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Reinforcement Learning has been shown to have a great potential for robotics.

It demonstrated the capability to solve complex manipulation and locomotion

tasks, even by learning end-to-end policies that operate directly on visual

input, removing the need for custom perception systems. However, for

practical robotics applications, its scarce sample efficiency, the need for huge

amounts of resources, data, and computation time can be an insurmountable

obstacle. One potential solution to this sample efficiency issue is the use

of simulated environments. However, the discrepancy in visual and physical

characteristics between reality and simulation, namely the sim-to-real gap,

often significantly reduces the real-world performance of policies trained

within a simulator. In this work we propose a sim-to-real technique that trains

a Soft-Actor Critic agent together with a decoupled feature extractor and a

latent-space dynamics model. The decoupled nature of the method allows

to independently perform the sim-to-real transfer of feature extractor and

control policy, and the presence of the dynamics model acts as a constraint

on the latent representation when finetuning the feature extractor on real-

world data. We show how this architecture can allow the transfer of a trained

agent from simulation to reality without retraining or finetuning the control

policy, but using real-world data only for adapting the feature extractor. By

avoiding training the control policy in the real domain we overcome the

need to apply Reinforcement Learning on real-world data, instead, we only

focus on the unsupervised training of the feature extractor, considerably

reducing real-world experience collection requirements. We evaluate the

method on sim-to-sim and sim-to-real transfer of a policy for table-top

robotic object pushing. We demonstrate how the method is capable of

adapting to considerable variations in the task observations, such as changes in

point-of-view, colors, and lighting, all while substantially reducing the training

time with respect to policies trained directly in the real.

KEYWORDS
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1 Introduction

To this day, manipulation and physical interaction tasks
remain open problems in robotics.The difficulty of modeling the
environment, identifying its characteristics, and detecting and
tracking elements of interests makes these tasks particularly
challenging for classic control approaches. Reinforcement
Learning approaches instead can tackle these issues implicitly,
and have been shown to be capable of solving even the most
complex manipulation problems OpenAI et al. (2019). However,
the use of Reinforcement Learning (RL) methods also poses
significant challenges. Most RL techniques are considerably
sample inefficient, they require huge amounts of resources, data
and computation time. Also, training a policy on real hardware
without proper precautions may damage the hardware itself
or its surroundings. These issues can be tackled from different
perspectives, on one side with algorithmic improvements that
improve sample efficiency and lower data requirements, on the
other with techniques to efficiently acquire huge amounts of
data, for example by exploiting simulation [OpenAI et al. (2019);
Rudin et al. (2021)].

Standard RL algorithms such as DQN Mnih et al. (2015),
PPO Schulman et al. (2017), or SAC (Haarnoja et al. (2018a);
Haarnoja et al. (2018b)) have huge data requirements, especially
for vision-based tasks. Such tasks have traditionally been
solved by directly utilizing image observations in an end-to-
end manner, the same way as tasks with low-dimensional
observations are handled. Several recent works however have
progressively improved sample efficiency for visual tasks by
departing from this simple approach.

SAC-AE [Yarats et al. (2021b)], SLAC [Lee et al. (2020)]
or CURL Srinivas et al. (2020) have tackled the problem
by combining Reinforcement Learning and Representation
Learning methods. Representation Learning is used to aid the
training of the visual feature extractor section of the agent. In
purely RL methods, the training is performed solely from the
reward signal, even for what concerns visual understanding.
Here instead other sources of information are used such as image
reconstruction or contrastive losses, greatly improving sample
efficiency.

Other approaches, such as RAD [Laskin et al. (2020a)]
and DrQ [Kostrikov et al. (2020); Yarats et al. (2022)] have
shown how the use of simple image augmentation techniques
can vastly improve sample efficiency, reaching performance
on par with that of methods which have access to state
knowledge.

Another direction yet has been the idea of using the
experience data collected online during training to learn
a model of the environment, capable of predicting whole
trajectories. These kind of models can then be used to solve
the task via planning, like for example in PlaNet [Hafner et al.
(2019)], or to generate additional training data, either in the

observation space or in learned latent spaces, such as in Dreamer
[Hafner et al. (2020); Hafner et al. (2021)].

