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Industrial robots are versatile machines that can be used to implement

numerous tasks. They have been successful in applications where–after

integration and commissioning–a more or less static and repetitive

behaviour in conjunction with closed work cells is sufficient. In aerospace

manufacturing, robots still struggle to compete against either specialized

machines or manual labour. This can be attributed to complex or custom

parts and/or small batch sizes. Here, applicability of robots can be improved by

enabling collaborative use-cases. When fixed protective fences are not desired

due to handling problems of the large parts involved, sensor-based approaches

like speed and separation monitoring (SSM) are required. This contribution is

about how to construct dynamic volumes of space around a robot as well as

around a person in the way that their combination satisfies required separation

distance between robot and person. The goal was to minimize said distance by

calculating volumes both adaptively and as precisely as possible given the

available information. We used a voxel-based method to compute the robot

safety space that includes worst-case breaking behaviour. We focused on

providing a worst-case representation considering all possible breaking

variations. Our approach to generate the person safety space is based on an

outlook for 2D camera, AI-based workspace surveillance.
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1 Introduction

Our goal is to use the SSMmethod to implement collaborative applications that allow

humans and robots to work as spatially close to each other as possible. To achieve this, the

necessary safety distances should be determined as precisely as possible, uncertainties

should be minimized, and areas should be dynamically adapted to the situation. Many

original works around SSM implementations address one of the sub-problems: collision

or distance calculations Glogowski et al. (2019), robot control in terms of stopping or

avoiding Ubezio et al. (2021), workspace monitoring in terms of detecting and sensing

approaching objects or people Ferraguti et al. (2020). A good overview can be found in
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Miro et al. (2022). We are trying to work towards a feasible

approach for co-design of aspects. This mainly concerns the

computation of relevant spaces as well as the sensory workspace

monitoring with the help of cameras in a form that promotes the

interaction of the two aspects. With respect to the control of the

robot, we do not rely on any kind of avoidance behavior, which in

turn results in more complexity in the interaction with

approaching persons and can thus be a source of uncertainty.

Instead, we use the approach of stopping the robot as fast as

possible. This approach should be implemented by all other

behaviors anyway as a fallback possibility (failure of the

equipment during the safety-monitored avoidance movement),

whereby these systems can basically not be better in terms of

improving the cooperation with the human by further reduced

distances.

In aerospace manufacturing, the handling of large parts is a

common occurrence Caterino et al. (2021). There is also low

throughput compared to other industries. This leads to parts

being stationary for some time while work is taking place around.

A lot of work is carried out by human workers. When

introducing robot-based automation for some of the tasks, the

capability of close human-robot-collaboration and co-existence

is beneficial Costanzo et al. (2022), Meißner et al. (2018). When

reducing the overall robot speed is not desired, this leaves the

options of minimizing separation distance by eliminating

uncertainties, making it dynamic, and using capable sensors

(German Commission for Electrical, Electronic and

Information Technologies of DIN and VDE (2021)). Sensors

should then be able to monitor position and movement of the

persons in question in detail. Investigations of separation

distances using different approaches were covered in the past

Lacevic and Rocco (2010), Vicentini et al. (2014). More recent

work also tries to exploit advances in pattern detection and

recognition for safety applications Costanzo et al. (2022).

In the following section of this work we present a brief

analysis of a particular use-case of intelligent robotics applicable

to pre-assembly as well as final assembly of aircraft structures.

The use of both fixed as well as mobile robots are being

considered. The application is covering the fastening of HI-

LOK™ collars. Here, it is beneficial to employ human co-

workers in parallel with robots Caterino et al. (2021).

Next, we propose a method for the dynamic generation of

first spatial volume around the robot based on pre-planned

movement. This is a vital step for implementing a flexible and

safe SSM-system. The need for dynamic generation of separation

distance is also emphasized by the dynamic behaviour of the

robot using autonomously generated actions based on models

and environment perception.

In the final part, we discuss how to detect and monitor the

presence of persons in the vicinity using optical sensors. We

discuss the possibility of using artificial intelligence (AI) based

detection of humans using cameras. Furthermore, we present our

current approach to construct another spatial volume

representing the human based on a projection of the convex

hull of the image space silhouette onto the ground floor.

