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Living systems ensure their fitness by self-regulating. The optimal matching of

their behavior to the opportunities and demands of the ever-changing natural

environment is crucial for satisfying physiological and cognitive needs.

Although homeostasis has explained how organisms maintain their internal

states within a desirable range, the problem of orchestrating different

homeostatic systems has not been fully explained yet. In the present paper,

we argue that attractor dynamics emerge from the competitive relation of

internal drives, resulting in the effective regulation of adaptive behaviors. To test

this hypothesis, we develop a biologically-grounded attractor model of

allostatic orchestration that is embedded into a synthetic agent. Results

show that the resultant neural mass model allows the agent to reproduce

the navigational patterns of a rodent in an open field. Moreover, when exploring

the robustness of our model in a dynamically changing environment, the

synthetic agent pursues the stability of the self, being its internal states

dependent on environmental opportunities to satisfy its needs. Finally, we

elaborate on the benefits of resetting the model’s dynamics after drive-

completion behaviors. Altogether, our studies suggest that the neural mass

allostatic model adequately reproduces self-regulatory dynamics while

overcoming the limitations of previous models.
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Introduction

As 19th-century physiologists Claude Bernard and Ivan Pavlov proposed, living

systems are generally characterized by their ability to self-regulate (Bernard, 1865; Pavlov,

1955). Through self-regulation, an organism ensures its fitness by adjusting its inner

processes relative to external perturbations (Papies and Aarts, 2016), in turn, assisting

self-maintenance (i.e., Autopoiesis) (Maturana and Varela, 1991). One aspect of self-

regulation is homeostasis, which describes the process of maintaining an internal state

within a desirable range as proposed by Cannon (Cannon, 1939). Once external

perturbations produce a deviation from the desirable range, a homeostatic error

arises, driving a proportional error-correcting response to restore balance in the

system. This process would be later formalized as a feedback control loop by Norbert

Wiener (Wiener, 1948), father of cybernetics. However, the homeostatic control of a
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single need is insufficient to ensure fitness since living organisms

need to maintain a rather large set of internal needs with

dynamically varying priorities from electrolysis to temperature

and oxygenation. To overcome this and other gaps of

homeostasis in explaining self-regulation, the notion of

allostasis aims to capture the stability of the integrated self

rather than its parts.

Allostasis transcends the constancy imposed by homeostasis

by aligning all organism’s internal parameters with the

environmental demands and opportunities (Sterling, 1988). In

its broad conceptualization, allostasis targets stability by

integrating many dynamic regulatory principles (Sterling,

2020). For this reason, we differentiate three complementary

and coupled levels of allostasis. First, allostatic orchestration

allows the agent to rapidly rank its internal needs based on

priorities, urgencies, and opportunities. Second, predictive

allostasis leverages environmental regularities to learn

associations between external events and internal states,

supporting anticipatory allostatic orchestration and future

homeostatic risks. Finally, contextual allostasis benefits from

goal-oriented learning mechanisms to enrich self-regulatory

strategies with spatio-temporal information, in turn facilitating

anticipatory behavioral strategies. Hence, we consider that in the

mammalian brain allostatic regulation of action is organized in a

multi-layered architecture following the Distributed Adaptive

Control (DAC) theory (Verschure, 2012, 2016).

While nowadays, allostasis is increasing in popularity (2010:

2,584 citations versus 2021:12549 citations, resource: Scopus),

most of the latest computational models on allostasis focus on

exploring the advantages of its predictive component (Sterling,

2012). Paradoxically, some models return to the one-single-need

problem of homeostasis (Tschantz et al., 2022). In addition, the

concept of allostasis has not explained the computational

mechanisms by which individuals achieve stability by

orchestrating different homeostatic systems. The divergent

modeling approaches adopted by the few computational

studies addressing allostasis demonstrate the lack of consensus

when determining the fundamental principles behind allostatic

orchestration.

In 2010, Sanchez-Fibla et al. developed what, to our

knowledge, is the first computational model of allostatic

orchestration (Sanchez-Fibla et al., 2010). The model

emulated rodent behavior and physiological states in an

open field test (Gould et al., 2009) with simulated and

physical robots. This model proposed that the animal’s

behavior resulted from the interaction between two internal

needs: Security, which is fulfilled in one of the arena’s corners

representing the rodent’s home base, and arousal, which

would be higher in the center of the arena given the

maximum exposure of the animal at that location.

However, although reproducing the animal’s overall

trajectory pattern and occupancy preferences, the model

did not elaborate on the neuroscience supporting allostasis.

A more recent model bases the optimal selection of

regulatory behaviors on maximizing a subsequent reward

(Laurençon et al., 2021). This deployment of a reward-

based allostatic model builds on the premises of

homeostatic reinforcement learning (HRL) (Keramati and

Gutkin, 2014). HRL represents a major refinement of

traditional reinforcement learning theories grounding

learning protocols on the individual’s internal state. HRL

successfully explains effects in animal behavior such as

alliesthesia, namely, the fluctuations in reward value during

resource acquisition (Cabanac, 1971). Still, although HRL

leverages temporal and spatial information to improve the

self-regulatory strategy, this approach makes a

complementary learning process critical for solving the

allostatic orchestration problem.

Finally, a third approach suggests that allostatic orchestration

emerges frommotivational conflict solved via attractor dynamics

(Jimenez-Rodriguez et al., 2020).In this approach, the attractor

dynamics implement competition through cross-inhibition

(Usher and McClelland, 2001; Marshall et al., 2015). This

framework supports the idea that attractor dynamics can

underlie the optimal selection of regulatory behavior and

explained their duration and latency. However, an explanation

of how neural correlates of internal needs’ implement such

competing dynamics is unclear.

