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Haptic technologies are becoming increasingly valuable in Human-Computer

interaction systems as they provide means of physical interaction with a remote

or virtual environment. One of the persistent challenges in tele-haptic systems,

communicating haptic information over a computer network, is the synchrony of

the delivered haptic information with the rest of the sensory modalities. Delayed

haptic feedback can have serious implications on the user performance and overall

experience. Limited research efforts have been devoted to studying the implication

of haptic delay on the human neural response and relating it to the overall haptic

experience. Deep learning could offer autonomous brain activity interpretation in

response to a haptic experience such as haptic delay. In this work, we propose an

ensemble of 2D CNN and transformer models that is capable of detecting the

presence and redseverity of haptic delay froma single-trial Electroencephalography

data. Two EEG-based experiments involving visuo-haptic interaction tasks are

proposed. The first experiment aims to collect data for detecting the presence

of haptic delay during discrete force feedback using a bouncing ball on a racket

simulation, while the second aims to collect data for detecting the severity level

(none, mild, moderate, severe) of the haptic delay during continuous force

feedback via grasping/releasing of an object in a bucket. The ensemble model

showed a promising performance with an accuracy of 0.9142 ± 0.0157 for

detecting haptic delay during discrete force feedback and 0.6625 ± 0.0067 for

classifying the severity of haptic delay during continuous force feedback (4 levels).

These results were obtained based on training themodel with raw EEG data as well

as their wavelet transform using several wavelet kernels. This study is a step forward

towards developing cognitive evaluation of the user experience while interaction

with haptic interfaces.
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1 Introduction

Haptic technologies are becoming increasingly valuable in human-computer

interaction as they allow humans to interact with a virtual or remote environments

using a simulated sense of touch. For instance, telehaptic systems are assisted with haptic

feedback allowing users to perform delicate and complex tasks in remote or unreachable
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environment while concurrently perceiving the physical aspects

of the remote environment (Xu, 2017). One of the persistent

challenges in telehaptic systems is the synchrony of the delivered

information across modalities (visual, auditory, and haptics).

Strong demands are placed on the communication network due

to the transmission of haptic information and thus, haptic delay

is probable (Van Den Berg et al., 2017). Through psychophysical

investigations, the effects of haptic delay on the user experience

and/or performance have garnered substantial attention. There is

ample evidence that haptic delay interferes with task completion

time (Ferrell, 1965), impairs performance (Tatematsu et al.,

2011) and deceitfully manipulates the haptic sensation

(Knorlein et al., 2009). Depending on the application and the

kind of haptic interaction, detection thresholds for haptic delays

can range widely, from 20 to 200 ms (Vogels, 2004). In other

words, whether the user is experiencing a discrete force,

continuous force, or vibrotactile feedback and whether they

are involved in an active or passive interaction can all affect

how haptic delay is experienced.

Our comprehension of the human perception of haptic delay

is therefore necessary for the development of reliable and resilient

haptic devices designed for usage across computer networks.

Conventional methods for evaluating the experience of haptic

delay are based on self-reporting and/or behavioural analysis

(psychophysical studies). However, these methods are subject to

biases due to previous user experience and/or experimental

context, prone to social pressure, and hard to reproduce. An

emerging field called neurohaptics uses brain imaging techniques

to examine the intricate neural representations triggered by

haptic stimulation (Alsuradi et al., 2020a).

Electroencephalography (EEG) is one of the mostly used tools

for this purpose mainly due to their compatibility with other

electronic devices in the vicinity of the EEG system. Compared to

other neuroimaging methods such as the functional magnetic

resonance imaging (fMRI), EEG has a high temporal resolution

which is crucial for studying a time related perceptual quality

such as the haptic delay.

EEG data are rich in information over multiple dimensions,

namely time and space (i.e., across electrodes scattered on the

scalp). Consequently, EEG data can be used to train deep learning

models which could possibly allow for autonomous brain activity

interpretation in response to physical interaction, leading to the

quantification of the perceived haptic experience (Miura et al.,

2014; Alsuradi et al., 2020b). EEG motor imagery signals have

been extensively used to train deep learning models to distinguish

between imagined right and left limb movements (Tabar and

Halici, 2016; Al-Saegh et al., 2021). Another popular example is

using deep learning to identify the emotional state of users from

their EEG data (Chen et al., 2019; Donmez and Ozkurt, 2019;

Babushkin et al., 2021). On the contrary, limited number of

studies have employed deep learning in neurohaptics. An

attempt was made to classify the surface texture during active

exploration task (Eldeeb et al., 2020) on a single EEG trial basis

using Support Vector Machine (SVM) with features that are

manually extracted from the raw EEG data. Another study

developed a CNN model to identify the type of haptic

interaction (passive vs. active) during visuo-haptic task on a

single EEG trial basis as well (Alsuradi and Eid, 2021). Most of

these studies target haptic experiences related to the physical

properties of the stimulus or the movement. However, only few

studies were found to explore the usage of deep learning in

analyzing high order cognitive functions associated with haptic

experience and none tackled haptic delay. Evaluating the

cognitive experience of haptic delay during a haptic

interaction over a computer network from a single trial EEG

data remains unanswered.