In this work we explore the idea of exploiting Representation
Learning and environment modeling to efficiently perform
sim-to-real transfer. We define an RL agent that completely
decouples feature extractor and control policy training. The
feature extractor is learned as part of a full model of the
environment based onVariational Autoencoders (VAE) [Kingma
andWelling (2014); Rezende et al. (2014)], capable of predicting
observations and rewards. The control policy is a Soft Actor-
Critic agent that acts on the latent representation defined by
the aforementioned model. We show how this architecture
allows to transfer a control policy trained in simulation to
the real world by only finetuning the encoder and decoder
sections of the VAE model. This completely removes the need
of performing Reinforcement Learning training in the real
environment, strongly reducing real-world data requirements
while at the same time maintaining high sample efficiency in
simulation.

We evaluate the method on a tabletop non-prehensile
manipulation task, in which a Franka-Emika Panda robotic
arm has the objective of pushing an object to a predetermined
destination. We choose this task as it is fairly simple and
manageable, but at the same time presents difficulties
that make it a suitable ground for evaluating model-free
reinforcement learning methods such as ours. As discussed
in Ruggiero et al. (2018), non-prehensile manipulation, and
specifically object pushing, is a particularly challenging task
for classic control methods due to the indeterminacy brought by
friction forces, both betweenmanipulated object and ground and
between object and robot. Modeling such interactions precisely
is extremely challenging, identifying friction characteristics is
a complex problem in itself and minute errors in the modeling
have large impacts in the motion of the manipulated objects.
Instead, model-free robot learning approaches such as ours
handle these problematics implicitly without requiring careful
explicit modeling of the system and can consequently solve
this task effectively and reliably.1 Also, object pushing already
presents exploration difficulties not present in simpler tasks,
such as for example pose reaching. The agent has to first learn to
reach the object, and then it must learn to bring it to the correct
position. We perform sim-to-sim experiments with different
variations of the scenario, from simple alterations to the colors
of the scene to radical changes in the camera point of view. We
then validate the approach with sim-to-real experiments.

1 We consider our method to be model-free as we do not use the
learned dynamics model to plan trajectories or generate data, but only
as a regularization tool. This follows the same convention used in
Lee et al. (2020).
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2 Related works

Our work builds upon the intersection of two research areas:
the use of sim-to-real to overcome real-world data scarcity
and the development of decoupled Reinforcement Learning
methods. The first focuses on exploiting simulation data to
train real-world models by bridging the reality gap, the second
on improving sample efficiency in Reinforcement Learning, by
decoupling feature extraction from policy training.

The RL architecture we propose exploits its decoupled nature
to effectively overcome the reality gap, reducing real-world data
requirements while at the same time maintaining good sample
efficiency in the simulation domain.

2.1 Sim-to-real

Reinforcement Learning methods require vast amounts of
data to be effectively trained. The more a task is complex, in
terms of observation and action dimensionality, or exploration
difficulty, the more experience is required. Complex tasks can
easily require days or weeks of experience data to be solved.
Acquiring such amounts of experience on real robotic systems
is impractical, keeping a complex robotic system running for
such lengths of time is complex, additional infrastructure for
managing the environment setup are required, and untrained
policies can potentially damage the robot or the environment.
All of these issues become even more complex in a research
environment, where numerous trainings have to be performed
for experimental reasons. Consequently, the use of synthetic
experience has a natural appeal for Reinforcement Learning
methods.

Sim-to-real RL methods exploit simulation software to
efficiently train policies in virtual reproductions of the target
environment, and then transfer the policy to the real-world
domain by overcoming the reality gap, the discrepancy between
simulation and reality.

The advantage of simulation is first of all the possibility
of generating vast amounts of experience much more rapidly
than it would be possible in the real world. This can be
achieved by simulating faster than real-time and by parallelizing
multiple simulated environments. Gorila Nair et al. (2015), A2C
andA3CMnih et al. (2016) showed how parallelizing experience
collection leads to substantial improvements in training time.
More recently, Rudin et al. (2021) exploited modern hardware
and simulation software to massively parallelize an environment
for quadruped locomotion training, achieving in just 20 min a
PPO gait policy capable of successfully controlling a real robot
on complex terrains.

Furthermore, beyond just generating huge amounts of data,
simulation software can also support training strategies that
would be impossible in the real world. Pinto et al. (2018) shows

how it is possible to speed-up training considerably by using
simulator state knowledge during training, and how to transfer
a policy trained in such a way to the real world, where this
knowledge is unavailable.

As we mentioned, the core issue with simulation training
is the reality gap, the discrepancy between the characteristics
of the simulated environment and those of the real one. These
differences can be in the dynamics of the environment, due
to inaccuracies in the physics simulation, in the observations
the agent makes, due to imprecision in the visual rendering or
in the sensory input in general, or simply in the behavior of
robotic components, which may be implemented differently in
simulation and reality. Advances in realistic simulation software
[NVIDIA (2020); Unity (2020)] are progressively narrowing the
reality gap, but sim-to-real transfer remains non-trivial as
constructing simulations that closely match the real world
remains a challenging task that requires considerable engineering
work.

