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Due to the complexity of autonomous mobile robot’s requirement and drastic
technological changes, the safe and efficient path tracking development is
becoming complex and requires intensive knowledge and information, thus the
demand for advanced algorithm has rapidly increased. Analyzing unstructured gain
data has been a growing interest among researchers, resulting in valuable
information in many fields such as path planning and motion control. Among
those, motion control is a vital part of a fast, secure operation. Yet, current
approaches face problems in managing unstructured gain data and producing
accurate local planning due to the lack of formulation in the knowledge on the
gain optimization. Therefore, this research aims to design a new gain optimization
approach to assist researcher in identifying the value of the gain’s product with a
qualitative comparative study of the up-to-date controllers. Gains optimization in
this context is to classify the near perfect value of the gain’s product and processes.
For this, a domain controller will be developed based on the attributes of the Fuzzy-
PID parameters. The development of the Fuzzy Logic Controller requires information
on the PID controller parameters that will be fuzzified and defuzzied based on the
resulting 49 fuzzy rules. Furthermore, this fuzzy inference will be optimized for its
usability by a genetic algorithm (GA). It is expected that the domain controller will
give a positive impact to the path planning position and angular PID controller
algorithm that meet the autonomous demand.
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1 Introduction

Mobile robotics is a branch of robotics that studies how to make mobile automatic
equipment function better in various situations. The mobile robot is capable of determining
the shortest, most direct route between its starting and destination points. Obstacle recognition,
collision avoidance, and reaching the intended destination are the primary goals of the mobile
robot in both familiar and unfamiliar situations. In general, the tasks of a mobile robot that
involve human following can be broken down into the following three parts (Hu et al., 2014;
Yuan et al., 2018), human detection based on sensors, humanmotion state/intention estimation
and human-following control of the mobile robot. Human detection is the initial step of human
following for patient monitoring and rehabilitation. It is vital for safety, the achievement of the
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robot’s tasks, and natural human-robot interaction because it is the
first step in human following. In addition, in order to ensure the safety
and effectiveness of the human-following task for patient monitoring
and rehabilitation, the mobile robot needs to move as quickly as
possible to the goal position and orientation generated based on the
human-following rule. This requires strong real-time and accuracy
performances from the robot motion control system A variety of
controllers and sensors are currently being employed to reduce the bad
decisions in object recognition using artificial intelligence, fuzzy logic,
and neural networks (Aqeel Ur and Cai 2020). In order to reduce the
amount of stopping and achieve the shortest distance between the
starting point and the goal places, the specifications of the optimized
trajectories should be designed to prevent minor rotation radius and
minimize the number of turns (Al-Araji et al., 2018). Since mobile
robots are needed for a variety of purposes, including science,
education, industry, mining, the entertainment sector, security,
military, and search and rescue, their motion control systems must
keep on the track of and perform path planning.

As a result of its significance, research into mobile robots is still
ongoing (Al-Araji and Yousif 2017). One of the most difficult issues in
mobile robot navigation is obstacle recognition. When the obstacles
are in motion, the situation becomes more difficult. The real position
of dynamic barriers may not be accurately measured in global path
planning when the laser sensor is employed to map the environment.
Depending on the situation, a local path planning may be able to solve
the problem (Hank and Haddad 2016). In addition, design and
development of the mobile robot controller is crucial since it is the
performance of a mobile robot controller that determines its ability to
work (Lee et al., 2018). Mobile robot autonomous navigation is
inadequately known as an environment utilizing a hybrid
approach. Fuzzy logic controllers (FLCs) have been increasingly
popular in recent years due to their flexibility and adaptability. The
PID controller is a popular choice among scientists due to its
numerous potentials uses and easy deployment in practical use.
The most difficult part of using a PID controller is to determine
the appropriate gains. Reinforcement learning (RL) is becoming more
significant in real control applications due to the benefits of dealing
with Riccati equations andHamilton-Jacobi-Bellman (HJB) equations,
which are impossible to solve directly (Dao et al., 2020; Dao and Liu
2021; Vu et al., 2021). Actor/critic structures with Neural Networks
(NNs) were presented to construct iterative algorithms with sequential
tuning (He et al., 2019), (Luo et al., 2019) to get an approximation of
the best control solution (Bhasin et al., 2013).

Different types of controllers have been designed to accomplish a
variety of functions, including moving items around, tracking
trajectories to monitor the environment, and going on long-term
missions or intrusions into potentially dangerous places for people.
Research done (Zhao et al., 2019), for the purpose of following the
trajectory of autonomous vehicles, a genetic algorithm based on PID
controllers has been developed. Both linear and circular trajectories
were used in the assessment of the tracking controller that was built for
its effectiveness. A project by (Kamil et al., 2019) generally focused on
the building of maps for inspection and navigation for and
autonomous robot that used LiDAR sensor to provide range
between robot and obstacle, the DC motor will drive around the
robot and Raspberry-pi will transmit data to PC to perform
simultaneous localization and mapping. According to the reviewed
literatures, the proportional-integral-differential (PID) controller is
the controller that is used themost frequently for path tracking control

but it is the controller that is most affected by noise degradation related
to derivative control (Haruna et al., 2021). Research done by (Solano
et al., 2021), utilizing fuzzy logic to adjust the input from 9 infrared
sensors (IR) that are used for environment perceiving in order to
increase the resilience and performance of PID controllers. These
values are entered into a PID controller, which helps to direct the robot
in the appropriate direction at each given angle. The robot has a
reactive behavior, which means that it moves around in its
environment without a predetermined course.