In our previous studies, we explored and identified the

prominent neural signatures associated with detecting haptic

delay (Alsuradi et al., 2021) as well as estimating the level of the

haptic delay (Alsuradi et al., 2022). The first study aimed to

understand the neural correlates that encodes the presence of

haptic delay during a discrete force feedback under passive and

active haptic interactions. P200 feature in the central cortex,

commonly tied to sensory attention, was found to be modulated

under the presence of haptic delay regardless of the interaction

type (passive vs. active). Midfrontal theta power was also found

to encode the perception of haptic delay. The second study on the

other hand aimed to identify the neural correlates associated with

the level of haptic delay. Interestingly, midfrontal theta power

was found to significantly differ between the different levels of

delay, suggesting an encoding mechanism. Midfrontal theta

power is generally associated with neural processes related to

conflict processing and resolution (Cohen and Donner, 2013;

Arrighi et al., 2016); haptic delay can be thought as a form of

sensory conflict. In both studies, sensory correlates, such as the

post movement beta rebound (PMBR) (Kilavik et al., 2013), were

found to be delayed with an amount proportional to the

introduced delay level. All these studies indicate that EEG

data contain prominent information about the haptic delay.

The main objective of this work is to use single-trial EEG data

collected during the two previously mentioned studies for the

purpose of building reliable deep learning models that are able to

detect the presence and the severity levels of haptic delay. The

contributions of this manuscript are listed below:

• Developing a model that is aimed to detect the presence of

haptic delay during a discrete force feedback stimulation

while being resilient to the type of haptic interaction

(passive vs. active).

• Developing another model that is aimed to differentiate

between the different levels of haptic delay (no delay, mild

delay, moderate delay and severe delay) during a

continuous force feedback stimulation.

• Both models are developed with the characteristics of: 1)

operating on a single EEG trial 2) avoiding the use of any

crafted features.
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Towards this end, we explore using an ensemble of Deep

ConvNet (Schirrmeister et al., 2017) and the state of the art

model, transformer (Vaswani et al., 2017), in utilizing EEG data

and several of its representations using wavelet transform.

2 Materials and methods

We designed two experiments to examine the possibility of

detecting the presence and amount of haptic delay from EEG

data, respectively. The first experiment involves two types of

interaction (passive and active) where the haptic delay is

perceived during a discrete haptic feedback. In the second

experiment, four levels of delay were introduced (no delay,

mild delay, moderate delay, major delay) during a continuous

haptic feedback stimulation.

2.1 Experiment 1: Detecting the presence
of delay during discrete haptic feedback

2.1.1 Participants
In experiment 1, nineteen participants have been asked to

take part in the study (10 females and nine males), where 90% of

them are undergraduate students aged between 18 and 25 years.

All subjects were right-handed and used their right hand to

complete the experiment. In addition, participants had normal or

corrected-to-normal eyesight. The study was conducted out in

compliance with the Declaration of Helsinki, following its norms

and regulations, and with an authorized protocol by the New

York University Abu Dhabi Institutional Review Board (IRB:

#HRPP-2019-120). Before joining in this study, all subjects

provided written informed consent in compliance with IRB

standards. Participants received around 30 USD compensation

voucher for their participation in the study.

2.1.2 Task
Participants were told that they would be taking part in a

haptic-visual activity in which they would bounce a tennis ball

with a racket controlled by a haptic device. Participants were

requested to sit on a chair in front of a computer display and use

their right hand to grip the stylus of a haptic device (Geomagic

Touch, 3D Systems, United States). The Unity game engine

version 2018.4.5f1 (Unity technologies, United States) and

Openhaptics Unity toolkit were used to create the game (3D

Systems, United States). Subjects had to complete passive and

active tasks while experiencing synchronous or asynchronous

visuo-haptic stimulation. Participants lifted the racket up to

bounce the ball, which was initially motionless above the

racket, during the active task. During the passive task,

however, the racket was held passively, and a thumb button

push on the haptic device caused the tennis ball to come loose

and collide with the racket. When the ball collided with the

racket, force feedback was felt. The haptic collision might be

delivered concurrently with the visual collision (synchronous) or

220 ms after the visual collision (asynchronous).