Numerous strategies have been implemented to overcome
the reality gap. In general, we can distinguish between two
families of techniques: those that aim at obtaining a policy
capable of operating in both the real and the simulation without
using real-world data, and those that use real-world data for
adapting a model learned in simulation to the real domain. We
refer to these latter ones as domain adaptationmethods.Themost
simple approach of these is to just perform policy finetuning
in the real, the same way it usually is done in supervised
learning settings. The policy is first trained in simulation,
then the agent is transferred to the real and the training
continues in the real until satisfactory performance is achieved.
However, such strategy often still requires considerable real-
world experience collection, and it is not guaranteed the robot
will behave properly and safely when first transferred to the real
domain.

Other methods explicitly target the issue of matching
the output of feature extractors between the simulated
domain and the real domain, creating feature extractors
that are invariant to the switch between simulated and
real-world inputs. This can be achieved via different
approaches. Some methods try to train feature extractors
for the two domains while keeping the distributions of the
two resulting feature representations similar, with losses
based on distribution distance metrics such as Maximum
Mean Discrepancy (MMD) [Tzeng et al. (2014)], MK-MMD
[Long et al. (2015)] or others [Sun and Saenko (2016)]. Others
try to keep the feature representations of samples from the two
domains close via Adversarial approaches. A discriminator
network is trained to classify feature vectors between the
two domains, the feature extractor is then optimized to
generate indistinguishable representations [Tzeng et al. (2015);
Tzeng et al. (2017); Ganin and Lempitsky (2015)]. Alternatively,
other techniques take inspiration from style transfer methods
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and directly convert target-domain samples into source-
domain samples or samples from a third “canonical”
domain [Bousmalis et al. (2017); Bousmalis et al. (2018);
Hoffman et al. (2018); James et al. (2019)]. Other methods
attempt to identify corresponding samples from source and
target domain and then force the representations of these
corresponding samples to be similar. Gupta et al. (2017) does
so by assuming samples from corresponding timesteps in RL
episodes should be similar, Tzeng et al. (2016) first identifies
weakly paired samples and improves on this with an adversarial
approach.

However, even if some of these methods work well for vision
tasks, they may not adapt effectively to difficult exploration
problems. The aforementioned approaches either require target
data to be available while performing the original source domain
training or they train the encoder with offline data. This is
problematic, as in difficult exploration problems collecting fully
representative data before completely training the policy may
be impractical or impossible. In tasks such as object pushing
it may be possible to collect human-generated demonstrations,
but in more complex tasks, for example locomotion, collecting
demonstrations is not trivial.

A sim-to-real approach that does not suffer from this
issue is Domain Randomization. The core idea of the method
is to randomize visual [Tobin et al. (2017)] and physical
[Peng et al. (2017)] characteristics of the simulated environment,
so that once the agent is transferred in the real world it can
interpret the new domain as just another random variation.
These methods can be applied to both visual and state-based
tasks, and have been extremely successful, being able to
solve even extremely complex visuomotor control problems
while maintaining strong robustness to occulusions and
perturbations [OpenAI et al. (2019)]. However, as tasks get
more complex, they require huge amounts of simulation
data and long training times. To reduce these issues, various
methods have been proposed to constrain the amount of
randomization to just what is necessary. Ramos et al. (2019),
Possas et al. (2020) and Muratore et al. (2021) achieve this by
identifying simulator parameter distributions via Likelihood-
free Inference. Heiden et al. (2021) instead shows how it is
possible to use differentiable simulators to identify possible
simulator parameters from real data.

2.2 Decoupled RL

Training Reinforcement Learning policies for visual tasks has
traditionally been considerably more expensive than for state-
based tasks, in terms of sample-complexity and computation
time. The increased dimensionality of the observation space
naturally complicates the problem, as the agent needs to learn
to interpret visual information and extract the necessary features

from it. However, multiple recent works have shown how the
performance gap between image-based and state-based tasks can
be greatly reduced.

One extremely simple and effective technique is the use of
data augmentation during training. RAD [Laskin et al. (2020a)],
DrQ [Kostrikov et al. (2020)] and DrQv2 [Yarats et al. (2022)]
have shown how even just simple image augmentations such as
pixel shift can drastically improve sample efficiency ofmodel free
RL methods, reaching performance comparable to that achieved
on equivalent state-based tasks.

