lets me judge when I should trust and not trust the

cobot
2.78 1.18 2.3 1.14 2.45 0.93 1.7 0.97 −3.29 0.001

Trust 9 I am confident in the cobot. I feel that it works well 2.05 0.97 2.17 0.88 2.21 0.98 1.46 0.64 −3.49 0.000
10 The outputs (object selection) of the cobot are very predictable 2.2 1.18 2.26 0.91 2.37 1.09 1.83 0.94 −3.13 0.002
11 The cobot is very reliable. I can count on it to be correct all the time 2.47 1.17 2.65 1.02 2.62 1.17 2.08 0.99 −2.67 0.008
12 I feel safe that when I rely on the cobot I will get the right answers 2.57 1.21 2.47 1.2 2.29 0.9 1.7 0.78 −2.95 0.003
13 The cobot is efficient in that it works very quickly 2.6 1 2.7 1.2 2.20 0.97 1.79 0.86 −2.43 0.015
14 I am wary of the cobot 3.05 1.18 3 1 1.54 0.25 2.79 0.22 −2.23 0.026
15 The cobot can perform the task better than a novice human user 3.26 1.32 3.56 1.4 2.54 1.25 2.2 1.22 −2.27 0.023
16 I like using the system for decision making 2.57 1.42 2.69 1.36 2.12 1.11 1.66 1.06 −2.60 0.009

The bold value in each experimental setting shows that which model performed better in that experimental setting. Thus, in each row, two coloumns are bold, to show the better model in
each experimental setting.
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is no significant difference between B-GUI and T-GUI. However,
since the objective results supported the efficiency of the
proposed method, we conclude that a lack of comparison may
be the reason why the results of the subjective evaluation are
insignificant, thus, we repeated the experiment with a within-
subjects design to reevaluate the participants’ subjective opinion.

4.2 Experiment II: Within-Subjects Design
Experiment I is modified to a within-subjects design. To this end, the
experimental design is changed so that participants are able to see the
explanations for B-GUI and T-GUI in one window (Explanation 1
and Explanation 2 in Figure 2D, respectively). The same truth
estimations are used and the experiment is conducted until 25
acceptable sessions are obtained. The self-reported gender is 8
females, 16 males, and one other. Participants’ ages ranged from
18 to 51 (M = 36, SD = 7), and none of them had related education or
occupational background. To ensure there is no subjects group
overlapping, participants are asked if it is the first time they
attend the experiment. Additionally, analyzing the demographic
data of the participants (age, gender, education, and occupation)
there was no overlap between participants in the two experiments.
The objective evaluation shows 17 participants are able to select all
missing instructions without teaching any wrong instructions to the
cobot. It may seem that in the between-subjects experiment more
participants gave correct instruction, i.e., 18 out of 21 (in between-
subjects design) in comparison to 17 out of 25 (in within-subjects
design).However, it is important to note that, participants should give
three instructions to the robot to finish the assembly task, and
providing a single mistake leads to separating the participant from
those that gave correct instructions. In this manner, the overall
number of mistakes in the within-subjects design, i.e., 31 mistakes
by 25 participants, is comparable with the overall number of mistakes
that were made in the between-subjects design, i.e., 29 mistakes by 21
participants.

To evaluate if the obtained results are significant, we applied
the Wilcoxon test, since our data suggests a deviation from
normality (Table 4, Shapiro-Wilk test). The obtained results
by Wilcoxon test for subjective evaluation showed that
participants rated the T-GUI significantly higher than the
B-GUI for both explanation satisfaction (z = − 3.86, p = 0.000
26) and trust (z = − 3.65, p = 0.000 12) scales as shown in Table 4.

5 DISCUSSION

As participants were asked to rate the interaction based on two
scales of explanation saticification and trust, obtained results
show provided explanations increase users’ trust in the cobot
(z = − 3.65, p = 0.00012, Table 4), and also showed participants
were satecified by the provided explanations (z = − 3.86, p = 0.000
26, Table 4). To make a deeper look into the obtained results,
Wilcoxon test (in within-subjects design experiment) is applied to
participants’ ratings to each individual item of the rated scales.
Results showed that adding explanation increases users’
understanding of how the cobot works (item 1, M = 1.37, SD
= 0.63, z = − 2.44, and p = 0.01) and how to use the cobot (item 5,
M = 1.5, SD = 0.91, z = − 2.14, and p = 0.03). In addition,
participants believe the provided explanations contain sufficient
detail (item 3,M = 1.7, SD = 0.93, z = − 3.31, and p = 0.001), and
are complete (item 4, M = 1.75, SD = 0.82, z = − 1.98, and p =
0.04) and satisfying (item 2,M = 1.37, SD = 0.48, z = − 2.07, and
p = 0.03). Further, participants believe that based on the provided
explanations, it is possible to know when they can trust and when
they can not trust the cobot (item 8,M = 1.7, SD = 0.97, z = − 3.29,
and p = 0.001), since the explanations show how accurate the
cobot is (item 7, M = 1.5, SD = 0.76, z = − 2.96, and p = 0.003).