The timeline of a single trial is shown in Figure 1. The trial

starts with a blank screen presentation for 1.5 or 2.5 s

(randomized), followed by a single bouncing motion. Each

participant completed 200 trials in total, evenly distributed

across four experimental conditions: Passive No Delay (PND),

Passive Delay (PD), Active No Delay (AND), Active Delay (AD).

Trials were distributed over ten runs, each with 20 trials. The first

five runs were done in the passive mode, while the latter five were

FIGURE 1
Detecting the presence of haptic delay experiment (A) Task time-line of a single trial under the passive and active haptic interactions (B)
Experimental setup showing a participant correctly holding the stylus to control the racket shown on the screen. Synchronous and delayed haptic
feedback are delivered through the stylus.
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done in the active mode. During a single run, 10 trials had

synchronous visuo-haptic stimulation while the other 10 trials

involved haptic delay. The sequence of trials within a single run

was randomized.

2.2 Experiment 2: Classification of the
level of haptic delay during a continuous
haptic feedback

2.2.1 Participants
A total of thirty-four subjects have been invited to participate

in experiment 2 (17 females and 17 males), where the majority of

them (97%) are undergraduate students aged between 18 and

25 years. Participants were all right-handed and completed the

experiment using their right hand. Participants also had normal

or corrected-to-normal vision. The protocol used in this study

was approved by the Institutional Review Board at New York

University Abu Dhabi (IRB: #HRPP-2021-17) and followed the

Declaration of Helsinki’s rules and regulations. Before

participating in this study, all individuals completed an

informed consent form in compliance with the IRB’s

principles. Each participant received an Amazon voucher

worth 30 dollars (USD) for their active participation. This

experiment was done post COVID-19 spread, and thus, to

protect participants from COVID-19, many precautionary and

preventative steps were followed, including keeping physical

distance, using surgical masks and gloves before any contact

with the participants, sanitizing the haptic device after each

usage, and completing a symptom check form to verify

participants were not sick.

2.2.2 Task
Participants were instructed to perform a simulated pick and

release task using a computer screen and a haptic device. The task

required participants to use the haptic device (Geomagic Touch,

3D systems, United States) to pick up a cylindrical-shaped object

displayed on the screen and move it towards a bucket where it

should be released. Once the object is picked, participants

experienced a force feedback that simulates the weight of the

object. Thus, both visual and haptic feedback were provided; the

visual feedback coming from the computer screen and the haptic

feedback coming from the haptic device. Once the object is

released, the force feedback is stopped and the weight of the

object is no longer felt. However, depending on the condition, the

force feedback could be activated for an additional amount of

time. This interval of time is referred to as a haptic delay. There

are four degrees of haptic delay: D0 = 0 ms (No delay), D1 =

120 ms (Mild delay), D2 = 250 ms (Moderate delay), and D3 =

400 ms (Severe delay). After performing a pilot study, these delay

thresholds were determined (Alsuradi et al., 2022).

The task timeline is shown in Figure 2. The trial starts with a

0.5 s rest time followed by a single grab and release action; the

duration of a single trial is thus variable and user dependent. Ten

runs were conducted per participant; each run consisted of

16 grab and release trials (four distinct levels of haptic delay ×

four repeats) organized in a counterbalanced fashion by a Latin

square order (Grant, 1948). Each participant completed 160 trials

in total, evenly split between the four delay conditions. Similar to

experiment 1, Unity game engine version 2018.4.5f1 (Unity

technologies, United States) and Openhaptics Unity toolkit

were used to create the task (3D Systems, United States).

2.3 EEG data

2.3.1 Acquisition and pre-processing
During the experiment, EEG data were captured at a sampling

rate of 1 kHz using a BrainAmps amplifier (BrainAmps Standard,

Brain Products, Germany). To handle the acquisition process and

FIGURE 2
Detecting the level of haptic delay experiment (A) Task time-line of a single trial where four possible delay levels can be perceived (B)
Experimental setup showing a participant correctly holding the stylus to pick up and carry the object.
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monitor the electrode connection quality, the Brain Vision Recorder

software (BVR; Version 1.21.0201 Brain Products, Germany) was

utilized. We employed 64 Ag/AgCL active electrodes with noise

suppression and amplification built-in to the readout electronics.

The EEG cap was placed on participants’ heads using the 10-

20 international positioning method, with the Cz electrode at the

vertex of the head. The online reference was positioned at FCz,

whereas the ground electrode was positioned at FPz. We kept the

connection impedance between the electrode and the scalp below

1,510 kΩ to guarantee high-quality signal recordings.