The use of fuzzy logic to control a single shared controller is
becoming increasingly impossible to ignore as designed by (Zahid and
Bi 2020). A brain-controlled mobile robot’s safety is ensured by
tracking its user’s intents. Recent developments in (Campos et al.,
2018) have heightened the need for making use of the Fuzzy PD + I
control structure, which is simple in construction and includes a linear
velocity controller and an angle fuzzy controller for trajectory control,
as well as tuning parameters such as gains at the controller’s input and
membership functions through PSO algorithm (form). Research done
by (Parikh et al., 2018) proposed on the Fuzzy PID was shown to be
more adaptable than conventional PID for the control of a DC motor,
according to this study, which compared the performance of both
methods. Research done by (Singh and Thongam 2018) presented a
mobile robot’s wheels movement at different speeds to avoid a group
of clustered obstacles, where the author proposes a fuzzy logic
controller to handle navigation in a static environment. However, a
major problem with this kind of application is in gain optimization.
The objectives of this research are to develop a hybrid controller of
Fuzzy-PID optimized by Genetic Algorithm cascaded with 2 DOF
classical PID for a mobile robot angular and distance control.
Secondly, to control the mobile robot with developed hybrid
controller for path planning to obtain targeted angle and distance.
Lastly, to validate the performance of the developed controller path
planning on a Turtlebot3 and evaluate the consistency of error, e(t),
delta error, de(t), control signal distance, CSD and control signal
angle, CSA in gazebo simulator.

The generation of solutions for combined optimization and search
issues is a popular application of the GA optimization process, which
is commonly employed. This approach adheres to the fundamental
elements of genetics and the theory of natural selection. The area of
computer science was where the majority of GA’s potential
applications were concentrated. On the other hand, strategies based
on GA are also utilized within the subject of mobile robot navigation
(Hewawasam et al., 2022). The GA begins without any prior
knowledge of the optimal solution and is totally dependent on the
reactions of both the environment and the evolutionary operators in
order to find the optimal solution (Leena and Saju 2014). A FL-based
approach was proposed by (Patle et al., 2018) as a means for robots to
navigate through unknown dynamic settings. This particular setup
made use of a singleton type-1 FL controller in conjunction with a
Fuzzy-Wind Driven Optimization (WDO) method. In order to
maximize the efficiency of the FL controller’s input and output
membership functions, the Fuzzy-WDO algorithm was
implemented. In order to understand the core principle of WDO,
researchers looked at the mobility behavior of very small air parcels
throughout an N-dimensional search region. The primary
responsibility of the Type-1 FL controller is to protect the robot
from collisions and guide it through situations that are either static or
dynamic. The controller receives sensory information as its input and
produces two output signals in order to drive the left and right motors
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of the robot. The distance to the first obstacle, the second obstacle to
the left, and the third obstacle to the right are the three sensory data
inputs. Through a series of eight fuzzy rules, the inputs are linked to
the outputs in a logical fashion.

In this research, the system is built utilizing the Fuzzy-PID
controller to regulate two inputs which are error, e(t) and delta
error, de(t) and self-tuning the gains parameters to control the
robot’s position and angular. A Fuzzy-PID controller strategy
comprised 7 Membership Rules using Mamdani Fuzzy Rule-Base
System. Both position and angular PID controller gains strategy
will have constant value throughout the simulation. The
development of the Fuzzy Logic Controller (FLC) requires
information on the PID controller parameters will be fuzzified and
defuzzied based on the resulting 49 fuzzy rules and centroid method.
Furthermore, these fuzzy gains will be optimized for its usability by
genetic algorithm (GA). It is expected that the domain controller will
give a positive impact to the path planning position and angular PID
controller algorithm that meet the autonomous demand.

This paper has been divided into four parts. Section II deals with
Fuzz-PID gain tuning technique and parameters. Section III will
discuss the Genetic Algorithm (GA) optimization technique.
Section IV will discuss the path planning algorithm. Next, Section
V describes the simulation results of the performance of the path
planning algorithm with PID controller in angle and coordinates
measurements. Finally, Section VI concludes the paper with future
studies and conclusions.

2 Fuzzy system for tuning the PID gains

2.1 PID controller system

The Proportional Integral Derivative (PID) controller and a fuzzy
system for fine-tuning the PID gains will be discussed in this section
for stabilizing the Turtlebot3. Turtlebot3 is a small, affordable,
programmable, ROS-based mobile robot for use in education,
research, hobby, and product prototyping.

Mobile robots frequently use PID controllers for feedback. An
input value is calculated by subtracting the collected data from a
reference value and using this difference to determine how close the
system data should come to or stay at the reference value (Jamshidi
et al., 2018). The PID controller may regulate the input value based on
previous data and the different appearance rate, resulting in a more
accurate and stable system that is easier to maintain. Derivative
controllers comprise the proportional controller and the integrated
controller. For example, a gain amplifier like a proportional controller
can be used. Note that system stability will be decreased as a result of
the reduction in steady-state error. Errors at a steady state can be
eliminated by using an integrated controller. The response time of the
system can be sped up by using a derivate controller (Chang and
Chang 2019).

