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The need for combined task and motion planning (CTAMP) in robotics is well known as
robotic technologies become more mature. The goal of CTAMP is to determine a proper
sequence of a robot’s actions based on symbolic and geometric reasoning. Because of
the fundamental difference in symbolic and geometric reasoning, a CTAMP system often
requires an interface module between the two reasoning modules. We propose a CTAMP
system in which a symbolic action sequence is generated in task planning, and each action
is verified geometrically in motion planning using the off-the-shelf planners and reasoners.
The approach is that a set of action models is defined with PDDL in the interface module
(action library) and the required information to each planner is automatically provided by the
interface module. The proposed method was successfully implemented in three simulated
experiments that involve manipulation tasks. According to our findings, the proposed
method is effective in responding to changes in the environment and uncertainty with
errors in recognition of the environment and the robot motion control.
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1 INTRODUCTION

A service robot requires a system to manipulate objects indoors (e.g., pour drinks). This systemmust
allow the robot to plan several actions in order, without collisions with other objects: 1) move the
robot base near the object to be manipulated; 2) move the robot arm around the object; and 3) grasp
the object. To solve this problem, two approaches have been studied. First, the approach of task
planning aims to determine the order of actions to grasp the object (starting from the initial state of
the robot). Second, the approach of motion planning aims to calculate a collision-free path to
perform each action for the robot.

A classical task planner, known as the Stanford Research Institute planning solver, was developed
(Pednault, 1989), and the planning domain definition language (PDDL) was standardized as the AI
planning language in the International Planning Competition (Fox and Long, 2003). The task
planner uses an abstract action model using a planning language. By ignoring the feasibility of the
actions and considering only the causality between them, the task planner automatically generates a
sequence of actions that can reach the goal state from the initial state of the task. Therefore, it is not
possible to determine the actual performance of the actions through task planning. In motion
planning, collision-free paths are planned: the robot must move to the desired location while
considering geometric and mechanical constraints in the actual physical space. Geometric reasoning
is used to verify that the robot can move along the path (Latombe, 2012). Because probabilistic
motion planning methods, such as rapidly-exploring random trees (LaValle et al., 2001), have been
studied, motion planning of a high-freedommanipulator is also possible. Because each manipulation
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task has different constraints to consider, there are various
motion planners specialized for each task, such as motion
planning for grasp (Fan and Tomizuka, 2019), handover (Wan
et al., 2019), and pouring (Tsuchiya et al., 2019). Task planners
and motion planners have been studied in different ways to solve
problems for each planning purpose. The combined task and
motion planning (CTAMP), which automatically determines the
sequence of feasible actions, is a challenging issue for service
robots.

The first method for integrating two planners includes calling
the modularized motion planner whenever an action is
determined by the task planner to confirm the feasibility of
the action (Cambon et al., 2009; Plaku and Hager, 2010).
Lagriffoul et al. (2012) used geometric backtracking to select
and verify all the actions that can be performed until the robot
reaches its goal state. However, calling a motion planners for
every action has a disadvantage of high computational cost.
Therefore, Bidot et al. (2017) suggested reducing the search
space of backtracking by limiting the grasping posture or the
position of placing an object.

In a different approach, a second method to integrating the
two planners is to call the motion planner only for candidate
actions of the task (Pandey et al., 2012; de Silva et al., 2013). This
requires defining the relationship between the action model and
the motion planner. Srivastava et al. (2014) used geometric
parameters such as grasp postures or object positions in the
action model in advance to construct the predicates of the action
precondition so that the motion planning can interfere with the
task planning. They did task planning first and implemented an
interface layer to call the motion planner for each action.
However, they take a long time to solve to relocate obstacles
because they did not consider linking with additional geometric
reasoning modules to make more efficient plans (Lee and Kim,
2019). Wells et al. (2019); Akbari et al. (2019) reduced the
computational cost of the motion planner by calling it only if
each action is verified by a geometric reasoner.

When using the CTAMP presented in the above studies to
perform manipulation tasks, the robot will operate only after the
results of the task plan are verified. Therefore, if the task
environment changes during the calculation time, the task
may fail. Moreover, there was no discussion of replanning the
task if it fails due to an uncertainty error in recognition or control
in scenarios with real-world robots and tasks.

In this paper, we present a CTAMP system that can be applied
to various manipulation tasks and enables re-planning the task, as
a way of performing motion planning on the sequence of actions
obtained as a result of carrying out the task planning first.
Assuming that the task requires several obstacles to be
removed to grasp a target object, the action of removing the
obstacle should be accompanied by such consequences as
“obstacles being removed” as opposed to simply grasping or
putting the object. For this reason, for the task planning part,
the action of removing obstacles should be defined with more
complex constraints. The action of “removing obstacles” can be
seen as a compound action composed of several primitive actions
(such as move the robot arm near the object, grasp it, and move
the arm to another location). Therefore, in the motion planning

phase, when calculating the joint trajectories for the action of
removing the obstacle, several motion planners must be used to
create a joint trajectory for the robot arm to grasp the obstacle and
relocate it to another location. Moreover, additional geometric
reasoning algorithms should be used to efficiently calculate where
the obstacles should be relocated.