MATLAB version 2021a (MathWorks, United States) and

EEGLAB toolbox (v14.1.2) (Delorme and Makeig, 2004) were

used to pre-process and analyze the data offline. The data was

filtered between 0.1 and 50 Hz using a sinc FIR filter with a

Hamming window. To minimize power line noise centered

around 50 Hz, a notch filter was utilized. The EEG data were

subjected to the Artifact Subspace Reconstruction (ASR) (Kothe

and Jung, 2016) technique to eliminate high-amplitude artifacts

such muscle activity, eye blinks, and movements, as well as to

detect and reject heavily contaminated trials. The data were re-

referenced using the Common Average Referencing (CAR)

technique (Lakshmi et al., 2014), and the data from the online

reference FCz were retained. Any residual ocular and muscle

artifacts were isolated and removed using Independent

Component Analysis (ICA).

2.3.2 Epoching and baseline correction
• Experiment 1: For each trial, the time between the

emergence of visuals and the visual collision (Δ1) was

computed. Trials with Δ1 more than 4 standard

deviations away from the mean were removed in order

to preserve a consistent behavioral trend across trials. The

data were epoched between -200 and 1,000 ms around the

visual collision. Time-domain epoched trials were baseline

corrected using a baseline between -200 and the onset,

which is the visual collision event.

• Experiment 2: For each trial, the time between pick up and

release (Δ2) was computed to estimate its duration. Short

trials demonstrate that the subject grabbed up and released

the object quickly, most likely by accident. The pick and

release exercise should take at least 2–3 s for a well-trained

individual. As a result, extremely short trials with Δ2 ≤ 1 s

were eliminated. The rest of the trials were then epoched

from -200 to 1,000 ms around the object release event.

Time-domain epoched trials were baseline-corrected using

a baseline between -200 and the onset, which is the visual

object release event.

2.4 Feature extraction

Raw EEG data carries plenty of information towards encoding

the presence and amount of haptic delay that can be extracted

directly by state of the art deep learning models. However,

embedding extracted prominent features in addition to the raw

EEG data can drastically enhance the accuracy of classification. It

has been shown that wavelet transform is highly effective in

extracting features from raw EEG data because it deals greatly

with the non-stationary behavior of EEG signals (Amin et al.,

2015). Wavelet coefficients have been reported as useful features

for normal EEG analysis as well as in clinical applications (Yazdani

et al., 2009; Garry et al., 2013). Wavelet coefficients offer

simultaneous localization of neural activation in time and

frequency domains which is indeed required to extract haptic

delay information. Haptic delay is encoded in several frequency

bands like theta, alpha and beta bands (Alsuradi et al., 2021, 2022).

Raw EEG data from both experiments were first down-

sampled from 1kHz to 125 Hz such that a single epoch is of

lengthN1. Next, the following wavelet functions were used for the

wavelet transform analysis and feature extraction: Daubechies-4

(dB4), Daubechies-20 (dB20), Coiflet-1 (Coif1), Coiflet-3

(Coif3), Symlet-10 (Sym10), Fejér-Korovkin-8 (fk8),

Biorthogonal-6.8 (bior6.8) and Reverse biorthogonal-6.8

(rbio6.8). These wavelet transforms were selected empirically

based on their impact on the overall detection accuracy. Each

epoch per electrode went under all the previously mentioned

wavelet transforms and all the transforms were concatenated to

form a single 1-D array of length N2. Figure 3 shows a sample of

the dataset including raw and transformed for C1 electrode. Two

input data matrices were formed one for each experiment; an

input data matrix, X, can be formed with dimensions of trials

(Tr), sequence length (N1 + N2), and electrodes (E). Based on the

model’s choice, the input data can be reshaped accordingly. Data

from experiment 1 are classified as either No Delay (ND) or

delayed (D) regardless of the activity type (passive vs. active). On

the other hand, data from experiment 2 are classified as either No

Delay (D0), mildly delayed (D1), moderately delayed (D2), or

severely delayed (D3). To facilitate referring to the above

parameters in the remainder of the manuscript, we list them

and a few other important parameters in Table 1.

2.5 Dataset

The final dataset that was used for training and validating the

proposed deep learning models consists of the raw EEG data

concatenated with the wavelet transformed versions of the raw

EEG data. The transformer model expects time-series data which

is one-dimensional in nature, while the 2D CNN expects two-

dimensional input resembling image-shaped data. Both,

transformers and 2D CNNs can deal with multi-channel

inputs such as multiple time-series data and multiple 2D

images (i.e. RGB images), respectively. Thus, EEG data was

reshaped to match the input layer of each model accordingly.