Kp , Ki and Kd are the gains in proportional, integral and
derivative form. The PID controller’s mathematical formula is as in
Equation 1. The PID controller’s success is dependent on the PID
gains being selected correctly. Getting the PID gains just right is no
easy process. Experienced human experts are frequently used to fine-
tune the PID gains. Fuzzy IF-THEN rules (Mamdani Fuzzy Rule-Base
Systems) for the PID gains will be determined in the next step, and
then a fuzzy system will be utilized to change the PID gains on-line.

The Ziegler-Nichols method will be used to alter controller
parameters, and the system’s response will be shown in Equation 2.
By starting with a PID controller instead of from scratch, the
performance will be fine-tuned to the desired level before adding
by the fuzzy logic to it.

Gs s( ) � Kp + Ki

s
+ Kds (1)

u t( ) � Kpe t( ) + Ki∫t

0
e t( )dt + Kd

de t( )
dt

(2)

where u(t) is the control signal and e(t) is the error reference and
desired position of the robot. Proportional-integral-derivative (PID)
controllers are the most often used industrial process control
controllers because of their simple construction and reliable
performance. Researchers have drawn toward use the traditional
PID controller due to the versatility it offers in a variety of
contexts. However, the most challenging aspect of PID is
determining the appropriate values for the gains (Aqeel Ur and Cai
2020). The design of a fuzzy-PID controller by (Lee et al., 2018) is
proposed for use in path tracking by a mobile robot equipped with
differential drive. A PID controller plus a fuzzy controller with two
inputs and three outputs are the components that make up the fuzzy-
PID controller. The fuzzy controller is able to tune the parameters of
the PID controller when the system response contains both an error
and an error rate.

Fuzzification, knowledge base, fuzzy inference, and defuzzification
are all necessary steps in the fuzzy logic controller process
(Muhammad et al., 2019). There are two inputs that are first
fuzzified and then processed by the Fuzzy inference module
utilizing heuristic decisions before being sent into the
defuzzification module. Defuzzification technique adjusts PID gains
and provides the tuned Kp , Ki and Kd output values even when the
mobile robot’s dynamics are altered throughout the execution. The
common transfer function of PID controller can be expressed as in
Figure 1.

2.2 Fuzzy controller system

At the moment, the classic PID control method and the fuzzy
control method are the most common types of control methods (Lin
and Ni 2018). Traditional PID control algorithms are characterized
by their straightforward structures and high levels of popularity;
non-etheless, an accurate mathematical model is required in order to
provide superior linear system control. PID control is restricted for

FIGURE 1
Basic PID controller.
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use with control objects that have high hysteresis and inertia as well
as complex signals for tracking, as is common knowledge (Babunski
et al., 2020). On the other hand, the control effect that it has on non-
linear systems is not ideal. It might be challenging to eradicate
steady-state mistakes in fuzzy control systems, despite the fact that
the fuzzy control method does not need for precise mathematical
models (XU et al., 2009).

A fuzzy logic controller, also known as an FLC, has the ability to
work with uncertain data and situations. Fuzzy-PID control can be
used in this context to allow better control over the unfavorable
aspects of PID controllers. Within the scope of this discussion, the
conventional PID controller has served as the foundation for the
construction of the fuzzy PID controller (Zhou et al., 2019). The
fuzzifier, the fuzzification rules, the fuzzy inference system, and the
defuzzification process are the components that make up a fuzzy logic
system (Pour et al., 2022). In contrast to the conventional way of
control, the Fuzzy-PID control method may be applied to the path
optimization in a dynamic environment. This method possesses the
benefits of flexible fuzzy control and strong adaptability, and it can be
used in place of the conventional method of control.

The FLC is a machine control method commonly employed.
However, FLC has a distinct benefit over genetic algorithms and
neural networks: It can be used to solve issues by a person.
Because of this, controller design can benefit from their knowledge.
This simplifies the management of several machines (Chang and
Chang 2019). There are four components to FLC: Fuzzification,
Rule Base, Inference, and Defuzzification. The Fuzzy controller’s
internal structure as shown in Figure 2.

The conventional PID controller is used as a base for a Fuzzy-PID
controller, which regulates PID gains via fuzzy reasoning and a
changeable discourse Universe. Fuzzy system characteristics such as
robustness and adaptability can be used to better tune PID gains in the
control approach. The phrase “self-tuning” refers to the ability of the
controller to autonomously modify its controlling parameters so that
the gains that result in the best possible process output can be
achieved. The fuzzy self-tuning PID controller is based on
theoretical and practical examination of control rules. In this way,
the gains Kp, Ki and Kd can be fine-tuned online in conjunction with
other controlling parameters and circumstances. This results in a
higher level of overall control precision and thus better performance
than a simple fuzzy PID controller with no self-tuning ability, like the
PID controller. The Fuzzy controller’s internal structure is depicted as
in Figure 2.