Other works instead exploit unsupervised learning methods
to aid the extraction of visual features. SLAC [Lee et al. (2020)]
trains a predictive stochastic latent variable model and uses the
resulting latent space to train a Soft Actor-Critic policy. SAC +
AE (Yarats et al. (2021b)) instead uses a regularized autoencoder
[Ghosh et al. (2020)] to extract a latent space via observation
reconstruction. It then uses the resulting latent vector as inputs
for a Soft Actor-Critic policy.

PlaNet (Hafner et al. (2019)) brings these ideas forward by
learning a full latent model of the environment, then uses this
model to plan trajectories viaModel PredictiveControl.Dreamer
(Hafner et al. (2020)) and DreamerV2 [Hafner et al. (2021)] then
use the latent model from PlaNet to train an Actor-Critic policy
in the latent space, generating huge amounts of experience via
imagination and exploiting the differentiable nature of the neural
network model.

3 Methods

The method we propose in this work employs ideas from
research in decoupled Reinforcement Learning methods to
perform sim-to-real transfer of visuomotor control policies
via domain adaptation. More specifically we define an RL
architecture composed of a predictive latent variablemodel and a
Soft Actor-Critic agent, and we propose a training procedure for
sim-to-real that takes advantage of the presence of the decoupled
predictive model to effectively finetune the latent encoder to the
real environment. Following this method it is possible to transfer
a trained agent from simulation to reality by finetuning just the
feature extractor, independently of the learned control policy.

Differently from the methods discussed in Section 2, our
proposed method is at the same time unsupervised, sample
efficient in source and target domain, capable of solving difficult
exploration problems, and does not require target domain data
before performing the transfer.

3.1 Problem formulation

We formalize our setting as a Partially Observable
Markov Decision Process (POMDP), defined by the 7-tuple
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FIGURE 1
POMDP formulation of the problem. In orange the policy we
implement, in blue the sensory channel, in black the underlying
Markov Decision Process.

FIGURE 2
Overview of the proposed architecture. Ohd,t indicates the
high-dimensional observation at step t, Old,t is the respective
low-dimensional observation, at is the action taken at step t, zt is
the latent state vector at time t, zt+1 is the predicted latent state
vector, Ohd,t+1 and Old,t+1 are the predicted observations.

(S,A,p, r,γ,O,v). The first five terms represent respectively the
state space, the action space, the state transition probability
density p(st+1|st ,at), the reward function r(st ,at) and the
discount factor. The last two terms represent the observation
space and observation density v(ot|st) = p[ot = o|st = s] which
defines our sensory channel. The system is represented in
Figure 1.

The objective of the method is to learn a policy π(at|ot) that
maximizes the expected discounted total sum of rewards R(π) =
Es0:T(∑

T
t=0γ

tr(st,at)).
Historically, standard end-to-end RL methods have usually

employed an MDP formulation instead of a POMDP one,
meaning that the state is observed directly or the high-
dimensional observation is equated with the state. Instead, in the
POMDP formulation the state is not observed directly, but only
through a stochastic sensory channel, formalizedwith the v(ot|st)
density function.

Guided by this formulation, we use a representation learning
approach to approximate an e(zt|ot) density, which estimates
a state representation zt from sensor observations ot . Once
the representation is learned, we have at our disposal a
method to approximate low-dimensional state vectors from
high-dimensional sensor inputs and we can use standard RL
methods to learn a control policy in the latent space.

3.2 Agent architecture

3.2.1 Variational autoencoder
A natural choice for learning the state representation is the

use of autoencoders, in particular of variational autoencoders
(VAE) Kingma and Welling (2014). VAEs are a solid and
proven method to learn a low-dimensional representation
of the state, giving us a method to reliably produce low-
dimensional latent vectors from high-dimensional observations.
We define our VAE architecture as a stochastic encoder eθ(zt|ot)
that maps observations ot ∈ ℝn×n to latent representations zt ∈
ℝk and a deterministic decoder dθ(zt) that performs the
opposite transformation.The encoder is defined as a conditional
multivariate Gaussian density with diagonal covariance. The
dimensionality k of the latent space is left as a hyperparameter,
which can be tuned depending on the task at hand.

In all our experiments we used an encoder architecture
based on a MobileNet V3 backend Howard et al. (2019)
initialized with pretrained weights, the output of the
backend was matched to the Gaussian density mean and
log-variance with two separate linear layers. The decoder
was defined symmetrically using transposed convolution
layers.

In practice, during policy inference we used the encoder
deterministically by utilizing only the mean of the distribution
to produce the latent vectors.