Grounding the design principles of a model of allostasis in

state-of-the-art neuroscience constitutes a pending task for

previous modeling approaches that have largely relied on

algorithmic solutions. We suggest that novel approaches can

overcome this challenge by focusing on the core behavior systems

of the mammalian brain (Merker, 2013; Verschure, 2016).

Interoception of physiological needs such as hydration,

nutrition, thermoregulation, or sleep is generally attributed to

distinct specialized hypothalamic nuclei (Strecker et al., 2002;

Blouet and Schwartz, 2010; Nakamura, 2011; Zimmerman et al.,

2017). In contrast, other psychological needs (e.g., social

interaction) depend on more distributed brain networks (Lee

et al., 2021). Importantly, recent studies suggest that these nuclei,

and so the internal needs they represent, are not independent of

each other but hold a competing relationship through inhibitory

interactions (Burnett et al., 2016; Osterhout et al., 2022; Qian

et al., 2022). This competition between internal drives could serve

as the basis of allostatic orchestration by imposing a winner-take-

all mechanism represented as attractor dynamics. Thus,

irrelevant drives are suppressed, and the singleness principle

of action is supported (Sherrington, 1906). This research

literature suggests that an attractor-based approach is suitable

for modeling allostasis.

In contexts where animals constantly self-regulate multiple

internal needs, decision-making could be hampered by attractor

forces sustained after drive-completion behaviors. Indeed, in vivo

studies suggest that cortical areas involved in decision-making

operate in a critical regime (close to a phase transition) (Ma et al.,
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2019) that occasionally evolves to supercriticality (saturated

population response), a regime that supports effective

information transmission (Li et al., 2019). Nonetheless, how the

system returns to criticality from a supercritical regime is poorly

understood. The paraventricular hypothalamic nucleus (PVH) is a

good candidate to inhibit the main interoceptive nuclei, recover

their basal population activity after drive-completion behaviors,

and create the initial conditions for the next cycle of allostatic

orchestration. From one side, PVH mediates many diverse

motivational functions, including thirst (Zimmerman et al.,

2017), hunger (Blouet and Schwartz, 2010), and

thermoregulation (Nakamura, 2011). Conversely,

corticotrophin-releasing hormone (CRH) neurons in the PVH

are suggested to be sensitive toward reward acquisition.

Specifically, PVH CRH neurons get inhibited during drive-

completion behaviors, representing a potential source of global

inhibition to the rest of hypothalamic interoceptive nuclei (Yuan

et al., 2019). In this research work, we model this form of decision

reset by applying general inhibitory inputs to the excitatory

populations once an internal need has been satisfied.

FIGURE 1
Performance of the neural mass allostatic model in an open field. Two gradients represent the areas where the two internal needs, arousal (red)
and security (green), can be fulfilled (top-left). The agent partially observes those gradients through local sensation (top-middle). Local sensation
allows the agent to adjust its actions to ascend/descend the gradients and detect when the observer’s current position is in the vicinity of the
resource area (i.e., the peak of the gradient). If the agent is not close enough to the resource area, the internal state related to that resource
keeps declining, as the security actual state (aS) is doing in this figure (top-right). In contrast, if the agent occupies the peak of the gradient, the
internal state approximates the desired state (dS), as shownwith arousal. The aSs and dSs are compared, creating a homeostatic error (top-right) that
will input their respective excitatory pools in the neuralmassmodel (middle-right). The level of competition is defined by the ratio ofmutual inhibition
(orange interneurons) and shared feedback inhibition (blue interneurons). Finally, the firing rate of each excitatory population provides the agent with
the corresponding drives given its internal states.
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In the following sections, we will describe a novel neural mass

model of allostatic orchestration grounded on the interoceptive

mechanisms of the mammalian brain. As in (Sanchez-Fibla et al.,

2010), the model will be embedded in an agent endowed with a

so-called core behavior system (CBS) (Merker, 2013; Verschure,

2016). In other words, besides sensing its internal environment, a

competence attributed to the hypothalamus (Strecker et al., 2002;

Blouet and Schwartz, 2010; Nakamura, 2011; Zimmerman et al.,

2017), the agent can orientate in an external environment and

perform basic navigation based on an appetitive-aversive axis,

cognitive functions attributed to the superior colliculus and

the zona incerta-periaqueductal gray axis, respectively. The

resultant model is tested in both static and dynamic

environments. In the static condition, we aim to elucidate

if our model can faithfully replicate both previous models of

allostatic control and rodent behavior in an open field test

(Gould et al., 2009). In the dynamic environment, we will

further explore the robustness of our model when

environmental opportunities to satisfy internal needs

decrease over time. Finally, we will analyze how inducing

subcritical dynamics after drive fulfillment facilitates switches

in self-regulatory strategies.

Materials and methods

To better understand the potential of competing dynamics

between internal drives in facilitating need orchestration and

stability of the self, we built a novel allostatic model grounding

its design on contemporary research literature. Consequently,

a neural mass model was built incorporating two distinct

populations sensitive to homeostatic markers while holding

a competing relationship (Figure 1). Aiming for convergent

validation, we equipped a synthetic agent with this

biologically-constraint model and analyzed its ability to

defend its internal states by navigating an external

environment.

Homeostatic systems

Assuming that living organisms have interoceptive

capabilities to assess their internal state, we conceptualized

each internal need as a homeostatic mechanism. Here, actual

and desired states are compared providing a measure of

homeostatic error (that is, hEi = |dSi − aSi|). Importantly,

homeostatic systems have no power to provide regulatory

responses by themselves. Instead, they bias those behaviors by

constantly feeding the neural mass allostatic model with

homeostatic errors (Figure 1).