For that purpose, in this study, we implemented the action
library to define the relationships between actions and the action-
motion planner. The proposed action library informs us which
compound actions consist of which primitive actions, and which
motion planner can be used to verify each action’s feasibility.
Using the action library, we implemented the task manager
module to automatically perform the task planning for the
current state and the goal state. Moreover, we implemented
the behavior manager module, which manages the
modularized state-of-the-art motion planners and geometric
reasoners. In the proposed CTAMP system, when the
sequence of primitive action was first determined by the task
planner, we proposed an interference method, which
automatically calls the motion planners and geometric
reasoners required for the execution of each primitive action.
Therefore, we do not only verify the feasibility of actions and
create a plan of motions at the planning phase, but we also
propose a system for re-planning. Thus, the robot can respond to
task failure (caused by changes in the environment or by
uncertainty errors) by performing the action whenever
verification of each action is completed.

The remainder of this paper is structured as follows. Section 3
presents how the action library defines an action model using the
task planning language. Section 4 describes how the taskmanager
module automatically plans the tasks. Section 5 describes how the
behavior manager calls geometric algorithms to perform
primitive actions as a result of the task plan. Section 6
discusses the results of several manipulation tasks by applying
the proposed system.

2 PROPOSED TASK AND MOTION
PLANNING SYSTEM

In this paper, a CTAMP system is proposed for the service robot
to provide various services in object manipulation (such as the
handover of objects or pouring drinks). The system we propose
consists of five modules: perception manager, system manager,
action library, task manager, and behavior manager. Figure 1
shows the system structure. Symbolic-level planning usually
involves abstract reasoning, and there is a task manager
module for task planning. At the metric-level, perception
managers and behavior managers perform geometric
calculations. Between the two levels, the system manager and
the action library act as interfaces between the other modules. The
perception manager recognizes the surrounding environment
and objects by using a lidar or a vision sensor attached to the
robot. Finally, the perception manager periodically sends all the
recognized information to the system manager.

The system manager stores and updates all information
received from the perception manager and returns the
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corresponding geometric value when requesting specific
information from other modules. When a command from the
user to perform a manipulation task is entered into the system
manager, the system manager infers the goal state from the
command. Subsequently, the system manager uses the
geometric reasoners managed by the behavior manager to
infer the current state with the object information recognized
by the perception manager. The system manager converts the
inferred goal and the current states into the format required by
the task manager, and it requests the task planning from the task
manager.

The action library is a module that acts as an interface between
the task manager and the behavior manager. The action library
defines the action model for the manipulation tasks, and it
transfers the action model to the task manager to support the
task planning. To enable geometric reasoning for an action
sequence that is the result of task planning, the action library
transfers the action constraints and the action sequence to the
behavior manager.

The task manager is a module that calculates the sequence of
actions for performing manipulation tasks using a PDDL-based
task planner. To plan tasks, the task planner requires input data of
the planning algorithm. This includes not only the current state
and the goal state, but also action information modeled in the
task-planning language. Because the models of actions that a
robot can perform are defined in the action library, the task
manager extracts the action models from the action library before
the task planning. When the task manager receives a request for
task planning from the systemmanager, it plans the task using the
state information, which is received from the systemmanager and
the action library model.

The behavior manager manages the algorithms that can
perform various geometric calculations so that the actual robot
can perform actions. First, geometric algorithms include the
motion planners that generate the joint trajectory. The motion
planners can verify whether an action is feasible by creating a
collision-free joint trajectory. The behavior manager receives the
successfully created action sequence from the task manager, and

it receives the action model from the action library. For each
action of an action sequence, the behavior manager calls the
specific motion planner specified in the action model to calculate
the joint trajectory, and it transfers the calculated path to the
robot controller so that the robot moves according to the
trajectory. The geometric algorithms also include geometric
reasoners. The behavior manager uses geometric reasoners
(such as the condition-checker for grasping) to determine
whether the robot has successfully completed the action.
Moreover, the behavior manager can help the robot to replan
the action because it can determine the success of action by using
a geometric reasoner. If the motion trajectory is not created
before performing the action, or if the action fails along the
trajectory, the behavior manager requests replanning from the
system manager. Thus, the system manager updates the current
states. Finally, the task manager performs the task planning again.

The above process is repeated until all actions of the action
sequence are successfully performed. In addition, when the
system manager requests reasoning from the behavior
manager to create the predicates of current states before the
task planning, the behavior manager infers accessibility of objects,
obstacle relocate positions, etc., and returns the results to the
system manager.

3 ACTION LIBRARY

In the combined CTAMP system proposed in this paper, the
action library not only defines the action model to help with the
task planning but also acts as an interface between the task
planner and the motion planner. To define the action model,
the action library classifies actions into compound actions and
primitive actions. Moreover, it defines the network structure,
where primitive actions are composed of compound actions. In
addition, the action library defines which motion planners are
needed for each primitive action and what input information is
required by the motion planner to generate motion trajectories.
We implement a PDDL-based task planner, which requires the

FIGURE 1 | Overview of the proposed task and motion planning system.
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action models defined in the planning language as input
information.

Tomodel the actions, a difficult problemmust be solved: how to
express each action specifically. As an example of a manipulation
task, assume that there is an obstacle (e.g., juice box) that prevents
you from grasping the desired object (e.g., milk box) by hand. If we
simply define the action and plan the action sequence, we can reach
the goal state by performing the following actions in order.