3.2.2 Dynamics modeling
Within the latent space of the Variational Autoencoder we

introduce a one-step dynamics predictor, that from a latent
vector and an action predicts a latent representation for the next
state. Formally, the dynamics predictor is defined as a function
f(zt,at) ↦ ̂zt+1, where zt is the latent representation for the state
st , at is the action at time t and ̂zt+1 is a representation of st+1. In
practice the dynamicsmodel is implemented as a fully connected
neural network fθ:ℝ

k+m→ℝk with m being the action space
dimensionality and k being the latent representation size. We
make the choice of introducing the predictor following two
intuitions: one is that the presence of the dynamics predictor
imposes a regularization toward features more suited for control,
the other is that the presence of the predictor can be used
to constrain the latent representation when performing policy
transfer. We refer to this overall representation architecture as
DVAE.

It must be noted that, while our dynamics model is useful in
shaping and constraining the latent representation, it cannot be
used to make actual latent-space trajectory predictions. This is
because the input and output latent spaces of the network are not
constrained to represent the same features in the same way, or to
have the same distribution.

As a whole, the architecture is trained using the usual
variational loss, composed of the isotropic multivariate Gaussian

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2022.1067502
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Rizzardo et al. 10.3389/frobt.2022.1067502

FIGURE 3
Training procedure for DVAE-SAC. DVAE weights are updated with ADAM Kingma and Ba (2015) and the policy is trained with SAC_UPDATE as
defined in Haarnoja et al. (2018b).

TABLE 1 Object pushing environment observation and action spaces.
The action space is normalized to [−1,1], but corresponds to a
displacement of maximum 2.5 cm in x and y.

Observation space [0,1]128 × 128 × [−1,1]2

Action space [−1,1]2

KL-divergence and the MSE reconstruction error:

LDV AE (θ;ot,at, rt,ot+1) = DKL (eθ (zt|ot)‖N (0, Ik))

+ αMSE(ôt+1, ̂rt;ot+1, rt) (1)

With ( ̂zt+1, ̂rt) = fθ(eθ(ot),at) and ôt+1 = dθ( ̂zt+1), DKL being the
KL-divergence, MSE the mean squared error, Ik the k× k
identity matrix and N (0, Ik) a centered isotropic Gaussian
distribution.

3.2.3 Including low-dimensional sensor data
As we mentioned, the encoder and decoder sections

of the architecture are implemented respectively with a
MobileNet network and a series of transposed convolutions.
These architectures are suited to image inputs, however,
in robotics applications it is common to have non-
homogeneous sensory inputs, some characterized by a
high dimensionality, like cameras, and others by low-
dimensionality, like motor encoders or force torque sensors.
Our proposed architecture gives us a natural way to combine
these heterogeneous inputs, as we can combine all of
these observations of the environment into the latent state
representation.

In the simple case of one visual input combined with
mono-dimensional sensor readings, we can leave the encoder

architecture unchanged and directly concatenate the low-
dimensional observations to the encoder output. For its
simplicity, we chose to follow this simple approach in our
experiments.

The overall architecture is represented in Figure 2.

3.2.4 Policy learning
Finally, the control policy π(at|ot) can be learned with

any standard RL method. The RL algorithm only receives as
input the state representation z, composed of the encoder
output and, optionally, the low-dimensional observations. In
practice we chose to use Soft Actor Critic (SAC) throughout
our experiments because of the flexibility and generality of the
method. We derived our implementation from the one provided
by stable_baselines3 Raffin et al. (2021).

3.2.5 Bootstrap ensembles
To improve the reliability and repeatability of the

method, and following evidence from Chua et al. (2018) and
Nagabandi et al. (2019) we exploit bootstrap ensembles in the
dynamics model, in the encoder and in the SAC actor network.
The output of the single networks are aggregated performing
a simple average. This in practice results in a more reliable
training performance, converging faster to a correct solution and
reducing the variability introduced by the network initialization
and the environment randomness.

3.3 Training the agent

We train the DVAE-SAC agent online, by collecting
experience via the current policy and alternating between
training the DVAE latent extractor and the SAC control
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FIGURE 4
Simulated (A) and real (B) object pushing setups. The camera used to collect the input images is visible in the top left in both pictures.

FIGURE 5
Example of one successful episode in the simulated setup. The image shows the observed images for steps 0, 4, 8, 12, 16, 20, 24.

TABLE 2 Variations from the source domain across the different experimental scenarios.