2 Analysis of a collaborative
application

When we consider safety of robotics systems, it is mandatory

to follow the principles laid out in the Machinery Directive EC

(2006). The risk assessment is therefore specific to a particular

implementation of a robot system, but contains reoccurring risks

and mitigation measures. A major source of risk are mechanical

hazards, like the collision of the robot with a person. Speed and

separation monitoring aims to mitigate that risk by preventing

the robot to contact a person close by while in motion. To better

understand safety requirements, and in particular to evaluate

implementations and possible improvements of speed and

separation monitoring, we considered several possible

implementations of the same application. We decided on the

fastening of HI-LOK™ collars as the application. We consider

this application because it is a common type of fastener used on

many different parts of the fuselage. Some are more difficult to

reach then others. Therefore it presents a suitable case for

combining the different strengths of human workers and

automatic solutions for working on the same product and in

conjunction with shared work spaces (Figure 1).

We considered three possible variants: A non-collaborative

implementation using fences (Figure 1C), a fixed robot with light

curtains (Figure 1A), and an autonomous mobile robot with

dynamic safety space (Figure 1B). The first variation would

employ a large robot or a robot with a workspace extension

via a linear unit in order to cover large shell pieces. It has no

further implications for SSM. The other two variations use a

small or medium sized robot which needs to be relocated

multiple times in order to cover a large part. The third

variation in particular would use a smaller type of robot

because the mobile platform can easily move between each

fastening step which in turn requires less reach of the actual

robot arm. Here, power and force limiting would also be a

strategy to mitigate collisions. In our case, SSM is still

preferable since it better covers a wider range of tool related

hazards, including non-mechanical ones. In this implementation,

the robot needs to be made autonomous. It can reposition itself

along the whole part as required based on situation dependent

decision making. A human worker follows along at a distance in

order to cover remaining work (parts not reachable for the

robot). This however, requires dynamic repositioning of

monitored safety zones. Furthermore, it is beneficial for the

separation between robot and co-worker to be as small as

possible in order for the worker to finish work shortly after

the robot. This also minimizes the risk of inadvertently triggering

safety stop by the worker. To summarize, the fully automated

version behind fences is cumbersome when it comes to moving
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the part in and out. The other two versions show, that it is

beneficial to reduce the necessary space between worker and

robot in order to cut total time required. This is because larger

separation distance results in less work to be done in parallel on

the same part.

3 Robot safety space generation

In our approach we split the separation distance in two parts:

“robot safety space” and “person safety space”. Both terms are not

to be confused with other terms found in the literature or in robot

manuals like “maximum space”, “operating space”, “restricted

space”, and so on. Here, robot safety space identification is the

task of calculating the volume of space that may be occupied by a

moving part of the robot at a certain point in time in case of

occurrence of a stop condition. For a typical time triggered

system this is aligned with activation times and is true for the

duration of the cycle time. The stopping motion can be described

by a swept volume. Similar swept volumes have been used for

ensuring safety of whole movements in the past Täubig et al.

(2011), but are usually used to cover a planned trajectory instead.

The volume includes also the tool and parts attached to the tool.

The robot safety space depends on the state of the robot, that is to

say, on its point in time on the executed trajectory. It also

depends on the performance characteristics of the equipment,

like reaction times and braking capabilities Marvel and Norcross

(2017). The contributing factors are laid out in the technical

specification ISO/TS 15066 ISO (2016). For SSM, it provides a

formula (Eq. 1) consisting of several summands for calculating

the minimum required distance between any human worker and

the robot system. It aims to stop the robot before an approaching

human can touch the robot. It does not consider evasive

movements. Nevertheless, a remark should be made that SSM

cannot prevent humans from colliding with a robot that is in a

stationary position after stopping. The separation distance

(S(t0)) is calculated by considering the speed of the

approaching human (vH) in conjunction with the complete

chain of reaction times (TR) of the equipment plus the time

required for stopping the robot (TS). This part of the equation

requires knowledge of the position and speed of persons in the

working area. However, if the speed is not known, a worst-case

speed can be used instead. Uncertainty of the persons position

(ZD) as well as an additional margin for sensor resolution

(finger, hand, arm) (C) are added here as well. Another part of

the sum is the distance and speed (vS) as the robot moves

towards the person during its stopping motion. Here,

information provided by the manufacturer to describe the

breaking performance is used. For the maximum robot speed

in the direction of an operator in the collaborative workspace

(vR), we consider the current speed on its trajectory, which

must be known and ensured. Again, some distance

representing the uncertainty of the robot position (ZR) is

added.