The transition between actual internal states responded to

the following dynamical law,

aSi t( ) � aSi t − 1( ) − dRi t( ) + rIi t( ) (1)
where aSi(t − 1) is the actual state of the homeostatic system i

in the immediate previous timestep, dRi(t) corresponds to the

decay rate applied to each homeostatic system at time t, and

rIi(t) represents the resource impact at time t. Importantly,

resource impact will be 0 unless the agent is in the vicinity of

the resource. By applying different decay factors and resource

impacts, internal states can evolve with different temporal

dynamics.

This dynamical law, similarly applied in (Jimenez-Rodriguez

et al., 2020), notably differs from the methods applied in

(Sanchez-Fibla et al., 2010), where the agent drew its internal

states directly from gradients mapped onto the two-dimensional

arena.

The neural mass allostatic model

Wilson-Cowan equations modified as in (Amil and

Verschure, 2021) were used to model two need-sensitive

neural populations (Figure 1). This modification allowed to

account for mutual and shared feedback inhibition held

between the excitatory populations, as follows:

τ
dD1 t( )
dt

� −D1

+ f w+D1 + hE1 − Qw−D2 − 1 − Q( )w�f D1 +D2( )( )
+ σξ t( )

(2)
τ
dD2 t( )
dt

� −D2

+ f w+D2 + hE2 − Qw−D1 − 1 − Q( )w�f D1 +D2( )( )
+ σξ t( )

(3)
where f(x) is the logistic f − hEi function,

f x( ) � Fmax

1 + e − x−θ( )
k

(4)

In these equations, τ is the time constant determining the

timescale of population dynamics. Di is the drive magnitude

represented as the mean firing rate of the excitatory population i.

w+, w−, and w= are the weights for recurrent connections within

the excitatory population, mutual inhibition, and feedback

inhibition, respectively. Q represents the mutual/feedback

inhibition ratio, a variable that allows for inducing a

controlled level of competition. σ and ξ are the variance and

magnitude of Gaussian noise provided to the excitatory

populations (See Supplementary Figures S1–S4 for Q and

noise parameter search). Finally, Fmax, k, and θ are the

maximum firing rate, gain, and threshold parameters of the

f − hEi logistic curve respectively (Eq. 4).
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Orientation

Methods enabling the orientation and navigation of the

synthetic agent in the arena are based on (Sanchez-Fibla et al.,

2010). In both conditions (static and dynamic environments), we

served from three-dimensional gradients to represent the location of

resources fulfilling specific internal needs. Notably, gradients are

used solely to support navigation, and internal states are not directly

linked to the agent’s location in the arena, as in the original study.

Instead, internal states follow their dynamics, as explained above.

The decision to use gradient-based methods for navigation is

supported by representations of future navigational goals in the

orbitofrontal cortex (Basu et al., 2021).

We implemented a partially observable environment by

providing the agent with local sensations of the gradient areas

surrounding its position. The local sensation was divided into

four quadrants (Figure 1) to allow goal-directed-like navigation.

By observing differences between the upper horizontal quadrants

(q0i and q1i ), H
sign
i controlled the agent’s orientation. ADsign

i

implements an appetitive-aversive behavioral axis (gradient

ascent/descent) by comparing agent (aGL) and resource

gradient location (rGL); understanding aGL as the mean

gradient value between the four quadrants and rGL as the

gradient value at its peak.

Hsign
i �

1 if q0i < q1i − th
−1 if q0i > q1i + th
0 otherwise

⎧⎪⎨⎪⎩ (5)

ADsign
i �

1 if aGL0
i < rGL1

i − th
−1 if aGL0

i > rGL1
i + th

0 otherwise

⎧⎪⎨⎪⎩ (6)

Internally-driven navigation

Outputs of the excitatory populations of the neural mass

allostatic model are integrated with Hsign
i and ADsign

i

orientational signals to result in internally-driven goal-

oriented-like navigation, following:

Navigation � c + ∑nGrad
i�1

Hsign
i · ADsign

i · Excoutputi
⎛⎝ ⎞⎠ · 1

nNeeds

(7)
where c is a constant ensuring a default action going forward,

Excoutputi accounts for the output of the excitatory population i of

the neural mass allostatic model, and 1
nNeeds is a normalization

factor given the number of implemented needs.

Experimental design

A first study was conducted to evaluate the competence of the

neural mass allostatic model in replicating rodent behavior

during an open field test. In this study, a synthetic agent

navigated a static simulated environment to defend its internal

states of security and arousal. 50 experiments were carried out to

analyze navigational patterns consistency and the internal

dynamics of the agent along the simulation.

In the second study, the synthetic agent endowed with the

neural mass allostatic model incorporated two distinct internal

needs: thermoregulation and hydration. A dynamic simulated

environment allowed us to assess the agent’s ability to adapt its

navigation according to environmental opportunities.

50 experiments were carried out to analyze the consistency of

the navigational patterns, the internal dynamics taking place

along the simulation, and the relationship between these internal

dynamics and environmental changes.

In both the first and the second studies, the agent must

constantly decide what internal drives should base its navigation

on to maximize stability. This continuous decision-making

condition represents a major difference from the original

work in which the model’s design is based on (Amil and

Verschure, 2021) and is a novel challenge to overcome.