(1) open_hand (hand)
(2) hold_object (hand, juice)
(3) relocate_object (hand, juice)
(4) release_object (hand, juice)
(5) hold_object (hand, milk)

In the above action sequence, the robot opens its hand, grasps
the juice that’s blocking target object, moves it to another place,
releases the juice box, and grasps the target milk box. Each action
has a clear precondition and a postcondition for causal reasoning.
The action of moving the obstacle can be called before the action of
grasping the target object. This is because the target object can be
blocked by the obstacle, which must be cleared before the action is
performed. To perform these actions in practice, it is necessary to
prepare a motion planner to create a collision-free path for each
action. With additionally defined actions for manipulation tasks,
there is a problem of designing additional motion planners.

To solve this problem, we divided the hold_object and
relocate_object actions into the several different actions to
express various manipulation tasks with a small variety of
actions. We defined an action that can be divided into
different actions as a compound action and an action that
cannot be further divided as a primitive action. If the above
action sequence is expressed in only a few primitive actions, it can
be expressed as follows.

(1) open_hand (hand)
(2) move_arm (hand, juice)
(3) close_hand (hand)
(4) move_arm (hand, juice)
(5) open_hand (hand)
(6) move_arm (hand, milk)
(7) close_hand (hand)

The action of holding an object was divided into the action of
closing the hands after moving the arm near the object, and the
action of moving the obstacle was changed to the action of moving
the arm. The action sequence became longer, but the types of
actions that form the sequence were reduced from four to three.
The second action sequence can be expressed as a combination of
several primitive actions, which has the advantage of reducing the
number of planners required to verify the action. However, from
the perspective of a task planner that performs causal reasoning
between actions, the task cannot be planned because the action of
moving the arms and closing the hand does not result in the
obstacle being removed. To solve this problem, we define the
actions in the action library as a network structure of compound
actions and primitive actions that constitute a compound action. In

addition, the action library describes the motion planner and the
action constraints required for each primitive action. Hence, the
variables expressed by the symbol for the task planning can be
converted to geometric values. The following sections describe how
the action model is defined.

3.1 Library Definition
To describe the action models in the action library, a script was
written using the PDDL style and syntax (Aeronautiques et al.,
1998). As a result, the editor is more convenient, and the existing
PDDL planners can be easily applied. Definition 3.1 refers to the
elements constituting the action library, and Definition 3.2 and
Definition 3.3 refer to the elements constituting the compound
action and the primitive action, respectively.

Definition 3.1 (Action library). The action library L is a tuple
<D,T, P, A> where D is the set of the robot components, T is
the set of variable types, P is the set of predicates, and A is the set
of actions.

As an example ofD, a humanoid service robot’s component set
D is {Arm, Gripper, Mobile}. Hence, we know the robot
components needed to perform the actions defined in the
action library. Next, T is intended for task planning and is
used to convert symbolic variables into geometric variables
during motion planning. For example, T can be expressed as
{Object, Position}, where Object is a variable containing a 3D-
shape model, size (height, width, and depth), and class, and
Position is a simplification of the three-dimensional (x, y, z)
coordinates. Moreover, P is a set of predicates with Boolean-
valued functions, which are set to true or false during the
reasoning when the task planner creates a plan. Finally, A is a
set of actions modeled in the PDDL language, such asA = {a1, . . . ,
ak, a1′ , . . ., aj′}.

Definition 3.2 (Compound action). Each compound action
element ai ∈ A is represented by a tuple <param(ai), pre(ai),
eff(ai), prim(ai)>, and param, pre, and eff are the same as
parameters, precondition, and effect in action definition of
PDDL. The prim is a low-level primitive action set that
composes a ai.

Definition 3.3 (Primitive action). The primitive action a′ which
is partial plan of compound action is a tuple <param(a′), pre(a′),
eff(a′), req(a′)> where req is a subset of requirements of the
action. The req is consist of hardware_group and planner sets,
planner represents the motion planner needed to verify whether
a′ is feasible, and hardware_group represents the components of
the robot platform included in D needed to perform a′.

3.2 Action Decomposition
Figure 2 shows the two actions described according to the
method defined in Section 3.1, where hold_object is a
compound action and approach_object is a primitive action.
When the robot plans the task to grasp an object, for example,
the action hold_object is included in the sequence of actions.
Then, hold_object is decomposed into approach_object and
close_hand, as specified in (: primitives), and is transferred to
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the motion planner. When the behavior manager plans motions,
it should call a primitive action-specific planner described in (:
requirements) of planner from the action model, and it also
transfers the input variables to the planner.

For a compound action ai, a primitive action set prim(ai) = {P1,
. . . , Pj} and Pj = {p1, . . . , pk} = param(aj′)where Pj is a parameter
set of primitive action aj′ that must be performed jth to perform
ai. For example, hold_object(hand, juice, pos_hand, pos_juice) is
decomposed into approach_arm(hand, pos_hand, pos_juice) and
close_hand(hand) before performing the motion planning as
shown in Figure 3.

In this paper, the motion planner specialized in
approach_object action is defined as an approach-motion
planner that creates a joint trajectory to approach and grasp
the object. When converting a compound action into primitive
actions, the action library should inform the behavior manager
which parameters in the compound action correspond to those in
primitive actions. In the (: parameters) syntax of the hold_object

action model, the action parameters are the robot component
robotPart, target object targetObject, current position of the robot
arm armPosition, and the position of object objectPosition. The
robot component robotPart, target object targetObject, robot arm
initial position armPosition, and target object’s nearby position
nearPosition are parameters of the approach_arm action.