Error, e(t) and rate of change de(t)
dt are used as inputs to a Fuzzy-

PID controller, which uses fuzzy controller rules to adjust PID gains

on-line. In the context of PID controller self-tuning, it refers to
determining the fuzzy relationship between the three gains of PID
(Kp , Ki , Kd) and e(t) and de(t)

dt and then changing the three gains to
fulfil varied requirements for control gains when e(t) and de(t)

dt are
different. For selecting the language variables of e(t) and de(t)

dt , seven
membership functions for the error linguistic variable and seven
membership function for tits derivative are considered, resulting
49 fuzzy rules. All the rules are detailed in Table 1. The proposed
membership functions are formed by triangles and trapezoids with
7 partitions such as: Dismal, Poor, Mediocre, Average, Decent, Good,
Excellent and for outputs we have chosen seven fuzzy rules (NB, NM,
NS, Z, PS, PM, PB) where NB denotes Negative Big, NM denotes
Negative Medium, Negative Small (NS), Zero (Z), Positive Small (PS),
Positive Medium (PM) and PB denotes as Positive Big. The inference
rules presented in Table 1 can be read as follows: For example, IF the
error, e(t) is Poor AND the Delta Error, de(t) is Poor THEN output,
Gs(s) will be Negative Big (NB).

Figure 3 depicts a Fuzzy-PID controller block diagram optimized by
the genetic algorithm (GA) cascaded with the two PID controllers.
According to the block diagram, the fuzzy system has three outputs
(Kp, Ki,Kd), which it receives from two inputs. In order to regulate the
Turtlebot3 position and angle, in this research two extra controllers, one
for each degree of freedom are used. The optimized gains from the
Fuzzy-PID controllers are used by the robot to be optimized again by the
PID angle and PID position to regulate the path angular and position in
the simulation. It has been decided that the membership functions of all
the inputs and outputs will be the same. These membership functions
are shown in Figure 4 which plotted between membership function and
error, e(t). Furthermore, Figure 5 shown the membership function
plotted between the output, u(t).

The antecedent objects hold the Universe variables and
membership function will be error rate, e(t) (ferr) as shown in
Figure 1, rate of error, de(t) (fder) and output, Gs(s) (fout) as
shown in Figure 2. The custom membership functions are built
interactively with ‘Dismal’, ‘Poor’, ‘Mediocre’, ‘Average’, ‘Decent’,
‘Good’ and ‘Excellent’ and their variables will be [-1, -1, -0.75], [-1,
-0.75, -0.5], [-0.75, -0.5, -0.25], [-0.25, 0.0, 0.25], [0.25, 0.5, 0.75], [0.5,
0.75, 1.0], and [0.75, 1.0, 1.0]. In order to compute the high-
performance controller, the PID controller that was developed and
designed is tuned with fuzzy logics (Wu and Zhang 2011).

The FLC are used to automatically set the gains for PID controllers
in SISO plants to achieve a balance between performance and
robustness, which in turn yields the PID parameters. The expression
for ideal continuous PID controller is shown in Equation 3. After that,
the expression for ideal continuous PID controller is shown in Equation
4. After that, these finely tuned Fuzzy outputs are converted into PID
controller gains using Equation 5 with the initial value for error,
e(t) � 0, delta error, de(t) � 0, edesired � 0 and elast � 0

e t( ) � edesired − ecurrent (3)
de t( ) � e t( ) − elast (4)

elast � e t( ) (5)
All inputs and outputs have the same membership functions. The

membership functions are consisted of triangular. Controllers employ fuzzy
sets with varying widths, which have been found through trial and error.
The output Kp, Ki and Kd have been chosen to be [0.2 0.7], [0.001 0.01]
and [0.1 0.15] in terms of the fuzzy set width. Inputs’ error, e(t) ranges and
error rate, de(t) ranges have been set to [-1 1] and [-10 10], respectively,

FIGURE 2
Fuzzy controller internal structure.
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TABLE 1 Fuzzy rules.

Delta Error, de(t)dt

Error, e(t) Dismal Poor Mediocre Average Decent Good Excellent

Dismal NB NB NB NB NM NS Z

Poor NB NB NB NM NS Z PS

Mediocre NB NB NM NS Z PS PM

Average NB NM NS Z PS PM PB

Decent NM NS Z PS PM PB PB

Good NS Z PS PM PB PB PB

Excellent Z PS PM PB PB PB PB

FIGURE 3
Structure of Turtlebot3 with proposed controller, GA optimization and path planning.

FIGURE 4
Membership functions vs. the error, e(t).

FIGURE 5
Membership functions vs. the output, u(t).
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and if any inputs fall outside of these parameters, the algorithm employ
saturation to bring them back inside the acceptable range.

A fuzzy controller would not be complete without a set of
linguistic rules. When an expert’s experience can be easily
translated into these rules, the controller’s actions can be defined
by an infinite number of such rules. In certain circumstances, these
rules are derived by a process of trial and error.

In this research is presented a two-point, three-output system
where,Kp,Ki andKd are the outputs of the fuzzy logic controller, and
e(t) and de(t)

dt are the inputs. The input data is sent into the fuzzification
system, where it is recommended by a fuzzy inference system, and
then into defuzzification system, where it is tuned to provide the
output values of Kp, Ki and Kd.

Figure 6 depicts the fuzzy sets used in the membership functions
for two input variables (i.e., error, e(t), and delta error, de(t)) while
the membership functions for output variables, Gs(s), employ fuzzy
sets with output values of [-1, 1, 0.01]. Between [-200, 200] and [-200,
200] are the ranges for error, e(t) and delta error, de(t), respectively.
In Figure 6, in the Status, dashed line plot is target value, red dashed
line is PID and green line is Fuzzy-PID.