Scenario Cube color Light direction Camera position Camera orientation

Original (Sim) Black Vertical ∖ ∖

S2S—Minimal Gap 10 colors Vertical Unchanged Unchanged

S2S—Small Gap Red 30°: Left, Right, Back, Front ∼5 cm offset Unchanged

S2S—Medium Gap Red 30°: Left, Right, Back, Front ∼20 cm offset Toward Center

S2S—Large Gap Red 30° Left ∼70 cm offset 90° Yaw

S2R—Minimal Gap Black Multiple sources, diffused ∼5 cm offset Minimal

TABLE 3 DVAE-SAC results on the four sim-to-sim (S2S) and the sim-to-real (S2R) scenarios. Columns indicate respectively: the best achieved success rate,
the initial success rate in the target domain (i.e. zero-shot transfer performance), the number of episodes required to reach 80% success rate, the number of
episodes required to reach 90% success rate.

Scenario Success (%) Init. Succ (%) T.T. 80% T.T. 90%

Sim. From Scratch 98 5 1,020 Eps 1,180 Eps

S2S—Minimal Gap 95 50 90 Eps 110 Eps

S2S—Small Gap 92 5 210 Eps 950 Eps

S2S—Medium Gap 92 5 320 Eps 1,250 Eps

S2S—Large Gap 85 5 1,200 Eps ∖

S2R—Minimal Gap 92 5 550 Eps 990 Eps
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FIGURE 6
Success rate progress for the sim-to-sim experiments. Figure (A) shows the minimal-gap scenario: It is possible to see the performance difference
depending on the cube color. Figure (B) displays the results for all the scenarios in an aggregated form, the plots show the average performance
across seeds on a 100 episode window. For the minimal, small, medium and large scenarios we used respectively 8, 12, 16, and 4 seeds. The
shaded area represents a 95% confidence interval.

policy. The experience is collected in the form of (ot ,at , rt ,ot+1)
transitions and stored in one single replay buffer, which is used
as the training set for both the policy and the latent extractor.
Algorithm 1 at Figure 3 shows the overall training procedure.

3.4 Transferring the agent

In performing the domain transfer the objective is to adapt
the agent to the new environment while avoiding to lose the
knowledge acquired during the source domain training. Such
transfer could be attempted by simply finetuning the whole
agent on target domain data, however in practice this does not

perform well due to catastrophic forgetting. This is particularly
problematic as policy training may potentially restart from
scratch, as no experience for the later stages of successful
episodes would be available until the environment is explored
again.

To prevent these issues, we take advantage of the decoupled
nature of the DVAE-SAC architecture: we freeze the SAC agent
and transfer it as-is, while only finetuning the DVAE. Crucially,
to prevent the latent representation from drifting and becoming
incompatible with the SAC policy we also freeze the dynamics
predictor section of the DVAE. In practice this means only the
encoder and decoder sections of the architecture are adapted to
the target domain.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2022.1067502
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Rizzardo et al. 10.3389/frobt.2022.1067502

FIGURE 7
Input image and predicted image in the simulated (A) and real (B) setups.

FIGURE 8
Success rate progress for the sim-to-sim VAE-SAC experiments. The plots show the average performance across seeds on a 100 episode window.
The shaded area represents a 95% confidence interval.

By keeping the dynamics predictor frozen the DVAE is
constrained to maintain a latent representation compatible with
the dynamics predictor itself. We show experimentally that
this is sufficient for the policy to keep operating correctly, as
compatibility with the policy is also maintained.

4 Experiments

To demonstrate the effectiveness of the method we evaluate
its performance on a robotic table-top object pushing task. In
our scenario a 7-DOF Franka Emika Panda robotic arm is tasked
with pushing a 6 cm cube to a target position. The robot arm is
controlled in cartesian space, and the end-effector moves only

horizontally within a 45 cm square workspace located in front of
the robot itself. Each episode is initialized with a random cube
position and a random end-effector position. The target cube
position is kept constant across episodes. The agent controls the
robot specifying a displacement in the bidimensional workspace
of the end-effector, resulting in a continuous 2D action space.
The environment is observed through a camera placed on the
opposite side of the table with respect to the robot arm, which
produces RGB images with 128 × 128 pixels resolution. In
addition to the images the agent also has access to proprioceptive
information from the robot, in the form of the 2D position of the
end-effector tip. Table 1 summarizes the observation and action
spaces.Figure 4 shows the simulated and real scenarios,Figure 5
displays an example of a successful episode.
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FIGURE 9
Success rate progression in the sim-to-real experiment discussed
in section 4.3. The solid line represents the success rate in the
100-episode window preceding the current episode, the
background bands represent the corresponding 95% confidence
interval.