4 TASK MANAGER

The task manager is a module to automatically plan tasks, which
was implemented as shown in Figure 4. The task manager plans
tasks using PDDL, and the PDDL task planner needs two script
files for planning: Domain. pddl and Problem. pddl. The problem
generator generates problem. pddl by receiving the current state
and the goal state from the system manager, and the domain
generator generates domain. pddl by receiving the action model
from the action library. When task planning is successfully

FIGURE 2 | PDDL representation of actions. (A) Compound action hold_object. (B) Primitive action approach_object.

FIGURE 3 | Example of action decomposition. The red arrow is the first planned compound action sequence from task manager and the yellow arrow is the
primitive action sequence after the action decomposition.
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executed using two script files, an action sequence is obtained as a
result, and it is transferred to the behavior manager.

4.1 Problem Generator
The problem generator receives current and goal states from the
system manager and all objects recognized by the perception
manager. Then, received information is converted into the PDDL
syntax and stored in problem. pddl.

4.2 Domain Generator
The domain. pddl file contains the actions that the robot can
perform, predicates, and object information. These contents are
already defined in the action library, and the set of actions that
can be performed is A, the predicates are P, and the object
information is T. The domain generator reads only what is
needed for the task planning from the action library and saves
it to the script files, excluding prim and req of A. In addition, the
domain generator only brings the actions from the action library
that can be performed by comparing the components of the robot
with the hardware_group defined in A. By doing this, the actions
that cannot be performed on the current robot platform are
excluded fromA to prevent including them in an action sequence.

When script files are generated by the problem generator and
the domain generator, the task planning is performed using the
PDDL planner. The task planning uses a classic fast-forward
algorithm (Helmert, 2006) that uses the state search method to
obtain an action sequence.

Algorithm 1 Motion generator algorithm.

5 BEHAVIOR MANAGER

To plan motions for primitive actions, the behavior manager
manages modularized motion planners and reasoners and
acts as an interface between the modules. The behavior
manager is implemented as in Figure 5. Hence, the actual
robot can perform the actions obtained as a result of the task
plan in order. When a compound action sequence comes
from the task manager, the motion generator converts the
compound action sequence into a primitive action sequence
by using the relationship between actions in the action
library. For each action in the converted primitive action
sequence, the motion generator verifies whether it is possible
to create a collision-free path capable of performing the
primitive action using the motion planner and the
reasoners managed by the behavior manager. The specific
method is described in Section 5.1. When the collision-free
path is generated successfully, the motion generator
transfers the path to the robot controller so that the robot
moves along the path. If the motion planner fails to generate
a path or the robot fails to perform a primitive action, the
motion generator requests replanning from the system
manager to ensure that all actions are performed
successfully.

In the following sections, we explain how the behavior
manager creates motion for an action and enables replanning
in the CTAMP system.

5.1 Motion Generation
The motion generator has the role of calculating a joint trajectory
of the action using the motion planner modules. Moreover, it
converts the compound action sequence received from the task
manager to the primitive action sequence before the motion
planning. The motion planner modules managed by the
behavior manager return the calculated motion using each
algorithm when input values for motion planning are given.
To create a joint trajectory, the motion generator
automatically calls a motion planner that is specific to the
current primitive action among motion planners. At this time,
the motion generator must know what motion planner should be

FIGURE 4 | Diagram of the task manager.
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called and what inputs are required by it. Moreover, it assigns
geometric values because the actions of the transformed action
sequence are expressed only by abstract symbols.

Because motion planners and inputs that are necessary for the
motion planning of primitive actions are already defined in the
action library, and all geometric values obtained from the
perception module are stored in the system manager, the
motion generator takes the necessary information from them.
When inputs are given to the called motion planner, the joint
trajectory of the primitive action is generated and transferred to
the controller, and the motion generator repeats all actions within
the action sequence, allowing the robot to perform the action.
Algorithm 1 shows the process of automatically generating the
joint trajectories for all actions and transferring it to the controller
using the compound action sequence and the action model by the
motion generator.

Before the motion planning, the motion generator receives the
compound action sequence CompSeq provided by task planning
and the action set Amodeled in the PDDL language from the task
manager and the action library, and it uses the getPrimitives()
function to convert CompSeq into primitive action sequence
PrimSeq [line 3]. Through the while loop, for each primitive
action in PrimSeq, the motion generator checks the current
primitive action to be performed and receives the information
related to it from the action set A [lines 5-6]. In A, necessary
conditions of actions for task and motion planning are defined,
and getActionElem() function brings only the action parameters
SymParam and requirements Req of the action required for
motion planning. The necessary planner for the motion
planning of the action and the robot component performing
the action are defined in Req, and the loadPlanner() function
takes it and calls the specific planning module Planner among the
modules managed by the behavior manager. The assignValues()
function is a function that receives geometric values that
correspond to the action parameter SymParam expressed only
by symbols required by the motion planner module. Then, the
geometric values stored in the system manager are returned and
stored to GeoParam. Suppose that the current Action is
approach_object (left_hand, obj_juice, pos_left_hand, pos_juice),
and motion planning should be performed on this. The

approach_object action is to take an approach to an object
before grasping it, and the specific motion planner of this
action is defined as the approaching motion planner in A. The
approach-motion planner in the behavior manager we have
implemented needs the Unified Robot Description Format
(URDF) file containing the geometry information of the robot,
the position and pose of the object, and the 3D mesh file for
planning. Because these geometric values are managed and stored
in real-time by the system manager, the motion generator can
receive values corresponding to the motion planner’s input from
the system manager. An action parameter obj_juice is an
instantiated symbol of Object in SymParam, and when a value
of obj_juice is requested from the system manager, 3D shape
information (including the mesh file and the size of the target
object) is returned. For the left_hand, in the same way, the motion
generator will receive URDF for the robot.