We use the notion dn to describe the dimensions of the reshaped

datasets, when n is the dimension number. Below is an
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elaboration on the structure and size of the dataset making use of

the parameters described in Table 1:

• Experiment 1: The input data matrix for the transformer

model, Xtr1, is 3-dimensional and of the size d0 × d1 × d2 =

Tr × (N1+N2) × Channels = Tr × (N1+N2) × E = 3,753 ×

(150 + 171) × 60. Thus, a single trial passing through the

model has size of d1 = N1+N2 (sequence length) and d2 = E

(number of electrodes). For the 2D CNN model on the

other hand, the data is shaped differently. The input data

matrix for the 2D CNNmodel, Xcnn1, is 4-dimensional and

of the size d0 × d1 × d2 × d3 = Tr × (N1+N2) × E ×

Channels = 3,753 × (150 + 171) × 60 × 1. Thus, a single trial

passing through the model has size of d1 = 321 (sequence

length), d2 = 60 (number of electrodes), and d3 = 1 (number

of channels).

• Experiment 2: The input data matrix for the transformer

model, Xtr2, is 3-dimensional and of the size d0 × d1 × d2 =

Tr × (N1+N2) × Channels = Tr × (N1+N2) × E = 5,418 × (150

+ 171) × 60. Thus, a single trial passing through themodel has

size of d1 = N1+N2 (sequence length) and d2 = E (number of

electrodes). For the 2D CNN model in the other hand, the

data is shaped differently. The input data matrix for the 2D

CNNmodel, Xcnn2, is 4-dimensional and of the size d0 × d1 ×

d2 × d3 = Tr × (N1+N2) × E × Channels = 5,418 × (150 + 171)

× 60 × 1. Thus, a single trial passing through the model has

size of d1 = 321 (sequence length), d2 = 60 (number of

electrodes), and d3 = 1 (number of channels).

Note that the number of channels in the transformer model

correspond to the number of electrodes. However, since the

whole EEG dataset can be shaped in a single 2D matrix where its

FIGURE 3
A sample of the dataset showing the raw EEG data and its wavelet transform based on Daubechies-4 (dB4), Coiflet-3 (Coif3) and Fejér-
Korovkin-8 (fk8) wavelets for C1 electrode. Hard lines show the mean of the trials while shaded regions shows the standard deviation.

TABLE 1 Dataset related parameters.

Parameter Symbol Experiment 1 Experiment 2

Subjects Sub 19 34

Electrodes E 60 60

Classes C 2 4

Total trials Tr 3,753 5,418

Raw data sequence length N1 150 150

Wavelet transform sequence length N2 171 171
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dimensions are the total sequence length by the number of

electrodes, a single 2D channel is sufficient for the 2D CNN

model.

2.6 Deep learning model architecture

We aim to build two robust classifiers that shall work at the

single trial (epoch) level: the first is a binary classifier for

detecting the presence of haptic delay during a discrete haptic

feedback stimulation while the second is a multi-class classifier

for detecting the level of haptic delay during a continuous haptic

feedback stimulation. Herein, we explore using two different

deep learning models, namely, 2D CNN and transformer. For

both classifiers, we develop the same model with a single

difference that lies in the size of the last dense layer which is

essentially equal to the number of classes.

2.6.1 2D CNN
The architecture of the 2D CNN model followed the

DeepConvNet architecture proposed to handle EEG data

classification (Schirrmeister et al., 2017). The architecture and

design choices of the DeepConvNet model were particularly

designed to suite specific characteristic of EEG data compared

to image data. For example, EEG data are non-stationary time-

series obtained through electrodes placed on the scalp which are

fundamentally different than natural images commonly used to

train 2D CNNs. Additionally, EEG data have low signal-to-noise

ratio which makes the task-related features hard to capture. The

DeepConvNet consist of four blocks where each block has a series

of convolutional, batch normalization, max pooling and dropout

layers. The first block is an exception in which two convolotional

layers are used consecutively to extract temporal and spatial

features, respectively. All non-linear activation functions in the

network are based on exponential linear units (ELU) (Clevert

et al., 2015) which was found to heavily impact the performance

of the network compared to Rectified Linear activation Unit

(ReLU). ELU activation function differs from ReLU in its

response to negative inputs and is described by the below

equation:

f x( ) � x for x > 0
ex − 1 for x ≤ 0

{
Since the sampling frequency in this work differs from that in

the DeepConvNet paper (125 vs. 250 Hz), some of the model

parameters were altered such as the kernel and the pooling sizes.