Each episode lasts 40 steps. Once the cube reaches the target
position, within a 5 cm tolerance, the episode is considered
successful, but it is not interrupted until the 40 steps timeout is
reached.

We define the reward function as a composition of three
terms, one to encourage the end-effector tip to stay close to the
cube, one for the cube to stay close to the goal, one for the cube
to be moved in any direction. We define them as follows, where
r(pc,pt) is the overall reward, rc(pc,pg) is the cube-goal term,
rt(pt ,pc) the tip-cube term, rd(pc,p

′

c) the cube displacement term,
and rb(pc,pg) is a further bonus givenwhen the cube iswithin d m
from the target. The constant α is a scaling factor, which we kept
fixed at .1. The rc and rt functions are defined as linear ramps,
with value 0 at 40 cm from the target and respectively 100 and
50 at the target.

r(pc,pt) = α∗ (rc (pc,pt) + rt (pt,pc) + rd (pc,p
′

c))

With:

rc (pc,pg) =
100
0.4

*(0.4− ‖pc − pg‖) + rb (pc,pg)

rt (pt,pc) =
50
0.4

*(0.4− ‖pt − pc‖)

rd (pc,p
′

c) = ‖pc − p
′

c‖∗ 100∗ 20

rb (pc,pg) =
{{{
{{{
{

200
d

*(d− ‖pc − pg‖) if ‖pc − pg‖ ≤ d

0 otherwise

(2)

We implement this scenario both in the real world and
in a Gazebo simulation [Koenig and Howard (2004)]. To

evaluate transfer capability we perform both sim-to-sim and
sim-to-real experiments, varying the characteristics of the
simulation to enlarge or reduce the gap between source and
target domains. Table 2 summarizes the characteristics of each
scenario.

4.1 Sim-to-sim

We evaluate our proposed method on four sim-to-sim
transfer scenarios of increasing difficulty. We do so by keeping
a fixed source domain and defining four sets of target domains,
in which we vary the width of the transfer gap by altering
characteristics such as the cube color, the lighting, and the
camera pose.

In this section we discuss the different setups and the
respective results. The results are also reported in Table 3 and
Figure 6. Figure 7 shows the performance achieved training
from scratch in simulation.

4.1.1 Minimal gap
In this scenario we only change the color of the manipulated

cube. While in the source domain the cube is black, we define
eight target scenarios with eight different colors: red, green, blue,
yellow, cyan, magenta and 2 grades of gray.

Depending on the selected color the policy has an
initial performance that varies between 10 and 95 percent,
however in just 110 episodes of finetuning the method
consistently reaches a 90% success rate, and then continues
maintaining a performance oscillating between 92 and 95
percent.

4.1.2 Small gap
In this setup we introduce variations also in the camera pose

and the light direction. We vary the pose by translating it left,
right, up or down of 5 cm. We vary the light direction from the
vertical axis of the source domain to four possible axes with a 30°
inclination either toward the left, right front or back. We set the
cube color to be red.

With these variations the agent performance is initially of
about 5%, which is comparable to a random policy. Across our
experiment the agent consistently reaches an 80% success rate in
about 210 episodes and a 90% success rate in about 950.However,
already at episode 500 the agent consistently reaches an 88%
success rate.

4.1.3 Medium gap
To further widen the transfer gap in this scenario we

increment the magnitude of the camera pose change. We move
the camera of 20 cm instead of 5, and we alter its orientation to
maintain the manipulation area in the field of view. We fix the
cube color as red and vary light direction in the same way as in
the previous scenario.
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FIGURE 10
Success rate progression for the training from scratch performed in simulation. Two random seeds are being shown. The solid lines represents the
success rate in the 100-episode window preceding the current episode, the background bands represent the corresponding 95% confidence
interval.

The training performance is comparable to that of the small-
gap scenario, reaching 80% success rate in 320 episodes and 90%
in 1,250. Also in this case performance just under 90% is reached
considerably sooner, reaching 85% at episode 750.

4.1.4 Large gap
In the hardest sim-to-sim scenario we completely change to

camera point of view, while still altering cube color and light
direction. The camera is moved so that it faces the manipulation
area from the side instead of the front, with a 90° point of view
change.

In this scenario, which goes beyond what is just a sim-
to-real transfer problem, the agent training requires about as
much time as is required to train the agent from scratch. About
1,200 episodes are required to reach an 80% success rate, and
a maximum performance of 86% is reached by episode 2000,
performing worse than the source training.