For pos_juice and pos_left_hand, the motion generator will
receive geometric values of the three-dimensional position (x, y,
z) and orientation (x, y, z, w) of the juice box and the left hand’s
end-effector, respectively. When GeoParam is transferred to
getMotion() function of planner module, a collision-free path
is planned. If the path is created successfully, MotionTraj and
Feasible gets True value [lines 9–10]. When motion planning is
finished, MotionTraj is transferred to the controller via the
setMotion() function to allow the robot to move along its path
and repeat the above steps for the following actions [line 11]. This
time, Req is also used as a variable for the setMotion() function,
and because the hardware_group is defined in Req, the motion
generator can transfer the joint trajectory to a specific controller.
The motion generator can automatically call the motion planning
module corresponding to the primitive action and transfer the
necessary information for the motion planning, as shown in
Algorithm 1. Therefore, by adding the modularized state-of-the-
art motion planner into the behavior manager and defining the
action model in the action library for a specific action, the robot
can perform amanipulation task using various actions. Moreover,
because the geometric information of the current robot is
obtained from the URDF file, the motion generator algorithm
can be applied independently of the hardware if the robot
platform is defined in URDF.

FIGURE 5 | Diagram of the Behavior manager.
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We have implemented the motion planner modules to support
several motions that can be replaced with state-of-the-art
algorithms in the behavior manager: arm motion, approaching
motion, gripper motion, pouring motion, and handover motion.
The motion planning algorithms for specific actions are
independent research subjects. In this study, we do not focus
on the implementation of the optimized or efficient motion
generation algorithms. Instead, we simply implement a motion
planner that returns a motion when input is given.

5.1.1 Arm Motion Planner
The arm motion planner module calculates the motion trajectory
for moving the robot arm to the target pose from a current pose.
The planner obtains kinematic information from the robot
URDF, and creates a collision-free path with the 3D pose of
the robot hand’s end-effector and recognized objects.

5.1.2 Approaching Motion Planner
The approach-motion is a motion that creates a path so that the
robot moves its arm in a position before it grasps an object. The
approach-motion planner that we have implemented receives the
following inputs: robot’s URDF and 3D mesh file such as the STL
format of the target object, 3D positions, and poses of the objects.
Using the target object shape, the approach-motion planner
generates several pose candidates that become force-closure
when the robot gripper is closed and grasps the target object
and returns a successfully generated path by calculating inverse
kinematics (IK) whether there is a collision-free path from the
current position of the robot’s arm to each candidate position.

5.1.3 Gripper Motion Planner
The gripper motion planner creates a gripper’s joint trajectory to
grasp or put an object. The close_hand action can grasp the object
by simply closing the gripper joints because the approach_object
action to take the pose before grasping the object is performed
first by the task planning, and force-closure is calculated at this
time. Therefore, we used only two predefined joint angles to open
and close the gripper.

5.1.4 Pouring Motion Planner
The pouring motion is a motion that pours a container
containing a beverage into another empty container, which is
necessary to perform a manipulation task, such as providing a
drink. Pouring motion planning has many considerations such as
fluid flow for the stable pouring, and there are studies using force
sensors or algorithms that recognize the affordance of an object
(Pan et al., 2016; Tsuchiya et al., 2019). We simplify the pouring
action so that the beverage is not considered. We define in
advance several end-effector’s sample pose Psample to pour the
beverage, as shown in Figure 6, which are located by distance r in
the horizontal x-y direction and by h in the vertical z-direction
from the central coordinates of the empty container and are
rotated to z-axis. The pouring action is considered successful if it
is possible to take an inclined posture by angle θ from the sample
position. As a result, a pouring motion trajectory ζpour from the
current end-effector’s pose is

Ppre � Rz,ψ
b
ct

0 1
[ ] · I3

r
0
h

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · beT (1)

Psample � Ppre · Ry,θ 0
0 1

[ ] (2)
ζpour � ζpre + ζ tilt (3)

where Ppre is the pose of end-effector before tilting an object in the
sample position, bc t is 3 × 1 translation matrix from robot base to
container, Rz,ψ is 3 × 3 rotation matrix around the z-axis by ψ
degrees, beT is 4 × 4 transformationmatrix from robot base to end-
effector of the gripper and ζpre is joint trajectory for approaching
motion from Peef to Ppre, ζtilt is joint trajectory for tilting motion
from Ppre to Psample and calculated with arm motion planner. In
this paper, we defined three sample poses to pour the beverage
with ψ = [ − 90°, 0°, 90°]. For this purpose, the pouring motion
planner receives the following inputs: the pose of the target
container and the robot end-effector.

5.1.5 Handover Motion Planner
Handover motion refers to a motion in which the robot moves an
object into the workspace of both robot arms to pass the object
held by one hand to the other hand. To pass the object, we
calculate the end-effector position to grasp the object with the rest
of the robot’s hands after moving the grasped object to the
position within the workspace of both arms. We simplify the
calculation to find the position for passing the object. As shown in
Figure 7A, the sample poses of the object within the workspace of
both arms are previously defined. The poses of the end-effector
for grasping the object with both hands is fixed in that sample
positions depend on the shape of the object and the hand that
transfer the object as shown in Figures 7B, C. When an object is
placed in a sample position, and there is an IK solution that
satisfies the pose of both hands, the planner returns a motion
trajectory to move the robot hand, grasping the object to the
sample position as a result of planning.