2.3 Defuzzification method

Methods for defuzzification can be categorized into the following
four groups: those that provide a real value, those that provide a real
interval, those that allow for the ranking of possible distributions, and
those that evaluate dispersion (Talon and Curt 2017). The
defuzzification technique that was applied to this work is
connected to the centroid values of the signal’s global distribution.
Due to this fact, the defuzzification techniques that were chosen
represent the centroid. Centroid method consists in finding the
center of the area under the curve for intervals a and b. This can
be expressed as shown in Equation 6:

z* � ∑b
au z( )zdz∑b
au z( )dz (6)

where z* represents the crips output, u(z) corresponds to
membership function and z is the output variable. For this
research, the centroid defuzzification method were implemented.
In fuzzy control systems, the output from the systems often consists
of a number of different control parameters (Chen et al., 2022).
Before the fuzzy outputs may be applied in control systems,

defuzzification must be performed on them. In Figure 7 (a) to
(g) shown in this section, the determination of defuzzification for
the proposed Fuzzy-PID controller is visualized.

The center of gravity method was selected as the defuzzification
technique for the controller because of its ease of use, precision, and
dependability in addressing the appropriate crisp value for any given
fuzzy outputs.

3 Genetic algorithm (GA) optimization

An optimization algorithm that is based on the mechanism of
biological evolution is known as a genetic algorithm. This algorithm is
typically broken down into several steps, including the generation of an
initial population, the application of genetic operators for genetic
operation, the determination of the fitness value of individuals, and
iteratively obtaining the best individuals possible (Li et al., 2020). The
genetic algorithm is a method for optimization that simulates the
process of evolution as it occurs in biological systems by repeatedly
subjecting solutions to testing. When trying to solve an issue involving
minimization, it is unrealistic to undertake a comprehensive search
because it takes a significant amount of time to provide the best gain.
Therefore, in order to cut down on the amount of time required for
computing, a local optimal solution rather than a global optimal
solution is sought after (Nonoyama and Nishi 2021).

The genetic algorithm for determining the gain can be seen in the
following example. By carrying out the process a set number of times,
the objective is to achieve the desired result of developing a better
solution. The algorithm is run five times, and out of all the solutions
that are obtained, the one with the best gain value is the one that is
output as the solution. Because the answer is determined by the
random numbers that are created, it is necessary to run the
method more than once because there is a possibility that it will
fall in a bad local solution that will not be suitable for several trials.

The decision variables: distance gains Kpdistance , Kidistance , Kddistance,
angular gainsKpangle,Kiangle ,Kdangle are initialized by the generated gains
from Fuzzy-PID controller in the range [-1 1]. This set is considered as
one solution and this is repeated 110 times and the collection of
8 solutions is considered as a generation, which is considered as the
first generation. In this research used the decimal representations for
generation, one point crossover and uniform mutation.

3.1 Equation implementation

The model starts by presenting the equation that this research is
going to implement. The equation is shown in Equation 7:

Y � w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 (7)
The equation has 6 inputs (x1 to x6) and 6 weights (w1 to w6) as

shown and inputs values are (x1, x2, x3, x4, x5, x6) =
(Kpdistance, Kidistance, Kddistance, Kpangle, Kiangle, Kdangle). In this line of
research, the goal is to identify the parameters (weights) that will
yield the highest possible value for such an equation. The concept of
optimizing such an equation appears to be straightforward. The positive
input is going to bemultiplied by the largest positive number that is even
remotely possible, and the negative number is going to be multiplied by
the smallest negative number that is even remotely possible. However,
the goal of this research is to figure out how to have GA accomplish that

FIGURE 6
The correlation for error, e(t) and delta error, de(t).
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on its own so that it can determine that it is preferable to use positive
weights with positive inputs and negative weights with negative inputs.
This is the idea that will be implemented. The following step is to specify
the initializing population size. Because there are somany weights, there
will undoubtedly be a total of six generations of each solution in the
population. One generation will represent each weight.

3.2 Population initialization

The quality of the result is determined by the quality of the
primary population that is used in a genetic algorithm. In the
context of this study, the Fuzzy-PID controller serves as the
heuristic initialization information for path planning. The goal is to
increase the gains value and achieve more stability. At this point, the
algorithms are in a position to generate the initial population in a

random way. It will take on a form that corresponds to the parameters
that were chosen (8,6). There are 8 solutions and each one has
6 generations, one for each weight. The population is as follows in
Table 2:

Given that it is generated in a random way, it will undoubtedly be
different when it is run once again. In the generational model, this
research produces ‘n’ offspring, where n is the population size; at the end
of each iteration, the entire population is replaced by the new population,
therefore n represents the number of offspring produced.