S t0( ) ≥ ∫τ�t0+TR+TS

τ�t0
vH τ( )dτ( ) + ∫τ�t0+TR

τ�t0
vR τ( )dτ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ ∫τ�t0+TR+TS

τ�t0+TR

vS τ( )dτ( ) + C + ZD + ZR( ),
(1)

There are some shortcomings to the standard approach when

it comes to a person’s position and speed. If the person was

guaranteed to be completely stationary, the robot could move in a

way that it would stop directly in front of the person. In practice,

this cannot be assumed. The stipulated assumption of 2 m/s for

the person speed leads to a considerable distance requirement.

This can only be countered by implementing a system with fast

reaction times in conjunction with a slowly moving robot in

order tominimize the stopping times. But not only faster reaction

times of the equipment could bring worker and robot closer

together. The simplification of reality that was used for the

mentioned distance formula means that every body part of a

person is treated the same. In contrast, workers may actually

move their limbs, especially the arms, quite rapidly. This results

FIGURE 1
Co-existence with human workers using fixed sensor placement for separation (A); Autonomous robot with fully dynamic safety space (B);
Implementation using a non-collaborative setup (C).
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in transient high speeds, exceeding the stipulated 2 m/s while

being limited by the reach of the particular limb if the torso is not

starting to move in the same direction as well. This leads to

exaggerated separation distances. However, this only becomes a

problem when actually performing live speed monitoring.

In our approach, we consider the robot and the person

safety space separately. The advantage is, that each part can be

adapted to the needs or circumstance associated with either

the robot or the sensor system used for detecting persons.

However, the robot safety space is not completely independent

from the sensor used. The sensors response time is also a

contributing factor for the safety space. During sensor latency,

the robot would move according to its designated trajectory.

This means that we have to distinguish between occurrence of

a stop event, i.e., the intersection of robot and sensor safety

space, a trigger signal between both sub-systems, and the start

of a stopping motion.

Knowledge of the robot safety space is important for

setting up an SSM-based HRC application. For a static set

of pre-programmed trajectories, it is possible to consider the

overall worst-case volume whereby all possible behavior

variations of the robot are covered when stopping at any

time during motion. In this case, safety barriers like light

curtains can be placed at design-time to encapsulate the safety

space. Although sensor performance, including spatial

resolution and latency, need to be considered as well, this

is a straight forward process. In the case of a dynamically

generated movement, safety space is ideally done at run-time.

Another possibility of handling dynamically generated

motions would be to design it for a border-case and to

perform a run-time check, whether or not the generated

motion would be within these limits. The third case is the

use of a more complex sensor systems which introduces

constraints like occlusion. Here, the combination with

dynamically generated motions is also possible. In order to

deal with this general case, an online safety space calculation

seems the most promising approach. In our case, we propose a

voxel-based discretization in conjunction with a breaking

model that covers not only a controlled stop, but also

handles the case of departing the pre-determined trajectory

by using dedicated (friction) breaks. This leads to larger safety

spaces than assuming only the ideal breaking situation. By

using a precise geometric model as well as the exact trajectory

followed by the robot we can minimize the respective terms of

the separation distance calculation.

We consider two different object types: Environment

objects that can be considered as static, and dynamic

collision objects (DCOBJ). These are links of serial robots

for which the voxelization is done by additionally applying

breaking calculations based on the specific robot model as well

as its current motion state. It also includes attachments like

tools or large parts. To process DCOBJs, we implemented a

multi stage approach. It is based on a fast voxelization capability

as illustrated in Figure 2. At first, the swept volume representing

the part of the trajectory covered during reaction time of the

detection system is generated. Here, the links are incrementally

moved according to the pre-panned trajectory and the

corresponding voxels are marked as occupied. Next, during

an iterative process starting from the tool and working its way

link by link backwards to the robots base the swept volume of

the actuated link is generated and saved to a separate voxel

structure. For all consecutive links, the previously generated

swept volume is added to the added polygonal model of the

currently actuated link. Rasterization of polygonal models as

well as resampling of voxel structure from the previous iteration

is done by applying conservative rasterization. This prevents

thin primitives to partially disappear because they may not

cover the voxel center. These steps aim to create a volume

structure not only representing the robot geometry at a single

point in time on its trajectory, but also the space potentially

required when breaking from that exact moment until standstill

in all combinations of breaking distances for each link. This

FIGURE 2
Intermediate steps of the robot safety space generation (A–F); Polygonal representation (A), Voxel Representation (B), Simplification using
bounding boxes (C), Swept volume when breaking 3rd joint (D), Combined result of braking 1st and 3rd joint (E), Space covered by ideal controlled
stop (F).
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gives us the worst-case volume of space that may be occupied by

a moving part during breaking. For this, information on the

breaking performance of the robot under the specific

circumstances is required. The robot type, attached payload,

joint configuration, and speed of movement influence the

breaking time and the residual movements of each of the

individual joints. While breaking at slow speed can be nearly

instantaneous, the kinetic energy that needs to be dissipated

when breaking at full speed is much higher. This puts stress not

only on the motors or breaks and on the overall structure of the

robot but also on the mount or fixture where the robot is

attached. The many contributing factors lead to typically

conservative specifications of worst-case breaking distances

by robot manufacturer. Usually, you can find a table within

the documentation that provides the necessary information for

exemplary payloads, speeds and extension. The extension

basically refers to the distance of the payload from the base.