FIGURE 6 | Sample poses of the robot end-effector based on the robot
base coordinate system, which are used to calculate the pouring motion.
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5.2 Replanning
If the robot successfully performs all actions in the primitive action
sequence, the task is finished. However, if the path is not created
before the action is performed, or the action is not successfully
performed after the path is created, we update the current state to
reach the goal state and encourage other actions to be performed
through the replanning. If the path is not created, it occurs because
the task planner cannot make geometric inferences.

For example, in the case of picking a task in which a target object
milk is obstructed by the obstacle object juice as shown in Figure 8A,
the action of removing the obstacle is included in the action sequence
only when the state that where target object is being blocked is known
through the geometric reasoning before the task planning. Otherwise,
the task planner is not aware of the current state where the obstacle
exists, and it performs the initial task plan as shown in Figure 8B.

Hence, only the action of grasping the target object is included in the
action sequence, but the motion planner does not generate a path for
the robot arm to reach the target object because of the obstacles. In
this case, the motion generator returns Error that the motion
planning has failed, as shown in line 16 of Algorithm 1. When
the system manager receives an error regarding a failure, it updates
the current states with the reasoners in the behavior manager and
requests to the task manager for acquiring the re-planned action
sequence as shown in Figure 8B.

In this study, we have implemented the reasoner for obstacle
rearrangement (Lee et al., 2019) for this purpose. Obstacle
rearrangement reasoner is an algorithm that uses the vector field
histogram+ (VFH+) to verify the accessibility of the target object. If
the object is not accessible, this reasoner calculates the order and
position of relocating the obstacles. The systemmanager converts the

FIGURE 7 | Sample poses of the object and the robot end-effector, which are used to calculate the handover motion. (A) Sample poses of the object located in the
dual-arm workspace. (B) Sample pose of the left and right end-effectors when the object is lying down. (C) Sample pose of the left and right end-effectors when the
object is standing.

FIGURE 8 | Example of task re-planning in the pick and place task domain. (A) Initial simulation environment scene. (B)When the robot failed to motion planning to
execute approach_object action, the task manager re-plans primitive action sequence.
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reasoning results into a PDDL predicate format, adds it to the current
state, and requests the task manager to replan. In the above example
of object picking, the reasoner infers that the target object is blocked
by the obstacles, and the system manager adds the predicate obstruct
(gripper, targetObject, obstacle) to the current state to replan the task
manager from the updated current state. Therefore, the robot can
respond to changes in the environment by adding the predicates to
the current state and the actions to remove the obstacles to the action
sequence.

The failure of performing the action occurs when the position of
the recognized object is different from the actual position or if the
robot cannot follow themotion trajectory due to the uncertainty of the
recognition algorithm or the robot control algorithm. For example,
when performing a manipulation task to grasp an object, a path is
generated by motion planning with the recognized object position.
However, suppose that the object is not grasped by the robot hand at
that position due to an uncertainty error. The motion generator
determines the success of the action using the reasoners whenever it
performs an action using the setMotion() function, such as line 11 of
Algorithm 1, and returns the result as True or False in Res.

For this purpose, we have implemented a reasoning module to
determine the grasping status. The grasping status reasoner can infer
the open/close state of the gripper because it receives information on
the joint angles of the robot gripper and the position of the objects,
and the criteria for determination of gripper’s open/close conditions is
defined. In addition, the grasping status reasoner can be used to infer
whether an object is grasped using the distance between the objects
and the gripper end-effector and the status of the gripper. If the target
object is not grasped and the action fails, the motion generator uses a
grasping status reasoner and transfers Error to the system manager.
The motion generator returns the cause of failure Error, PrimSeq, and
the last step of action Step, as shown in line 19 of Algorithm 1, to
remind the system manager which step requires replanning.

The system manager uses the reasoners to update the current
states and requests the task planner to resume the task from the step
in which the action was successfully performed. The replanning is
repeated until the robot performs all the primitive actions. To prevent
infinite replanning, we limit the number of attempts.

6 SYSTEM EVALUATION

6.1 Implementation
The CTAMP system proposed in this study is tested in
simulations on Intel G4560 with 16 GB RAM. The simulator is
V-REP, and the physical engine is Vortex. We implemented the
task planner module using the pddl4j open library (Pellier and
Fiorino, 2018) for PDDL-based task planning in the task
manager, and we calculated grasping force-closure and IK
using moveit (Chitta et al., 2012) and graspit (Miller and
Allen, 2004) for the implementation of motion plan modules
in the behavior manager. All the modules of the proposed system
are implemented in the Robot Operating System (Quigley et al.,
2009).

For the experiment, three table-top tasks (object handover,
beverage pouring, and obstructed object) are defined, and a virtual
environment is implemented. The robot is self-made, having 6-dof

manipulator (Choi et al., 2016) with Robotiq 2F-85 and 7-dof
manipulator with Barrett hand BH8-282, and the robot base is
fixed. Each robot manipulator and gripper is controlled by the
controller of the V-REP simulator. The manipulators move
through the position control when the joint trajectories are
obtained from the motion planner, and the grippers move the
joints through the velocity control according to the open/close
commands. The 3D shape information of the objects used in each
experimental environment is stored in the system manager, and the
position and pose of the objects and the robot are obtained from the
simulator in real-time.