3.3 Fitness function

After the population has been prepared, the algorithms will begin
the process of selecting the optimal solution from the existing
population by making use of the fitness function. The fitness

FIGURE 7
(A–G): Arbitrary result for defuzzification using centroid method.
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function is able to accurately analyze the advantages and
disadvantages of each gain, which is often proportional to the
fitness value, and it has a significant impact on the genetic
algorithm’s capacity to converge on optimal solutions and remain
stable over time. The goal of this research is to improve the stability of
the Turtlebot3 motion so that it can move further without becoming
unstable, as well as to make the Turtlebot3 motion operate more
smoothly. As a result, the values of the gains and the degree to which
the increases are coherent have been optimized. The fitness function
can be defined in its most basic form as a function that takes a
candidate solution to the problem as its input and produces, as its
output, a measure of how “fit” or “good” the answer is in relation to the
problem that is being considered. Since a GA requires constant
calculation of the fitness value, the algorithm used for this purpose
needs to be as efficient as possible. A selection of eight solutions at
random is made from the current generation, and the evaluation
values of those answers are utilized to choose the individuals who will
be carried forward to the next-generation. The fitness function is
designed as follows:

Fitness � ∑ population × Y( ) (8)

The fitness function accepts both the equation inputs values (x1 to
x6) in addition to the population. According to the equation, the
fitness value is determined by taking the sum of the products (SOP)
that are found between each input and the weight according to
Equation 8. There will be a certain number of SOPs that
correspond to the total number of solutions that can be applied to
each population. Due to the fact that the number of solutions was
previously determined to be eight, there will be eight SOPs as stated
below. Take note that the solution is in significantly better shape the
higher the fitness value.

3.4 Crossover operator

The next-generation is split into two groups, with one individual
coming from each group. Next, a random number between 0 and
0.06 is created, and the crossover process is carried out if that number
is lower than the rate at which it is expected to occur. After the
selection operation is complete in a genetic algorithm, the next step is
the crossover operation, which is the fundamental process of
generation rearrangement. When the genetic operation is
successful, the choice of the intersection is determined by random;

hence, either the single-point crossover or the multi-point crossing
may be implemented. The single-point crossover approach will be
utilized in this research study. Finding all of the same points in the two
groups is the first step of the specific crossover operation. After that,
one of the groups at random will be choose to operate on, and then
finally cross the following paths.

3.5 Mutation operator

A random number in the range of [0 0.06] is generated for each
solution in the next-generation, and when the mutation rate is less
than the set mutation rate, mutation is performed. When a mutation
occurs the Fuzzy-PID gains value in the range [−1, 1] are generated
and input to Kpdistance, Kidistance, Kddistance, Kpangle , Kiangle and Kdangle in that
solution. However, if the number of generations exceeds 1, random
numbers are generated in the range [(optimal solution)-1, (optimal
solution) +1] with values close to the optimal solution at that time.

TABLE 2 Generated population randomly.

0.04353793 0.01146844 0.05452081 0.00707252 0.05893077 0.03578277

0.01024827 0.02711178 0.05636492 0.04308384 0.05548589 0.01598261

0.01775971 0.0502044 0.05764063 0.0031841 0.0083322 0.021976

0.0565583 0.00390275 0.03074476 0.04099405 0.04241032 0.00698859

0.03449538 0.05483135 0.05782144 0.00149375 0.04184159 0.04018424

0.010176 0.02429801 0.03079434 0.04368901 0.01202527 0.04048726

0.05691229 0.0072845 0.00875476 0.05215794 0.03623459 0.01189234

0.03303685 0.02941146 0.01406343 0.03646531 0.03760042 0.0197072

TABLE 3 Final stage of generic algorithm generation.

Generation Best result

0 2.577973866865198 × 10−5

1 2.6837838542276733 × 10−5

2 2.6837838542276733 × 10−5

3 2.9103608789928096 × 10−5

4 3.1847903853924453 × 10−5

Best Solution

0.05691229 0.0072045 0.00875476 0.05215794 0.03623459 1.32506896

Best Solution Fitness

3.184479039 × 10−5

Kpdistance 0.05691229

Kidistance 0.0072045

Kddistance 0.00875476

Kpangle
0.05215794

Kiangle 0.03623459

Kdangle 1.32506896
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Choose a new gains value from the Fuzzy-PID controller instead of the
previous gains value randomly. This was how classic genetic
algorithms handled random mutation.

3.6 Update generation

Keep the population of the following generation at the same level
as the population of the generation that is currently in effect. The final
stage is to repeat steps 2 through 6 for a total of 5 generations. Within
the context of this GA, the initial solution is derived from a series of
random numbers. As a result, the quality of the solution does not
depend in any way on the configuration of the initial solutions. The
final stage of generation as shown in Table 3:

4 Path planning algorithm

In this section, this paper will describe the design and
implementation of the path planning algorithm. The main
objective of this algorithm is to move the mobile robot to the
target position from an initial coordinate to another final one. The
fuzzy tuned PID controller is provided with coordinate information
and mobile robot angles, and tracks the output intention of Fuzzy
tuned PID controller. The robot path planning algorithm is based on
the shared control compromises of a direct control mode and
autonomous control mode. The shared controller sends steering
commands (i.e., position and angular) to the robot, taking the path
tracking situation into account, rather than directly executing the
user’s commands.

In Figure 3 it is shown that the structure of Turtlebot3 with Fuzzy-
PID controller cascaded with 2 degree of freedom (DOF) PID
controller block diagram. According to the block diagram, the
fuzzy system has three outputs (Kp, Ki, Kd), received from two
inputs which are error, e(t) and delta error, de(t)

dt . In order to
regulate the Turtlebot3 position and angle, this research will use
two extra controllers, one for each degree of freedom shown in the
block diagram.