We hypotesize, this can be explained by the fact that the agent
in this case encounters again an exploration problem, despite not
using any kind of Reinforcement Learning method. The agent
must again discover where the goal is located, and can only
understand this from the training signal of the reward predictor
present in the dynamics model.

4.2 Sim-to-sim with VAE-SAC

To explore the importance of the dynamics predictor
presence for domain transfer we evaluated the performance
of a VAE-SAC agent on the sim-to-sim scenarios. The VAE-
SAC agent is a modified version of our architecture in which
the dynamics predictor has been removed. Figure 8 shows the

achieved transfer performance. As expected the domain transfer
fails, as there is no constraint to keep the latent representation
compatible with the control policy. Even in the minimal-gap
scenarios, where the zero-shot performance is not zero, the
success rate rapidly descends to performance comparable to that
of a randmo policy. In the small-gap scenario we can see the
performance initially rising, but then also decaying.

4.3 Sim-to-real

In addition to the sim-to-sim evaluation we also assess the
performance of the method on a sim-to-real transfer scenario.
Weonly performwhatwe call aminimal-gap sim-to-real transfer,
in which we minimize the differences by not intentionally
introducing variations and trying to replicate the simulated
scenario for what is possible. However, the transfer still presents
small differences in the camera pose, and lighting and the texture
of the environment is considerably different. Figure 9 shows
the training performance in the real setup. Figure 10 shows the
camera view and decoder reconstruction in the simulated and
real scenarios.

The initial success rate achieved by the policy is about 10%,
but the finetuning of the DVAE quickly brings it 80% in just
550 episodes, corresponding to 5 h of experience, a performance
of 90% is achieved in 990 episodes, 10 h of experience
data.

When compared to the training from scratch in simulation,
the sim-to-real finetuning is considerably faster in the first
stages of learning, achieving 80% success rate in about half
the time, however reaching 90% requires almost as much
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time as the source training. It must be noted however that a
training from scratch in the real requires considerably more
time than in simulation, due to the higher complexity of the
sensory inputs. Furthermore, the sim-to-real finetuning could
be completed by unfreezing the control policy once the DVAE
has reached good enough performance, allowing the agent
to adapt to any further unaccounted difference in the target
domain.

5 Conclusion

In this work we presented a method for efficiently learning
visualmanipulation policies and transferring trained agents from
simulation to reality. The agent architecture uses a decoupled
representation learning approach based on a predictive
VariationalAutoencoder, namedDVAE, that can fully represent a
systemmodeled as a Markov Decision Process.This formulation
allows to learn the visual task with high sample efficiency,
requiring far less data than traditional end-to-endReinforcement
Learning methods. This allows us to train a manipulation policy
in simulation in less than 12 h.

Furthermore, the decoupled nature of the method and
the presence of the dynamics predictor give us the ability to
transfer the agent effectively between simulation and reality.
Differently from other sim-to-real adaptation works the method
proposed in this work is completely unsupervised, is trained
online and does not require any target domain knowledge while
performing the source domain training. Consequently, it does
not require any data collection outside of the experience collected
by the RL agent, and as such, it can be applied to difficult
exploration problems and tasks for whichmanual data collection
is impractical.

We demonstrated the transfer capabilities of the method via
sim-to-sim and sim-to-real experiments on an object-pushing
robotic setup. The results show how the method can overcome
considerable gaps between the characteristics of source and
target domain. When the source-target domain gap is small
the method can adapt extremely quickly, reducing training time
by three to four times. If the reality gap is wider, the method
naturally requires more time and data to adapt, but still brings
considerable sample-efficiency improvements.

The sim-to-real transfer experiments showhow the proposed
method offers considerable efficiency improvements especially
when looking at the first stages of training. The agent reaches
an 80% success rate in just about 500 episodes, half of what is
required by a from-scratch training in simulation. It must also
be noted how training a policy from scratch in the real would
not be as simple as in simulation, the complexity of the real

environmentwould affect the agent performance also in this case.
The improvement in real-world training efficiency may thus be
greater than what shown.

When looking at the asymptotic performance the method
lags when compared with the training from scratch. However
this remaining gap in performance can be explained by the
more complex nature of the real-world observations, and can
potentially be bridged by performing a further finetuning,
unfreezing the control policy network after finetuning.

In conclusion, our methodology shows how it is possible to
train effectively a manipulation policy such as a robotic object
pushing task example with very little real-world data. With just
6 h of real-world experience, the agent learns to solve our object
pushing task, directly from visual input.
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