6.2 Object Handover
The first experiment is shown in Figure 9A. The task is to hand
over objects in the environment where a mug, glass cup, juice box,
and milk box are placed on the table. All objects are in the
workspace of the left hand, and the objects must move into the
workspace of the right hand to grasp an object with the right
hand. We defined the goal state using predicates
graspedBy(right_hand, obj_mug) and ¬graspedBy(left_hand,
obj_mug) to hold the mug with the right hand in this task.

The initial state is automatically generated using the predicates by
the system manager, and the system manager first generates a
predicate for a recognized object position. The 3D coordinates
where all recognized objects are located are represented by the
locatedAt predicate. Next, the system manager generates additional
predicates using the reasoner. The system manager first calls the
obstacle rearrangement reasoner, transferring the position of the
robot and the object from the behavior manager, and it starts to infer
whether the object is accessible. All the objects accessible by the left
and right hand are represented by the inWorkspace predicate. The
openedHand predicates are generated from the results of the grasping
status reasoner. Below is a list of the initial and the goal state
predicates generated by the system manager prior to planning the
task for the handover problem.

Initial state:
openedHand(left_hand), . . .
locatedAt(obj_mug, pos_mug), . . .
locatedAt(left_hand, pos_left_hand), . . .
inWorkspace(left_hand, pos_mug), . . .
Goal state:
graspedBy(right_hand, obj_mug),
¬graspedBy(left_hand, obj_mug)

Figure 10A shows the sequence of compound actions
obtained from the task planning and the converted sequence
of primitive actions before the motion planning with the above
predicates. Because the robot base cannot move, the compound
action sequence, which is the result of the task planning, includes
grasping the cup with the right hand after moving it within the
workspace of the right hand using the left hand. The hold_object
is divided into approach_object (approaching the arm to the
object) and close_hand (grasping the cup by closing the
robotic hand). In the case of approach_object action, the
motion generator receives the corresponding geometric values

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 9 | Article 71347010

Jeon et al. Primitive Action Based Task-Motion Planning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


from the system manager, and left_hand is assigned from the
robot URDF, obj_mug is assigned from the mesh file of the mug,
pos_left_hand and pos_mug are the position and pose of the
current left end-effector and the mug.

The motion generator calls the approach-motion planner and
inputs the assigned values to create a path for the posture before

grasping the mug, as in Figure 9B. The handover_object action is
divided into transfer_object (move the cup with the left hand) and
hold_object (hold the object with the right hand). The handover
motion planner is called to perform transfer_object, and it calculates
the path to move the arm by selecting the candidate position
pos_handover to hold the mug with both hands, as in Figure 9.

FIGURE 9 | Sequence of the execution snapshot for the object handover problem. (A) Initial state of the handover problem. left_hand, right_hand, obj_mug,
obj_milk, obj_juice, and obj_cup are recognized and transferred to the system manager. (B–G) show the results of performing a primitive action from (A).

FIGURE 10 | Sequence of the execution snapshot for the juice pouring problem. (A) Initial state of the pouring problem. left_hand, right_hand, obj_juice, obj_milk,
obj_cup, and obj_mug are recognized. (B–G) show the results of performing each primitive action.
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The calculated joint trajectory is transferred to the controller. Hence,
the robot moves the cup by moving the left arm, as shown in
Figure 9D, and performs approach_object action with the right hand,
as in Figure 9E. Figures 9B–G show the result of each action of the
primitive action sequence. As a result, themug is grasped by the right
hand of the robot.

6.3 Beverage Pouring
The second experiment is dedicated to the problem of pouring
a drink into an empty container. The experimental
environment includes cups in the workspace of the right
hand and drinks in the workspace of the left hand, as
shown in Figure 11A. The goal state predicate is defined as
inContGeneric(obj_mugobj_juice), indicating that the drink is
in the cup. As in the handover problem, the system manager
creates predicates for the recognized object position, gripper
status, and accessibility between the objects. It defines the
states as follows.

Initial state:
openedHand(left_hand), . . .
locatedAt(obj_mug, pos_mug), . . .
locatedAt(left_hand, pos_left_hand), . . .
inWorkspace(left_hand, pos_juice), . . .

inWorkspace(right_hand, pos_mug), . . .
Goal state:
inContGeneric(obj_mug, obj_juice)

Figure 10B shows that the result of the task planning is to
move the position of the cup with the right hand and move the
juice box with the left hand to the position for pouring it to the
cup. To perform the transfer_object action, the motion generator
used the handover motion planner to transfer the motions to the
controller: to move the right hand holding the mug to an
accessible position and to move the mug into the workspace
of both arms, as shown in Figure 11D. Finally, for the pour_object
action, the motion generator obtains the three-dimensional
coordinates corresponding to pos_juice and postransfer from
the system manager and obtains the motion trajectories.
Hence, the robot moves the right hand from the current
position to the cup and tilts the juice box from the pouring
motion planner, as described in 5.1. The motion trajectory is
transferred to the controller, and the result is illustrated in
Figure 11G.

6.4 Obstructed Object
The third problem is a situation when the task is interrupted
because other objects are placed in the grasping path of the target

FIGURE 11 | Sequence of the execution snapshot for the obstructed milk box picking problem. (A) Initial state of the experiment. left_hand, right_hand, obj_milk,
obj_redjuice, obj_bluejuice, and obj_greenjuice are recognized. (B–O) show the results of performing each primitive action.
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object. Figure 12A shows the environment corresponding to the
initial state, with milk boxes and three colored juice boxes placed
around it, preventing the robot from picking up the milk box. To
define grasping the milk as the goal state, we used the
graspedBy(left_handmilk) predicate. As in the previous
experiments, the reasoners are called by the system manager,
creating a list of predicates for the initial and goal states, as shown
below.