Therefore, a third study was conducted to evaluate the

advantages of inducting subcritical dynamics after need

resolution. As in the second study, a synthetic agent navigated

a dynamic environment to defend its internal states of hydration

and thermoregulation. 50 experiments were conducted to assess

the advantages of applying global inhibition after drive-

completion behavior compared with the second study, where

we did not consider such an effect.

Arenas

The arenas simulated in static and dynamic conditions were

designed as two-dimensional 200 × 200 matrices incorporating

one gradient per internal need. These gradients represented the

location in the two-dimensional space where each internal need

can be satisfied.

In the first study, we built a static environment following the

gradient design of the open field test used in (Sanchez-Fibla et al.,

2010). Thus, we implemented two gradients mapping the

opportunities to calm security and arousal drives. The security

gradient was designed as a Gaussian gradient with its peak in the

top-left corner, representing the home base location. Meanwhile,

the arousal gradient was designed with its peak in the center of

the arena, representing the animal’s exposure level. The

configuration of these gradients aimed to replicate rodent

navigational patterns, understood as a preference to occupy

the home base and to explore the arena close to the walls

(i.e., thigmotaxis) with occasional transversals (Figure 2A).

In the second and third studies, a dynamic environment

implemented two gradients to map the opportunities to satisfy

thermoregulation and hydration internal needs. We used a

similar static gradient to security in the first study to
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represent the thirst-calming resource—nonetheless, the gradient

representing the area where internal temperature increases

changed over time. Designed as a two-dimensional sigmoidal

function, the area providing temperature was large at the

beginning of the simulation. However, as the simulation

evolved, the x-intercept of our sigmoidal gradient increased,

shortening the temperature gradient’s peak area and

establishing a larger gap between the two resource locations

(Figure 2B). Thus, at the experiment’s end, the temperature

gradient’s peak area only covers a short area of the arena at

its bottom limit.

Efficiency, fairness and stability

To further understand the relationship between internal and

external variables, in the second and third studies, we compute

three measures traditionally used in game theory (Binmore, 2005;

Hawkins and Goldstone, 2016; Freire et al., 2020). Efficiency

provides a measure of how good the system is in maintaining the

internal states close to their setpoints. Fairness designates

whether there is any bias in the engagement of drives. Lastly,

stability, computed as the mean square homeostatic error,

comprises both the magnitude and the difference between

homeostatic errors to provide a general measure of the agent

performance.

To inform about the evolution of these measures throughout

the experiment, they were calculated for every 1/100 faction of

the duration of the experiment. Hence, mean internal and desired

states only represented those elements in the considered fraction

across the 50 experiments.

Efficiency � meanT +meanH

nNeeds
(8)

Fairness � |meanT −meanH|
nNeeds

(9)

Stability � 1 − ∑nGrad
i�1

meanISi −meanDSi( )2 (10)

Results

Open field test

In the first study, as previous works did (Sanchez-Fibla et al.,

2010), we aim to reproduce the navigational patterns of a rodent

in an open field test. As in rodents, the trajectories of our agent

showed preferences toward the walls (thigmotaxis) and the top-

left corner (home base). At the same time, occasional transversals

explored the center of the arena (Figure 3A, Supplementary

Figure S5). The observed trajectory patterns resulted from the

competition between two drives with different temporal

FIGURE 2
Gradients representing environmental opportunities to satisfy internal needs in each condition. (A) Arousal and security gradients were
designed to replicate rodent behavior in an open field test. To represent themaximal level of exposure when exploring the center of the arena, we set
the peak of the gradient in that location. Similarly, we used the peak of the security gradient to represent the home base location in one of the
corners. (B)Hydration and temperature gradients were designed to test the performance of our model in a dynamic setting. Here, the hydration
gradient was static, with its peak in one of the corners. In contrast, the temperature gradient changed over time. To do so, we built the gradient as a
two-dimensional sigmoidal function where its x-intercept increased as the simulation evolved. Thus, the peak area where internal temperature
increases shrunk, and the intermediate area between gradients increased over time.
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dynamics. Fast-decaying security made the agent constantly

revisit its home base, while slow-decaying arousal allowed the

agent to occasionally visit the center of the arena (Figure 3B).

Competing dynamics between the two internal needs emerged

when feeding the excitatory populations of our neural mass

model with the corresponding homeostatic errors, allowing

the dominant attractor to inhibit its opponent, thus resolving

drive orchestration (Figure 3C). After carrying out

50 experiments, agent trajectories showed consistency in their

occupancy pattern: a clear preference to visit the home base,

navigate close to the walls, and avoid the center of the arena

(Figure 3D). The distribution of the internal states during those

50 simulations was very informative. On the one hand, the agent

maintained a high level of security during a large part of the

simulations (Figure 3E). On the other hand, the state of arousal

followed a bimodal distribution indicating the agent was either

high or low aroused during the experiment. This bimodal

distribution can be interpreted as follows: First, while the

agent pursues security, an aversion toward the center of the

arena induces low states of arousal. Then, low internal states, in

turn, promote transversals that fully replenish the arousal of the

agent (Figure 3F). Finally, attractor dominances, i.e., the

simulation period where the firing rate of one excitatory

neural pool exceeded the firing rate of the other, showed a

balanced activation of both attractors with a slight bias toward

arousal (Figure 3G).

Dynamic environment

In the second study, we assess the robustness of our novel neural

mass allostatic model in a dynamic environment. In this condition,

we observe that the agent’s trajectory accurately tracks the

environmental gradients (Figure 2B) occupying their peak areas

FIGURE 3
Replication of rodent behavior in an open field test. (A) Agent’s trajectory tracked along a complete experiment. The red dot represents starting
location, randomized across experiments. (B) Agent’s internal state dynamics during a complete experiment (same as a). (C) Firing rates of the
excitatory populations configuring the neural mass allostatic model during a complete experiment (same as a). (D) Occupancy map across
50 experiments with normalized values. (E) Distribution of security states across 50 experiments. (F) Distribution of arousal states across
50 experiments. (G) Mean attractor dominance across 50 experiments.