Moreover, obtained results show participants are confident in
the cobot (item 9,M = 1.46, SD = 0.64, z = − 3.49, and p = 0.000)
since it works well and quick (item 13,M = 1.79, SD = 0.86, z = −
2.43, and p = 0.01). They also feel safe so that it is possible to rely on
the cobot since it gives right answers (item 12,M = 1.7, SD = 0.78,
z = − 2.95, and p = 0.003) and does correct actions (based on its
knowledge) (item 11, M = 2.08, SD = 0.99, z = − 2.67, and p =
0.008). Further, participants do not wary the cobot (item 14, M =
2.79, SD = 0.22, z = − 2.23, and p = 0.02). Interestingly, they believe
they can use the system for decisionmaking (item 16,M = 1.66, SD
= 1.06, z = − 2.6, and p = 0.009), which shows how transparent and
reliable the provided model is. They also believe the output of the
cobot is predictable (item 10,M = 1.83, SD = 0.94, z = − 3.13, and
p = 0.002), which might be due to showing the list of the
instructions that the cobot follows, i.e., as the proposed T-GUI
provides the instructions, participants can read and predict what
will be the next assembly object, which also shows how reasonable
the cobot’s strategy is.

TABLE 3 | Results of statestical tests in Between-subjects design experiment (α = 0.05), which are obtained by summation across all items of each scale.

Scale Shapiro-Wilk Mann-Whitney U

B-GUI T-GUI z-score p-value U

Explanation Saticification 0.07 (W = 0.90) 0.26 (W = 0.94) −0.66 0.50 191.5
Trust 0.26 (W = 0.93) 0.07 (W = 0.92) 0.88 0.37 183

TABLE 4 | Results of statestical tests in Within-subjects design experiment (α = 0.05), which are obtained by summation across all items of each scale.

Scale Shapiro-Wilk Wilcoxon

B-GUI T-GUI z-score p-value

Explanation Saticification 0.51 (W = 0.96) 0.31 (W = 0.95) −3.86 0.000 12
Trust 0.03 (W = 0.90) 0.03 (W = 0.91) −3.65 0.000 26
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Thus, one can conclude that transparency, i.e., providing an
explanation about cobot’s actions, enhances the performance of
the users, leads to more trust in the cobot’s actions, and increases
the users’ overall satisfaction with the cobot.

Further, as working with industrial robots is increasing,
different programming tools are proposed in the literature,
e.g.,Huang and Cakmak (2017) andStenmark et al. (2017)
developed models to enable non-expert users to program a
robot. Since the obtained results in this study showed that
enabling a robot to explain its behaviors improves users’
performance in teaching new tasks to the robot, it is also
possible that endowing the proposed models inHuang and
Cakmak (2017); Stenmark et al. (2017) with an explanation
generation module improves the performance of the non-
expert users in teaching new tasks to the robot, which needs
to be investigated in future work.

6 CONCLUSION

A transparent interaction between a cobot and a human partner
that work on a shared task not only can improve the human’s
performance but also make impossible tasks feasible for the cobot.
In this study, we show that providing a GUI through which the
cobot can explain the reason behind its actions and human
partners can transfer their knowledge to the cobot, makes
interactions more transparent, and enables the cobot to
accomplish a task that it was originally not able to do without
the help of an expert programmer. In addition, the results show
that the human partner performs better and makes fewer
mistakes in teaching, if the cobot explains its behavior. This
performance improvement can be due to a better understanding
of the task’s detail, which is obtained through the explanations
provided by the cobot. Additionally, the obtained results show
that providing a transparent GUI increases users’ trust in and
satisfaction with the cobot.

As provided explanations in this study are generated based on
previously obtained knowledge, it is only possible to generate
explanations when the cobot has already learned the task. In

future work, we are going to investigate the generation of
explanations in an online manner, i.e., while the robot is still
trying to learn the task. Additionally, we are planning to allow the
human partner to already provide support during the learning
utilizing the explanations provided by the cobot. Finally, we will
conduct an experiment with a larger population size to increase
the representativeness of the results.
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