4.1 Position and angular PID algorithm

During this study, two types of path planning algorithms were
developed in order to collect input from the Fuzzy tuned PID
controller and then plan the reference path to the mobile robot
from the beginning point to the goal position in the environment
with collision-free navigation. The gazebo simulator environment and
a kinematic model of the mobile robot of Turtblebot3 are utilized
as platforms for the mobile robot to move in a constrained
two-dimensional (x, y) range from the initial position to the goal
position in order to study these methods. The mobile robot model and
the simulator environment are needed as a platform for the position
and angular position algorithm as shown in Figure 8.

For the purpose of determining the robot’s position, Trigonometry
and Pythagoras’s theorem are used to measure the robot’s position
between two centers. Equation 9 will be used to find the Turtlebot3’s
goal position from the initial position. Then, for the estimation of
angular position of the robot, the arctangent function has been used to
determine the angular position as shown in Equation 11.

Distance �
���������������������������
xgoal − xinitial( )2 + ygoal − yinitial( )2√

(9)
Dif f erenceDistance�Distance

−PreviousDistancePreviousDistance�0 (10)

PathAngle � atan 2 ygoal − yinitial , xgoal − xinitial( ) (11)

An algorithm is devised with the combination of the PID
controller and the resulting Equation 9 to find the robot movement
processes to see if the two methods gave the correct measurement in
data plotting to understand how the Control Signal Distance, CSD
regulates between initial and goal positions as in resulting Equation 12.

CSD � Kpdistance × error distance( )
+ integral error distance + Kidistance × integral error( )( )
+ Kddsitance ×

error distance − last error distance
delta time

( )( )
(12)

error distance � distance − 0.01 (13)
integral error distance � error distance × delta time( ) (14)

last error distance � error distance (15)
An algorithm is devised with the combination of the PID

controller and the resulting Equation 4 to find the robot movement
processes to see if the two methods gave the correct measurement in
data plotting to understand how the Control Signal Distance, CSD
regulates between initial and goal positions as in Equation 16.

CSA � Kpangle × error angle( )
+ integral error + Kiangle × integral error angle( )( )
+ Kdangle ×

error angle − last error angle
delta time

( )( ) (16)

error angle � path angle + π

2
+ 2.5 (17)

integral error angle � error angle × delta time( ) (18)
last error angle � error angle (19)

5 Simulation results and discussion

In order to test the performance of proposed Fuzzy-based assistive
controller developed in Section II, this study used gazebo simulator in
Robotic Operating System (ROS). In this research, the performance of the
Fuzzy-Tuned PID controller simulated by a mobile robot has been tested
given the specified task. The task completion will bemeasured by the CSD
and CSA result. Eventually, the gains from Ziegler-Nichols PID controller
are tuned by the Fuzzy-PID controller (Kp, Ki, Kd) values are set at 1.4,
0.04, and 0.03. The initial point of the robot is at (0,0) and the goal point is
at (2,2). The desired gains that are proposed in this system is 0.06, 0.03,
0.05 for distance algorithm and 0.06, 0.03, 0.05 for angle algorithm.

5.1 Control signal distance, CSD

As shown in Figure 9, the Fuzzy-PID cascaded with 2 PID
controller with genetic algorithm (GA) method, which was
evaluated by testing the determined controlled distance, achieved
the goal of movement from the starting point to the goal point
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both with and without the proposed controller. This can be seen by
comparing the controlled distance with and without the proposed
controller. For the purpose of this simulation, the PID gains of the path
planning have been held constant, and the distance control has been
adjusted so that the result may evaluate how well the FLC works to
prevent the robot from swerving off course. As a result, it is plausible to
hypothesize that the larger the distance regulated, the greater the
likelihood that the CSD will have a small value of Root Mean Square
Error (RMSE). According to this distance controlled, the robot moves
with regulated uniform performance and bends toward the position it
has to be in to achieve the goal.

A favorable outcome can be attributed to the optimal gains
obtained in both the Fuzzy-PID hybrid controller and the two PID
controllers for the robot position. The conclusion that can be drawn
from the data presented in Figure 9 is that the output of CSD with
the proposed controller and conventional PID controller prevents
the robot movement from deviating from its goal distance, which is

zero. The study known as Root Mean Square Error (RMSE) shows
that the CSD result with the proposed controller is 0.14 cm closer to
the target than it would be without it, which would be 0.15 cm
correspondingly. During the simulation in the gazebo, the robot
moved with less jerkiness and remained in the ready state it had
been programmed to be in. Using the controller that has been
proposed, it is possible for the FLCMembership Function to explain
the observed controlled distance in CSD. In addition, a Fuzzy-PID
controller was implemented, and the FLC learnt how to use it, in
order to achieve consistently accurate distance proximity for the
robot.

5.2 Control signal angle, CSA

The objective of the simulation was to move the simulated
mobile robot from the beginning point to the goal point in the least

FIGURE 8
Gazebo Simulator with Turtlebot3 environment.

FIGURE 9
Control Signal Distance (CSD) comparison result.
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amount of time feasible while avoiding any obstacles in an
environment that did not contain any collisions. For CSA, one
may conceivably hypothesize that the likelihood of CSA having a
high value of Root Mean Square Error (RMSE) increases in
proportion to the size of the regulated angle. The lower range
for generating angle with regard to x-axis for the initial point is
0°and the upper range for generating angle with regard to x-axis for
the initial point is 0°. These considerations may account for the
relatively uniform correlation between the upper and lower range
angles, as well as the robot’s final goal point posture.