2.6.2 Transformer
Transformer is a model that was originally proposed in the

natural language processing (NLP) domain for text data

processing (Vaswani et al., 2017). Soon enough, the

transformer model was adapted to deal with other types of

data such as time-series data (Li S. et al., 2019) as well as

images (Dosovitskiy et al., 2020). The strength of transformers

lies mainly in the attention mechanism it employs in learning

important features from the raw data. Attention mechanism

operates in such a way that the model is able to focus on

different parts of the input concurrently and highlight

relationships between them in an attempts to capture higher

order dependencies (Zhao et al., 2021). The model shall be able to

attend to features from the raw EEG data as well as from the

wavelet transforms concurrently. This capability of transformers

is called self-attention and is calculated through the below

equation:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V
where Q, K and V are the query, key and value matrices and dk is

the length of a single key vector (Vaswani et al., 2017).

In this work, we use a transformer model that consists of four

consecutive encoder blocks, followed by a global average pooling

layer and two dense layers. For each encoder block, the head size,

also known as the key dimension was set to 256, the number of

heads was set to four and the dropout rate for the attention layer

is set to 0.25. The feedforward part of the encoder consisted of a

dense layer of size 128 and a dropout rate of 0.4. For all activation

functions in the dense layers, ELU function was used. The choices

of these parameters are based on the outcome of an optimization

process by Optuna framework (Akiba et al., 2019) as will be

described in Transformer.

2.6.3 Ensemble model
An ensemble model consisting of both, the 2D CNN and the

transformer models is also examined. The output of both models

is combined in a soft voting manner such the probabilities of each

class are averaged and the predicted delay is based on the class

with the highest probability. Soft voting considers each voter’s

degree of certainty rather than just their binary input. The

proposed ensemble model is depicted in Figure 4. This model

was examined and tested for both experiments with the only

difference being in the size of the final dense layer of the

transformer as well as the 2D CNN model.

2.7 Hyperparameter optimization and
training

To optimize the training hyperparameters as well as the

transformer model parameters, we used Optuna framework

particularly designed to optimize the choices of

hyperparameters for machine learning. We define a reasonable

search spaces for each of the parameters we intend to optimize

from which a sampling algorithm will be used to pick different

combination of parameters at every run. Sampling algorithms are
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superior to random grid search such that the sampler tries to pick

a combination of parameters that are likely to increase the

accuracy based on the outcome of the previous runs. In this

work, we used the Tree-structured Parzen Estimator (TPE)

algorithm for sampling parameters from the search spaces.

TPE is the default sampling method and generally performs

well for runs less than 1,000. We performed 200 runs to search

for the best parameters for the transformer model previously

mentioned in Hyperparameter optimization and training. As for

the training hyperparameters, another 200 runs were conducted

to optimize for: batch size, learning rate and the optimizer type.

The below hyperparameters were found to perform best for each

of the models:

• 2D CNN: Learning rate is 1e-4, optimizer is ADAM, and

batch size is 64.

• Transformer: Learning rate is 1e-3, optimizer is ADAM,

and batch size is 64.

Under-fitting was addressed by increasing the complexity of

the models through increasing the number of convolutional

layers and the number of encoder blocks in the 2D CNN and

transformers respectively, up to a point beyond which the

increase did not help improve the validation accuracy. On the

other hand, over-fitting was addressed by introducing dropout

layers at the end of every convolutional block and after the

attention layer in the 2D CNN and the transformer model,

respectively. We used binary and categorical cross entropy

functions for loss calculation for experiment 1 and experiment

2, respectively. For the training process, we first shuffle the whole

dataset from all subjects and we split it to 80 and 20% for training

and testing the model, respectively. To optimize the model

weights, we then use 5-fold cross-validation where one fold is

used for validation and weights optimization in every run. We

ran the training for 300 epochs and the model with the best

validation accuracy was used. The reported performance across

the manuscript refers to the average performance across the five

folds on the previously reserved testing dataset.

3 Results

For both experiments, we conducted six primary tests to

compare the performance of the three suggested models (2D

CNN, transformer, and ensemble) when using just the raw EEG

data vs. embedding the wavelet transform coefficient. The

findings of these tests for both experiments are summarized

in the following sections.