For the given starting point on the trajectory we look up the

worst-case bracket from the provided table and use the resulting

information as input for our swept volume calculation. In a final

step, uncertainty of robot position is added to the voxel

structure by marking all voxels within that distance to

occupied voxels also as occupied. The algorithm is provided

in pseudo-code in 1. In case of a sensor guided movement, the

planned trajectory gets perturbed during execution by the

sensor input. Our approach could handle such applications

as well by sampling from all the possibilities of typically 2D

sensor input. Even though inefficient, this covers amplification

of Cartesian deviations at the tool by robot structure and could

be optimized in the future.

Algorithm 1. Robot Safety Space Generation

To summarize the robot safety space generation, two

points are notable: The use of detailed polygonal models of

the robot and attachments is beneficial compared to using

coarse approximations in the form of few geometric

primitives (see A and C) in 2. That is to say,

simplification is implicit when converting the polygonal

models to a voxel representation. The advantages are, that

no additional collision models are needed, and no

unnecessary padding is included in the generated volume.

Another notable fact is, that our algorithm easily generates

the volume that covers all possible variations of breaking

behavior. While the resulting volume is usually larger then

the ideal behaviour in stop category 1 or 2 (see E and F in 2),

the result provides better safety because it also covers

category 0 stops as well.

4 Workspace monitoring and person
safety space

For generating a detailed representation of the state of the

person, we considered the capabilities of a camera based

detection. Cameras deliver rich information with high spatial

resolution. They can also be made with high frame rates and thus

small reaction times, which is of particular importance for the

workspace monitoring as we laid out in the previous section.

Significant progress has been made when it comes to object

detection by applying artificial intelligence (AI) based on

machine learning.

The perception of humans in the workspace area of robots is

required to rate situations differently. Camera-based systems like

2D cameras (color, gray scale) or depth cameras (RGB-D

cameras) are used to capture the robots environment. The

evaluation of the data from the camera system can be done

with the latest AI-based systems. Here, machine learning (ML)

methods such as deep learning are particularly suitable for

solving the various tasks in image recognition such as the

identification of a variety of objects in cluttered environments

or in changing lightning than classical image processing

methods.

There are a wide range of tasks in computer vision, and to

determine which model can solve which tasks, we need to

define the tasks what we want to solve (Figure 3). The

simplest tasks for camera-based data is image

classification (Figure 3A), in which only a single camera

image is considered: if a person is recognized here, the

system must activate an emergency stop, classification

models were introduced by Krizhevsky et al. (2012)

Simonyan and Zisserman (2014) or Huang et al. (2017)

and the result refers to the whole image. To extract more

detailed information from the image data, other methods for

detection (Figure 3B) and segmentation (Figure 3C) can be

used to analyse the robot environment. The detection

networks localize objects in the image with the additional

information of the classification within the estimated 2D-
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pixel coordinates (Ren et al. (2015), Liu et al. (2016),

Redmon et al. (2016), Duan et al. (2019), Tan et al.

(2020)). In Long et al. (2020), these models were tested on

the MS-COCO data set of Lin et al. (2014) with various

objects and people. As ML methods and models are

constantly evolving, this provides a general overview of

the method’s performance. Next, algorithms for pixel-wise

classification (segmentation) are used to separate objects

from the background. Representatives of segmentation

networks were introduced by Ronneberger et al. (2015),

He et al. (2017), Badrinarayanan et al. (2017) and Wang

et al. (2020). Other models determine the segmentation of

the individual body parts such as Lin et al. (2017), Güler et al.

(2018) and Oved (2019). Additionally, the recognition of the

human’s kinematic state is beneficial, so that the estimation

is not only based on the human’s position. Here, it can be

determined where the limbs of the human are and whether

they are in a vulnerable position. However, the main

advantage for acquiring the person’s kinematic state is to

differentiate between different implications for possible

separation distance violations: Rapid movement of the

hand is limited by arm length, but movement of the whole

torso is not. Network architectures that are able to capture

the persons limbs to generate a topological skeleton

(Figure 3D) as in Kendall et al. (2015), Cao et al. (2017),

Güler et al. (2018) and Li et al. (2019) are available.