Frontiers in Robotics and AI frontiersin.org07

Rosado et al. 10.3389/frobt.2022.1052998

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1052998


(Figure 4A, Supplementary Figure S6). Specifically, when dividing

the complete experiment into five periods of equal length, we can

observe that the agent’s trajectory constantly adapted to the changes

in the temperature gradient (Figure 4B). Thus, when initializing the

experiment (period 1), the peak area of the temperature gradient

covers a large part of the arena, and the agent navigates more

extensively. However, in the last period (period 5), the peak area is

reduced to a thin region close to the bottom border, and the agent’s

navigation adapts to it. This trajectory pattern was consistent across

the 50 experiments, as the occupancy maps suggest (Figure 4C).

Spearman correlation analysis indicated that the mean Y axis

position of the agent during thermoregulation highly correlated

with the temperature gradient’s slope location (r(498) = 0.96, p <
0.001), confirming the agent’s trajectory adaptation. Once again,

attractor dominance was balanced (Figure 4D), suggesting that

although the environment asymmetrically reduces the

opportunities to fulfill the agent’s internal needs, the neural mass

model imposes a well-balanced competition without neglecting any

of the drives. Indeed, the mean internal state across the experiment

shows that thermoregulation and hydration levels are well

maintained without biases (Figure 4E), and both are equally

correlated with the environmental temperature (mean value of

the temperature gradient) (Figure 4F). To understand in detail

the relationship between internal states and environmental

dynamics, we studied this relationship in terms of efficiency,

fairness, and stability metrics. Correlating these measures with

the environmental temperature, we observed that efficiency

strongly depends on the opportunities to fulfill internal needs

FIGURE 4
Agent’s performance in a dynamic environment. (A) Agent’s trajectory tracked along a complete experiment. The red dot represents starting
location, randomized across experiments. (B) Agent’s trajectory tracked along a complete experiment (same as a) divided into five periods. (C)Map of
occupancy divided into five periods. Color crosses illustrate the mean position during hydration (blue) and thermoregulation (orange) attractor
dominance. The red dashed line illustrates the variable slope location of the dynamic temperature gradient. (D) Mean attractor dominance (E)
Mean agent internal state dynamics and environmental temperature. The shaded area indicates the internal state variance. (F) Mean internal state
dynamics correlated with the environmental temperature. (G) Efficiency dynamics correlated with the environmental temperature. (H) Fairness
dynamics correlated with the environmental temperature. (I) Stability dynamics correlated with the environmental temperature. Aggregated results
from 50 experiments.
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(Figure 4G). This result was expected, given the environmental

dynamics. When the environmental temperature decreases

(i.e., temperature gradient peak shrinks), gradients’ peak areas are

more distant, forcing the agent to navigate a larger area where its

internal states decrease. However, environmental changes do not

affect the fairness level (Figure 4H), validating that the balance of

attractor dominance is defended even when receiving asymmetric

influences from the environment. Lastly, stability reports difficulties

minimizing the mean square homeostatic error as temperature

decreases (Figure 4I). According to our previous analysis, this

result would be better explained by environmental influences on

efficiency than fairness.

Criticality-driven decision-reset after
decision accomplishment

Finally, a third study explores the potential limitations of

attractor-based allostatic models. Specifically, by inhibiting the

model’s excitatory neural populations (once drive-completion

behaviors have been performed), we explore whether sustained

attractor forces could hamper individual self-regulation in study

2. Results showed that agents widely benefit from inducing a

critical regime to set the initial conditions for each cycle of

allostatic orchestration. Specifically, mean internal states along

the simulation (calculated every 1/100 fraction of the

experiment) across 50 simulations indicated that agents

maintained their internal states better when applying decision-

reset (Inhibition). (Figure 5A). Consequently, increased internal

states also resulted in increased efficiency, fairness, and stability

scores. A Mann-Whitney test indicated statistically significant

differences when comparing the two conditions in each measure,

U(NNo−inhibition = 100, Ninhibition = 100), p < 0.001). Furthermore,

this enhanced performance occurred in larger alignment with the

environmental temperature (Figure 5B), which indicates the

agent’s internal states decreased when the scarcity of resources

prevented a better self-regulatory strategy. Altogether, these

results suggest that attractor forces sustained after drive-

completion behaviors hampered allostatic orchestration, and

criticality-driven decision-reset provides an effective

mechanism to facilitate a more flexible decision-making process.

Discussion

Previous computational works have contributed to explaining

animal self-regulatory behavior (Sanchez-Fibla et al., 2010; Keramati

and Gutkin, 2014; Jimenez-Rodriguez et al., 2020). However, these

models have not been validated in a broad range of taskswith emphasis

on their robustness in the face of varying task conditions, while in

parallel, their grounding in the brain mechanisms underlying allostatic

orchestration is not fully elucidated. We hypothesize that attractor

dynamics originate from the competing relation between different

hypothalamic interoceptive nuclei and their loops through the zona

incerta, which are further perturbed by the superior colliculus (input

and orienting control), and the central gray for triggering reactive

species-specific behaviors. To test the adequacy of allostatic attractor

dynamics in orchestrating internal needs, we built a biologically-

constrained computational model of allostatic orchestration. The

resultant model implements competition between internal drives by

comprising two drive-sensitive excitatory neural populations that apply

mutual and feedback inhibition. To allow a synthetic agent to navigate

a virtual external environment based on its internal state, we endowed

it with the ability to orientate and perform basic appetitive-aversive

navigational behaviors. In this manner, the hypothalamus, superior

colliculus, and zona incerta-periaqueductal gray axis are represented in

ourmodel, providing a first approximation of the core behavior system

(Merker, 2013; Verschure, 2016).