3.1 Experiment 1: Detecting the presence
of delay during a discrete haptic feedback

Table 2 summarizes the results of the conducted tests for

detecting the presence of haptic delay regardless of the type of

haptic interaction (passive vs. active). It can be observed that

including the wavelet coefficients in the dataset improves the

performance of all three models. Particularly, the performance of

the transformer model is noticeably higher when wavelet

coefficients are employed. All the models were trained and

cross validated using the same settings. The highest accuracy

achieved is 0.9142 by the ensemble model when wavelet

FIGURE 4
An illustration of the proposed ensemble model that takes a soft vote of a 2D CNNmodel (Deep ConvNet) and a transformer model to predict
the presence/level of haptic delay.
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coefficients are added to the dataset. The confusion matrix of the

ensemble model is shown in Figure 5A. The confusion matrix

shows that including the wavelets coefficients increases the true

positive and true negative rates and reduces the false positives

and false negative rates. Both, the precision and recall are boosted

fas can be seen from Table 2.

3.2 Experiment 2: Classification of the
level of haptic delay during a continuous
haptic feedback

Table 3 summarizes the results of the conducted tests for

detecting the level of the haptic delay during a continuous haptic

feedback stimulation. This problem is obviously harder as the

number of classes is four as opposed to only two for the delay

presence detection. The same observation is valid regarding the

positive impact of the wavelet transforms on the performance of

all models, specifically the transformer model. The ensemble

model outperforms the standalone models with an average

accuracy of 0.6625 across the five folds. The confusion matrix

of the ensemble model is shown in Figure 5B. The ability to

accurately categorize all haptic delay levels has improved, with

the no delay level (D0) showing the highest increase in detection

accuracy.

4 Discussion

This work proposed a novel ensemble approach for modeling

the presence and level of perceived haptic delay during a discrete

and a continuous force feedback, respectively. The ensemble of

2D CNN and transformer models was able to achieve a mean

accuracy of 0.9142 and 0.6625 in successfully detecting the

presence and the level of haptic delay, respectively, on a single

trial basis. The results of the study suggest that the EEG data

contains rich information about the haptic delay experience even

at the single trial level. The achieved detection accuracy is way

beyond the chance level of 50 and 25% for two class and four class

classification problems, respectively.

The detection accuracy of haptic delay in a four-level setting

is clearly significantly lower than that of a binary setting.

Identifying the level of haptic delay is a more challenging

problem due to several reasons: 1) It is a multiclass problem

where more intricate representations are to be learnt to

distinguish between the four delay levels 2) We are not

attempting to classify four different cognitive functions.

Instead, we are trying to distinguish between four intensities

of the same cognitive function (haptic delay perception) in which

there is a resemblance between the adjacent delay levels. This is

evident from the confusion matrix in Figure 5B where the false

negatives and positives are generally higher closer to the target

class. 3) Detecting a haptic delay during a continuous force

feedback stimulation could be less perceivable compared to

experiencing delay during a discrete feedback.

TABLE 2 Performance of the twomodels and their ensemble on the presence of haptic delay dataset (two classes).The reported figures are the mean
and standard deviation for 5-fold cross validation obtained on the test set.

Model Accuracy Precision F1 score

w/o wavelet with wavelet w/o wavelet with wavelet w/o wavelet with wavelet

2D CNN 0.8822 ± 0.0112 0.8940 ± 0.0076 0.8800 0.8950 0.8800 0.8950

Transformer 0.8348 ± 0.0069 0.9102 ± 0.0163 0.8300 0.9100 0.8300 0.9100

Ensemble 0.8897 ± 0.0106 0.9142 ± 0.0157 0.8800 0.9150 0.8800 0.9150

FIGURE 5
Confusion matrix of the best performing model (ensemble)
for the (A) presence of haptic delay detection [two classes: No
delay (ND) and Delay (D)] and (B) level of haptic delay classification
[four classes: D0 (No delay), D1 (mild delay), D2 (moderate
delay), D3 (severe delay)].
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Another important challenge in detecting the perception of

haptic delay in general, regardless of the type of experienced

haptic feedback, is that its perception is a higher cognitive

function that occurs in a temporally localized time-frame,

normally within few tens or hundreds of milliseconds

(Alsuradi et al., 2022). Other classification problems such as

emotion or texture classification have trial lengths that last for

few seconds and could last for up to few minutes (Eldeeb et al.,

2019; Zeng et al., 2019; Babushkin et al., 2021). Cognitive

functions that last for longer period of time are more easily

detected as the neural signature is spread across the trial

duration. Additionally, robust features such as total power of

different frequency bands (delta, theta, alpha, beta, gamma)

across the trial length can be extracted using Welch (Welch,

1967) or Bartlett’s methods (Bartlett, 1948) which are quite

effective towards the downstream classification task. Other

examples from the literature on EEG-based four class

classifiers that aim to classify higher cognitive functions show

comparative performance. For example, several studies on

emotion recognition (four emotional states) reported

classification accuracy of 67% (Liang et al., 2019) 66% (Huang

et al., 2017) and 62% (Li P. et al., 2019).