The findings of this study can be interpreted in a number of
different ways, as demonstrated in Figure 10, which shows that the
results obtained with and without the suggested controller are

essentially equivalent. According to the findings of the Root Mean
Square Error (RMSE) analysis, the proposed controller leads to a
greater proportion of the angle being regulated even while the robot is
in motion. The calculated CSA result with the proposed controller was
6.79% better in angle controlled, whereas the result with the
conventional PID controller was 3.68%. In addition, it is hard to
exclude the potential that the proposed controllers would interfere
with the implementation of the angular algorithm. Within the
framework of the proposed controller, the fuzzy logic controller for
the regulated angle is built through a process of learning and trial
within the controller. It is possible to hypothesize that this condition is
more likely to occur when there exists a uniform initial angle, θinitial,
and final angle, θfinal. Hence, it could conceivably be hypothesized that

FIGURE 10
Control Signal Angle, CSA comparison result.

FIGURE 11
Linear Velocity, V comparison between proposed controller and conventional PID controller.
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the bigger the angle controlled the more likely CSA to have higher
RMSE value.

5.3 Linear Velocity

First, the parameter gains (Kp, Ki, Kd) for conventional PID
controller are adjusted and it was found that the ideal gains are
KpPID � 0.06, KiPID � 0.03 and KdPID � 0.01 and the ideal gain
parameter for proposed controller with Kp � 1.4, Ki � 0.04, Kd �
0.03 gains parameters. According to Figure 11, when moving from
its starting point (0,0) to its final position, (2,2) the robot moved
4.98% with a satisfactory linear velocity that was set at 0.1 m/s by
employing the proposed controller. However, when a conventional
PID controller was used, the robot moved at a rate that was 4.99%,
faster than the velocity that had been set. The linear velocity of the
robot for both controllers can be seen by using RMSE percentage.
The conclusion that can be drawn from the findings of this linear
velocity experiment is that the robot needs to have a sufficient
velocity in order to move with the appropriate controller in the
simulation.

In general, therefore, it seems that with the proposed controller
resulted in the R-squared value at 0.9979 which performs well
compared with the conventional PID which resulted in a value of
0.9974. Based on the Linear Correlation Coefficient method, the
strength of the linear relationship between the two variables, the
R-squared value for the proposed controller is positive and close to
1, which indicates that it has a strong positive correlation. In the course
of this study, the Turtlebot3 robot first makes use of the proposed
controller to figure out the optimal linear velocity along the x-axis.
After that, a genetic algorithm, also known as GA, was introduced to
the proposed controller in order to obtain a result that was more
precise and accurate. In conclusion, the performance of the proposed
controllers in conjunction with GA will be compared to that of a
conventional PID controller.

5.4 Angular Velocity

Figure 12 illustrates a comparison of the simulation that made use of
this research by the angular velocity of the robot. The application of the
proposed controller results in a marginal increase in the angular velocity of
the robot, as determined by the fuzzy rules presented in Table 2 and the
findings of the simulation. When the conventional PID controller was used,
it recorded an angular velocity that was 98.38% lower than the proposed
controller, which resulted in an 98.34% improvement in the robot’s angular
velocity while it was in motion. The acceptable angular velocity is defined as
1.5 rad/s. As a result of this research, the controller that was suggested
resulted in an improvement in the mobility of the robot towards its goal
position in the simulation when comparing its angular velocity. The Fuzzy-
PIDmethod, the cascaded PIDs controller, and theGA algorithmhad a high
association with one another. The findings demonstrated that the online
tuning method has the potential to maximize the percentage of the robot’s
angular velocity that corresponds to stability and adaptability of motion in
the direction of the desired position.

6 Conclusion

The goal of this research was to demonstrate a correlation
between the Fuzzy-PID controller which its gains optimized by
genetic algorithm (GA) and the 2-DOF PID controller, also
known as the Position and Angular algorithm method. This was
accomplished by comparing the two types of controllers which are
with the conventional PID controller. One of the most important
things that came out of this research was the finding that the gains
tuned by the combination of a fuzzy controller and a PID controller
could achieve more precise values. These values could then be used
by a mobile robot to carry out a movement that was more effective on
its way from the initial point to the goal point. The significance of the
improvements is backed up by the data in a clear and convincing
way. The second significant finding was that the CSD and CSA have

FIGURE 12
Angular Velocity, α comparison between proposed controller and conventional PID controller.
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increased the control performance and efficiency of the proposed
controllers to the robot movement. The findings of this study
provide credence to the hypothesis that, as the robot progresses
from its initial position to its goal position, it will be able to
successfully implement both algorithms if a fine-tuned PID
controller is applied to it. The third notable finding was that the
linear velocity and angular velocity of the robot has strengthened the
robot’s stability and adaptation of the suggested controller to the
robot movement in the simulation. The findings of this study provide
evidence to support the hypothesis that, as the robot moves from its
starting position to its goal position, it will be able to successfully
implement the proposed controller if the simulation is run without
any collisions. This hypothesis was tested by running the robot in a
collision-free environment.
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