FIGURE 5
Decision-reset supports the agent’s internal stability. (A) Comparison of temperature and hydration internal states and efficiency, fairness, and
stability scores between no-inhibition (study 2) and decision-reset (study 3) conditions. (B) Correlation between internal states and game theory
measures with environmental temperature for both no inhibition and decision-reset conditions.
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Deploying the allocentric synthetic agent in a virtual

environment, we tested the competencies and robustness of

the neural mass allostatic model. Specifically, our model

allowed the agent to 1) navigate an open field reproducing

rodent behavior, 2) adapt its navigation to environmental

changes without neglecting any internal needs, and 3) benefit

from criticality reset to optimize the interoceptive-driven

decision-making process. Altogether, our results supported

our hypothesis empirically validating attractor dynamics as an

inherent feature of the hypothalamic circuitry that can underlie

robust allostatic orchestration. However, the attractor dynamics

that emerge in our model need to be further validated by

physiological data, ideally by direct neural recordings of the

hypothalamic interoceptive nuclei. Lacking ground truth

benchmarking data, the temporal dynamics of the homeostatic

markers employed in this work were arbitrarily set, representing

an additional methodological limitation. Moreover, now that we

have assessed the robustness and fidelity of the model to track

environmental dynamics, we need to assess its scalability.

Additionally, our work opens new questions in the quest to

understand self-regulation. For instance, a better understanding

of the interplay between stress and risky internal states is needed.

In our studies, the level of competition between neural

populations remained fixed at an optimal point. However, the

ratio between mutual and shared inhibition could be modulated

by stress markers such as acetylcholine (Kawaguchi, 1997). How

stress can modulate the competition held between internal drives

is a question that remains unanswered. Another open question is

how allostatic orchestration interplays with predictive and

contextual allostasis to assist each other. We propose to

structure allostasis as a cognitive architecture following the

four organizational layers of the Distributed Adaptive Control

theory of mind (Verschure, 2012). Here, a first somatic level

endows the agent with predefined internal needs. Then, the

reactive level rapidly orchestrates behaviors directed to calm

the most salient drives. In parallel, the adaptive layer learns

associations between external and internal events to predict

future homeostatic errors and solve them in anticipation.

Lastly, a contextual layer enriches the representation of the

self-regulatory strategies and enables their memorization.

Finally, contributions to the field of allostasis can expand the

boundaries of self-regulation in its understanding and

implementation. On the one hand, drives and motivations

should also respond to a hierarchical organization that

encodes not only priority but also abstraction, virtualization,

and replaceability of the drive (Verschure, 2016). Maslow’s

hierarchy was a first approximation to capture this

organization (Maslow, 1943); however, 7 decades later, this

theory has not been further advanced in the face of new

insights into the dynamics of self-regulation. How different

needs within the same priority level organize or how new

needs arise and substitute previous ones are questions not

answered yet. On the other hand, further investigation could

shed light on how a hierarchical organization of needs fits with a

neural mass model. Secondly, general-purpose robot

instantiations can benefit greatly from the self-regulatory

principles described here. Previous works elaborated on how a

multi-agent robotic recycling plant can implement homeostatic

and allostatic principles to self-organize at both single-agent and

large-scale levels (Rosado and Verschure, 2020). Similar

architectures can be designed and implemented to advance a

variety of scenarios where robot autonomy is key such as robot

delivery or space exploration. Indeed, autonomy in artificial

intelligence and robotics places the question of self-regulation

at the center of the research of synthetic embodied cognition and

consciousness.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Author contributions

OGR, AFA, and ITF designed the protocol. OGR conceived

and conducted the experiments, analyzed the results, and wrote

the manuscript. PV initiated and supervised the research. All

authors reviewed and approved the manuscript.

Funding

This study was supported by Counterfactual Assessment and

Valuation for Awareness Architecture—CAVAA (European

Commission, EIC 101071178) and Hybrid Human-Robot

RECYcling plant for electriCal and eLEctRonic

equipment—HR-RECYCLER (Horizon 2020, project ID:

820742).

Acknowledgments

We thank our colleagues from the Synthetic, Perceptive,

Emotive and Cognitive Systems Lab (SPECS) who provided

valuable feedback during the entire conception of the present

work. We would also like to show our gratitude to those students

from the Cognitive Systems and Interactive Media master

(University Pompeu Fabra, Barcelona) who showed interest in

the research line and contributed indirectly with parallel research

projects. Last but not the least, we are also grateful to the

reviewers for taking the time and effort to review the

manuscript and provide such valuable comments and

suggestions.

Frontiers in Robotics and AI frontiersin.org10

Rosado et al. 10.3389/frobt.2022.1052998

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1052998


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frobt.2022.

1052998/full#supplementary-material

References

Amil, A. F., and Verschure, P. F. (2021). Supercritical dynamics at the edge-of-
chaos underlies optimal decision-making. J. Phys. Complex. 2, 045017. doi:10.1088/
2632-072x/ac3ad2

Basu, R., Gebauer, R., Herfurth, T., Kolb, S., Golipour, Z., Tchumatchenko, T.,
et al. (2021). The orbitofrontal cortex maps future navigational goals. Nature 599,
449–452. doi:10.1038/s41586-021-04042-9

Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Paris,
France: J. B. Baillière et fils.