Initial state:
openedHand(left_hand), . . .
locatedAt(left_hand, pos_left_hand), . . .
locatedAt(obj_milk, pos_milk),
inWorkspace(left_hand, pos_milk)
Goal state:
graspedBy(left_hand, milk)

In general, if the system manager calls the obstacle
rearrangement reasoner, the predicates are added when
geometric reasoners are called before the task planning. As a
result of this inference, juice boxes are obstacles for grasping the
milk box. However, in this experiment, the task planning is
performed except for obstruct predicates in the generated
problem. pddl script file, ignoring intentionally colored juice
information to confirm the replanning. In Figure 10C, the
first hold_object action is the result of the initial work plan,
and it shows that the robot is trying to grasp the milk box directly
because there is no prior information that juice boxes are
obstacles. However, in the process of the motion generator
planning, the arm motion planner fails to create the path of
the approach_object action, which is the first action in the

primitive action sequence. This is because the juice boxes are
placed on the path. Nevertheless, the arm motion planner
transfers the failed result to the motion generator. When the
action execution fails, and the motion generator transfers an error
to the system manager, the system manager calls geometric
reasoners from the behavior manager to update the current
state. The obstacle rearrangement reasoner receives the 2D
space coordinates and size of the objects as input for the table
plane where the objects are placed. As a result, it calculates the
order and position in which the obstacles are removed. In the
inference process, the size of the gripper is also reflected in the size
of the object. In Figure 12I, the green juice box is an obstacle
because it is separated from themilk box; however, there is a small
interval for grasping it using the gripper. The calculated
rearrangement position is stored in the system manager as
pos_redjuice_relocate, pos_bluejuice_relocate, and
pos_greenjuice_relocate variable with three-dimensional
coordinate values for each juice box. The following predicates
are updated to the current state.

locatedAt(obj_milk, pos_redjuice), . . .
obstruct(left_hand, obj_milk, obj_redjuice), . . .
inWorkspace(left_hand, pos_redjuice), . . .

After the second hold_object action inFigure 10C, the result of the
replanned task plan is updated, and the relocate_object action is
added. The relocate_object action is converted to move_arm action,
and the motion generator transfers the relocate coordinate
corresponding to pos_redjuice_relocate obtained from the system
manager, and it transfers it with the current position of the left arm
end-effector to the armmotion planner to obtain the joint trajectory.

FIGURE 12 | Compound and primitive action sequence from the results of the task planning performed in the three task domains. The blue box is the compound
action. The green box is the primitive action. Below are the action parameters. The black arrow indicates the relationship between the compound and primitive actions.
The red arrow is the compound action sequence obtained by the task planning, and the yellow arrow is the converted primitive action sequence. (A) Action sequence of
the object handover problem. (B) Beverage pouring problem. (C) Obstructed object problem.
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Figure 12D shows the result of transferring the path to the controller
and moving the arm holding the red juice to the relocated position.
The same actions are repeated for the remaining juice boxes to
perform the obstacle relocating action. As a result, the target milk box
is grasped, as shown in Figure 12D.

The system performance for 50 repetitions in the V-REP simulator
for the three experiments is summarized in Table 1 with the average
success rate, task planning, motion planning, geometric reasoning, and
total operation time. The time of motion planning is the sum of the
motion planning times of all primitive actions. The time of geometric
reasoning is the sum of the state reasoning times before the task
planning and after performing the action. Compared with the time
spent in motion planning of primitive actions in the handover
experiment and the pouring experiment, the obstructed object
experiment required less time for motion planning, although the
number of performed primitive actions was greater. This is because
a position calculation to move the target object to the workspace of a
different arm is done during the motion planning phase in two other
experiments, while the calculations of relocated positions are done in
advance before the task planning in the obstructed object experiment.
However, because the obstructed object experiment performed three
actions of relocating obstacles, the time spent on planning and
reasoning is shorter, but the time spent on the total operation is
longer than in other experiments. For the three experiments, task failure
is the case of exceeding the number of replanning times. This occurred
when the robot collidedwith the objects, causing the object to fall down
or fall under the table, thus, leaving the workspace of the robot.

7 CONCLUSION

In this paper, we proposed a system using the action library,
task manager, and behavior manager for CTAMP. In the action
library, the actions that the robot can perform are modeled in a
PDDL-based language, and the relationship network between
the actions and conditions for motion planning are also
defined. Using the action library, the task manager decides
the order of the actions by the PDDL-based task planning. The
behavior manager shows that the motion planner, reasoner,
and necessary conditions to perform each primitive action can

be received automatically from the action library to plan the
motions. Moreover, the behavior manager calls the
modularized motion planners and the reasoners. According
to our results, state-of-the-art algorithms can be linked to
enable efficient planning and facilitate additional applications
with various manipulation tasks. In addition, unlike in
previous studies, the robot does not move after all the
actions are verified, but it performs each action at the
moment it is verified. Whenever an action is performed, the
result of the action is inferred, and the states are updated to
respond to the changes in the dynamic environment.
Additionally, replanning is performed until the goal of the
manipulation task is reached. Therefore, the system structure
allows the robot to respond even in the case of uncertainty
errors in recognition or control.
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