An interesting observation was the noteworthy increase in

the detection accuracy when wavelet transform coefficients were

taken into consideration and concatenated to the raw EEG data.

Particularly, the false negatives of D0 sharply decreased as can be

observed from Figure 5B. This result imply that wavelet

transforms were able to highlight and extract features of

synchronous stimulation (D0) which were otherwise not as

detectable from the raw EEG data. The effectiveness of

wavelet transform mainly lies in its ability to localize and

extract features at various temporal and frequency locations

(Rao, 1999; Samant and Adeli, 2000). Where other techniques

in signal processing fall short or are ineffective, the wavelet

transform is particularly good at expressing different features

of signals, such as trends, discontinuities, and repetitive patterns

which makes them very powerful for extracting features from

non-stationary signals such as EEG data. This implies an accurate

extraction of transient EEG features (Adeli et al., 2003) which are

particularly present during the perception of haptic delay. Our

previous studies (Alsuradi et al., 2021, 2022) confirm the

presence of statistically significant differences across the delay

conditions, which the current study corroborate by the above-

the-chance levels of classification accuracy.

Assuredly, concatenating wavelet based features improved the

detection accuracy with a large margin. However, one limitation of

our approach is the lack of a systematic examination of the selected

wavelets and their role in extracting particular neural features. We

relied on an empirical approach for selecting the base-wavelets,

however, a more systematic approach could yield a better

performance and improve the model’s explainability. Another

point is that our proposed model is trained based on inter-

subject classification as opposed to intra-subject classification

models (Müller-Gerking et al., 1999; Wang et al., 2012; Bae and

Luck, 2018; Eldeeb et al., 2019) which are trained, tested and used on

the data of a single subject only. Generally, inter-subjectmodelsmust

contend with greater data variability which introduces challenges

related to learning subject-resilient features. Inter-subject models

almost always performworse than intra-subjectmodels (Hajinoroozi

et al., 2017) due to the challenges of learning subject-independent

features. However, in inter-subject models, the validation procedure

can have an impact on the learning curve of the model. One method

is to use k-fold cross-validation on the combined data from all the

subjects which we used in this study. Another way is to use leave-N-

subjects-out method which splits the data on the basis of subjects.

Both methods are used and reported in the literature (Roy et al.,

2019; Joucla et al., 2021). The latter method usually generalizes better

and thus is the second limitation of the study. Furthermore, given

that most participants were recruited from one age group

(18–25 years old), the results are not generalizable to other age

groups (given how haptic perception varies across age groups).

However, participants were drawn from a highly diverse racial

backgrounds which makes the results generalizable from the

racial background perspective.

5 Conclusion

This paper presents an ensemble deep-learning based model

for the detection and severity level classification of haptic delay

during discrete and continuous haptic feedback from single trial

EEG data. The ensemble model comprises 2D CNN and

TABLE 3 Performance of the twomodels and their ensemble on the levels of haptic delay dataset (four classes).The reported figures are themean and
standard deviation for 5-fold cross validation obtained on the test set.

Model Accuracy Precision F1 score

w/o wavelet with wavelet w/o wavelet with wavelet w/o wavelet with wavelet

2D CNN 0.5856 ± 0.0112 0.6339 ± 0.0097 0.5975 0.6320 0.5975 0.6250

Transformer 0.5223 ± 0.0105 0.6118 ± 0.0046 0.5325 0.6075 0.5325 0.6100

Ensemble 0.5959 ± 0.0044 0.6625 ± 0.0067 0.6125 0.6625 0.6125 0.6625
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transformer models. Raw EEG data and several of their wavelet

transforms were used without crafting or manually extracting

features; instead, the model relies on the self-attention

mechanism and the automatic detection of features through

CNN filters. The ensemble model showed a promising

performance with an accuracy of 0.9142 ± 0.0157 and

0.6625 ± 0.0067 for the binary and multi-class classification

problems, respectively.

For future work, we believe that the model that detects the

level of haptic delay could further improve by incorporating

other data modalities which could be relevant to the detection

of the level haptic delay. For instance, force feedback data

delivered by the haptic device or EMG data detected at the

surface skin of the involved hand. Since the ensemble-based

model is currently just dependent on the EEG data, adding

other sensory modalities that are pertinent to haptic delay will

greatly increase the detection accuracy. To get sufficient data for

model’s training, this could require recruiting a considerably

higher number of individuals. Lastly, it is possible to

experiment with other features commonly used for

physiological time-series data such as entropy related

(Richman and Moorman, 2000; Wu et al., 2013) and

dynamic features (Seto et al., 2015; Yuan et al., 2019).
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