Binmore, K. (2005). Natural justice. Oxford: Oxford University Press.

Blouet, C., and Schwartz, G. J. (2010). Hypothalamic nutrient sensing in the
control of energy homeostasis. Behav. Brain Res. 209, 1–12. doi:10.1016/j.bbr.2009.
12.024

Burnett, C. J., Li, C., Webber, E., Tsaousidou, E., Xue, S. Y., Brüning, J. C., et al.
(2016). Hunger-driven motivational state competition. Neuron 92, 187–201. doi:10.
1016/j.neuron.2016.08.032

Cabanac, M. (1971). Physiological role of pleasure: a stimulus can feel pleasant or
unpleasant depending upon its usefulness as determined by internal signals. Science
173, 1103–1107. doi:10.1126/science.173.4002.1103

Cannon,W. B. (1939). The wisdom of the body. New York, NY:W.W. Norton and
company INC.

Freire, I. T., Moulin-Frier, C., Sanchez-Fibla, M., Arsiwalla, X. D., and
Verschure, P. F. (2020). Modeling the formation of social conventions from
embodied real-time interactions. PloS one 15, e0234434. doi:10.1371/journal.
pone.0234434

Gould, T. D., Dao, D. T., and Kovacsics, C. E. (2009). The open field test. Mood
and anxiety related phenotypes in mice, 1–20. Berlin, Germany: Springer
Science+Business Media.

Hawkins, R. X., and Goldstone, R. L. (2016). The formation of social conventions
in real-time environments. PloS one 11, e0151670. doi:10.1371/journal.pone.
0151670

Jimenez-Rodriguez, A., Prescott, T. J., Schmidt, R., and Wilson, S. (2020). “A
framework for resolving motivational conflict via attractor dynamics,” in
Conference on biomimetic and biohybrid systems (Germany: Springer),
192–203.

Kawaguchi, Y. (1997). Selective cholinergic modulation of cortical gabaergic
cell subtypes. J. neurophysiology 78, 1743–1747. doi:10.1152/jn.1997.78.3.
1743

Keramati, M., and Gutkin, B. (2014). Homeostatic reinforcement learning for
integrating reward collection and physiological stability. Elife 3. doi:10.7554/elife.
04811

Laurençon, H., Ségerie, C.-R., Lussange, J., and Gutkin, B. S. (2021). Continuous
homeostatic reinforcement learning for self-regulated autonomous agents. arXiv
preprint arXiv:2109.06580.

Lee, C. R., Chen, A., and Tye, K. M. (2021). The neural circuitry of social
homeostasis: Consequences of acute versus chronic social isolation. Cell 184,
1500–1516. doi:10.1016/j.cell.2021.02.028

Li, M., Han, Y., Aburn, M. J., Breakspear, M., Poldrack, R. A., Shine, J. M., et al.
(2019). Transitions in information processing dynamics at the whole-brain network
level are driven by alterations in neural gain. PLoS Comput. Biol. 15, e1006957.
doi:10.1371/journal.pcbi.1006957

Ma, Z., Turrigiano, G. G., Wessel, R., and Hengen, K. B. (2019). Cortical circuit
dynamics are homeostatically tuned to criticality in vivo. Neuron 104, 655–664.e4.
doi:10.1016/j.neuron.2019.08.031

Marshall, J. A., Favreau-Peigné, A., Fromhage, L., Mcnamara, J. M., Meah, L.
F., and Houston, A. I. (2015). Cross inhibition improves activity selection when
switching incurs time costs. Curr. Zool. 61, 242–250. doi:10.1093/czoolo/61.
2.242

Maslow, A. (1943). A theory of human motivation. psychological review no
50. Washington, DC: American Psychological Association.

Maturana, H. R., and Varela, F. J. (1991). Autopoiesis and cognition: The
realization of the living, 42. Germany: Springer Science & Business Media.

Merker, B. (2013). The efference cascade, consciousness, and its self: Naturalizing
the first person pivot of action control. Front. Psychol. 4, 501. doi:10.3389/fpsyg.
2013.00501

Nakamura, K. (2011). Central circuitries for body temperature regulation and
fever. Am. J. Physiology-Regulatory, Integr. Comp. Physiology 301, R1207–R1228.
doi:10.1152/ajpregu.00109.2011

Osterhout, J. A., Kapoor, V., Eichhorn, S. W., Vaughn, E., Moore, J. D., Liu, D.,
et al. (2022). A preoptic neuronal population controls fever and appetite during
sickness. Nature 1–8, 937–944. doi:10.1038/s41586-022-04793-z

Papies, E. K., and Aarts, H. (2016). Automatic self-regulation: From habit to goal
pursuit. Handbook of self regulation: Research, theory, and applications (New York:
Guilford Press).

Pavlov, I. P. (1955). Selected works, 1. Russia: Foreign Languages Publishing
House.

Qian, S., Yan, S., Pang, R., Zhang, J., Liu, K., Shi, Z., et al. (2022). A temperature-
regulated circuit for feeding behavior. Nat. Commun. 13, 4229–4317. doi:10.1038/
s41467-022-31917-w

Rosado, O. G., and Verschure, P. F. (2020). “Distributed adaptive control: An
ideal cognitive architecture candidate for managing a robotic recycling plant,” in
Conference on biomimetic and biohybrid systems (Germany: Springer), 153–164.