Information is typically generated in 2D key-point

coordinates, so that an additional distance estimation is

required in order o generate world coordinates. Here,

deep learning methods can directly determine a 3D

position of the human in world coordinates or they can

accomplish the construction of volumetric models (Saito

et al. (2020), Suo et al. (2021)). Neural Radiance Fields

(NeRFs) Mildenhall et al. (2020), Gao et al. (2022) are a

recent technique to generate 3D-like representations from a

set of 2D images of an object or scene.

The extend of the problem to be solved - detection by

simple classification up to 3D reconstruction of limbs—has

implications for accuracy, required computing power,

remaining uncertainty. Other aspects relate more to

hardware issues: Camera resolution and mounting distance,

dynamic range, frame rate, and integration time. The dynamic

range of standard cameras is still too small to easily cope with

shadows, artificial light as well as direct sunlight in the same

scene. The resolution is a trade-off between clearly resolving

limbs, frame rate, and the input resolution of the network and

thus of the available compute resources. To ensure a large

viewing area and to avoid occlusion, at least two synchronized

cameras should have an overlapping viewing area. In order to

avoid occlusion problems and for a simplified distance

calculation, we favour ceiling mounted cameras facing

downwards. This approach is applicable to both, whole

body detection as well as pixel-wise classification. However,

it needs to be extended for differentiating limb movements.

We generate the person safety space again in multiple

stages (Figure 4). The fist step is selecting an available camera

that is not obstructed by either the robot safety space or other

structures. We then detect the presence of a human using

multiple models running in parallel. Next, the human is then

segmented from background (Figure 4A). Next we compute

the convex hull of that silhouette. A spatial volume is then

constructed by projecting lines from the camera point of view

onto the ground floor through the generated hull. In a final

step, the resulting pyramid (Figure 4B) is thickened on all

sides by the adding sensor uncertainty as safety margin, and

finally the hypothetical distance the person could move during

the combination of reaction and breaking time. The breaking

time is dynamic and is taken from the previous step of

calculating the robot safety space. Both volumes of space

can then be used together to check whether or not they

touch each other. If this is the case, the minimum

separation distance would be reached and the stopping of

FIGURE 3
Various computer vision tasks for humans detection: classification(A), detection(B), segmentation(C), skeleton (D)
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the robot would need to be commenced. When multiple workers

are present in the work area, an individual person safety space is

generated and checked for intersection with the robot safety space

for each individually. We presented results of an experimental

setup for detecting humans in an industrial setting using machine

learning techniques in Bexten et al. (2020).

5 Conclusion and outlook

We have discussed the need for workspace monitoring and

detailed separation distance calculation in order to enable

intelligent robots in aerospace manufacturing. Application

scenarios like the one mentioned in this paper benefit from

the capability of human-robot-collaboration at least in the

sense of co-existence in shared work spaces. The proposed

method for 3D safety space generation which covers all

possibilities of braking modes can already be used for

analyzing static robot programs at design-time.

Our approach to generating the person safety space is

based on generating a 3D representation out of a 2D

segmentation of a top-down image in a post-processing

step using a silhouette-based algorithm. A future, safety

rated implementation of 2D image-based human detection

would open up the possibility of deploying our approach.

With further development, two interesting improvements are

possible. The first one is related to 3D conversion of detected

2D image regions. Here, recent AI-based techniques like

NeRFs show promising results when generating 3D

representations directly. When considering reliability

requirements of safety applications, a combination of

multiple AI techniques in a redundant fashion seems to be

the most promising approach to future implementations. In

these scenarios, the presented algorithm can be applied to a

combined 3D representation without any changes. The second

improvement is related to differentiating between individual

body parts of the recognized persons. This would avoid

unnecessarily huge separation distances that are a result of

treating every point on the body of a person the same. This

would require a future safe implementation of techniques that

observe the (approximate) state of a persons kinematic

structure like body part recognition, 3D key-point tracking,

or similar.

In order to implement the robot-side of the approach in

real-world applications, the typical commercial robot

controllers used currently need to be replaced. They lack

both features and processing power. A robot controller

with the capability of pre-planning the trajectory is needed.

We also required the robot to safely monitor trajectory

execution. The voxel-based computations are expensive in

the sense that they require more compute power on the

controller in conjunction with high-bandwidth interface to

the sensor for volume data exchange.
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