Sanchez-Fibla, M., Bernardet, U., Wasserman, E., Pelc, T., Mintz, M., Jackson,
J. C., et al. (2010). Allostatic control for robot behavior regulation: a comparative
rodent-robot study. Adv. Complex Syst. 13, 377–403. doi:10.1142/
s0219525910002621

Sherrington, C. S. (1906). The integrative action of the nervous system, 35. New
Haven: Yale University Press.

Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology Behav.
106, 5–15. doi:10.1016/j.physbeh.2011.06.004

Sterling, P. (1988). “Allostasis: a new paradigm to explain arousal pathology,” in
Handbook of life stress, cognition and health. Hoboken, New Jersey: JohnWiley and
Sons.

Frontiers in Robotics and AI frontiersin.org11

Rosado et al. 10.3389/frobt.2022.1052998

https://www.frontiersin.org/articles/10.3389/frobt.2022.1052998/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.1052998/full#supplementary-material
https://doi.org/10.1088/2632-072x/ac3ad2
https://doi.org/10.1088/2632-072x/ac3ad2
https://doi.org/10.1038/s41586-021-04042-9
https://doi.org/10.1016/j.bbr.2009.12.024
https://doi.org/10.1016/j.bbr.2009.12.024
https://doi.org/10.1016/j.neuron.2016.08.032
https://doi.org/10.1016/j.neuron.2016.08.032
https://doi.org/10.1126/science.173.4002.1103
https://doi.org/10.1371/journal.pone.0234434
https://doi.org/10.1371/journal.pone.0234434
https://doi.org/10.1371/journal.pone.0151670
https://doi.org/10.1371/journal.pone.0151670
https://doi.org/10.1152/jn.1997.78.3.1743
https://doi.org/10.1152/jn.1997.78.3.1743
https://doi.org/10.7554/elife.04811
https://doi.org/10.7554/elife.04811
https://doi.org/10.1016/j.cell.2021.02.028
https://doi.org/10.1371/journal.pcbi.1006957
https://doi.org/10.1016/j.neuron.2019.08.031
https://doi.org/10.1093/czoolo/61.2.242
https://doi.org/10.1093/czoolo/61.2.242
https://doi.org/10.3389/fpsyg.2013.00501
https://doi.org/10.3389/fpsyg.2013.00501
https://doi.org/10.1152/ajpregu.00109.2011
https://doi.org/10.1038/s41586-022-04793-z
https://doi.org/10.1038/s41467-022-31917-w
https://doi.org/10.1038/s41467-022-31917-w
https://doi.org/10.1142/s0219525910002621
https://doi.org/10.1142/s0219525910002621
https://doi.org/10.1016/j.physbeh.2011.06.004
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1052998


Sterling, P. (2020). What is health?: Allostasis and the evolution of human design.
Cambridge: MIT Press.

Strecker, R., Nalwalk, J., Dauphin, L., Thakkar, M., Chen, Y., Ramesh, V., et al.
(2002). Extracellular histamine levels in the feline preoptic/anterior hypothalamic
area during natural sleep–wakefulness and prolonged wakefulness: an in vivo
microdialysis study. Neuroscience 113, 663–670. doi:10.1016/s0306-4522(02)
00158-6

Tschantz, A., Barca, L., Maisto, D., Buckley, C. L., Seth, A. K., and Pezzulo, G. (2022).
Simulating homeostatic, allostatic and goal-directed forms of interoceptive control using
active inference. Biol. Psychol. 169, 108266. doi:10.1016/j.biopsycho.2022.108266

Usher, M., and McClelland, J. L. (2001). The time course of perceptual choice: the
leaky, competing accumulator model. Psychol. Rev. 108, 550–592. doi:10.1037/
0033-295x.108.3.550

Verschure, P. F. (2012). Distributed adaptive control: a theory of the mind,
brain, body nexus. Biol. Inspired Cogn. Archit. 1, 55–72. doi:10.1016/j.bica.
2012.04.005

Verschure, P. F. (2016). Synthetic consciousness: the distributed adaptive
control perspective. Phil. Trans. R. Soc. B 371, 20150448. doi:10.1098/rstb.
2015.0448

Wiener, N. (1948). Cybernetics. New York: John Wiley & Sons.

Yuan, Y., Wu, W., Chen, M., Cai, F., Fan, C., Shen, W., et al. (2019). Reward
inhibits paraventricular crh neurons to relieve stress. Curr. Biol. 29, 1243–1251.e4.
doi:10.1016/j.cub.2019.02.048

Zimmerman, C. A., Leib, D. E., and Knight, Z. A. (2017). Neural circuits
underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469. doi:10.
1038/nrn.2017.71

Frontiers in Robotics and AI frontiersin.org12

Rosado et al. 10.3389/frobt.2022.1052998

https://doi.org/10.1016/s0306-4522(02)00158-6
https://doi.org/10.1016/s0306-4522(02)00158-6
https://doi.org/10.1016/j.biopsycho.2022.108266
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1016/j.bica.2012.04.005
https://doi.org/10.1016/j.bica.2012.04.005
https://doi.org/10.1098/rstb.2015.0448
https://doi.org/10.1098/rstb.2015.0448
https://doi.org/10.1016/j.cub.2019.02.048
https://doi.org/10.1038/nrn.2017.71
https://doi.org/10.1038/nrn.2017.71
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.1052998

	Drive competition underlies effective allostatic orchestration
	Introduction
	Materials and methods
	Homeostatic systems
	The neural mass allostatic model
	Orientation
	Internally-driven navigation
	Experimental design
	Arenas
	Efficiency, fairness and stability

	Results
	Open field test
	Dynamic environment
	Criticality-driven decision-reset after decision accomplishment

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


