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Swarm behaviors offer scalability and robustness to failure through a decentralized

and distributed design. When designing coherent group motion as in swarm

flocking, virtual potential functions are a widely used mechanism to ensure the

aforementioned properties. However, arbitrating through different virtual potential

sources in real-time has proven to be difficult. Such arbitration is often affected by

fine tuning of the control parameters used to select among the different sources

and by manually set cut-offs used to achieve a balance between stability and

velocity. A reliance on parameter tuning makes these methods not ideal for field

operations of aerial drones which are characterized by fast non-linear dynamics

hindering the stability of potential functions designed for slower dynamics. A

situation that is further exacerbated by parameters that are fine-tuned in the lab

is often not appropriate to achieve satisfying performanceson the field. In thiswork,

we investigate the problem of dynamic tuning of local interactions in a swarm of

aerial vehicles with the objective of tackling the stability–velocity trade-off. We let

the focal agent autonomously and adaptively decide which source of local

information to prioritize and at which degree—for example, which neighbor

interaction or goal direction. The main novelty of the proposed method lies in a

Gaussian kernel used to regulate the importance of each element in the swarm

scheme. Each agent in the swarm relies on such amechanism at every algorithmic

iteration and uses it to tune the final output velocities. We show that the presented

approach can achieve cohesive flocking while at the same time navigating through

a set of way-points at speed. In addition, the proposed method allows to achieve

other desired field properties such as automatic group splitting and joining over

long distances. The aforementioned properties have been empirically proven by an

extensive set of simulated and field experiments, in communication-full and

communication-less scenarios. Moreover, the presented approach has been

proven to be robust to failures, intermittent communication, and noisy perceptions.
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1 Introduction

In this work, we focus on airborne systems such as

quadrotors and unmanned aerial vehicles which we refer to as

UAVs. In the last decade, the use of UAVs increased at a fast

pace, and despite it being under actuated, such a platform design

is very successful and represents a big part of the robotics market,

nowadays attracting both research and industry. Amongst the

many applications envisioned for it, drone shows are certainly

the most impressive with 1,824 airborne units at the Tokyo

Olympics and a record-breaking show of 3,281 set up by a luxury

car retailer (Peters., 2021). However, impressive numbers, as

reported in a recent review article by Coppola et al. (2020), are

showcased in demonstrations that lack the decentralized and

distributed properties of swarm robotics approaches. For

example, centralization as opposed to decentralization: the

controller runs on a single central computer rather than on-

board of each drone; a centralized system not only poses the

threat of a cardinal point of failure but also requires stable

communication among the parties. Furthermore, the

previously cited examples fully rely on external high-precision

sensing such as visual tracking systems or real-time kinematic

Global Positioning System (RTK-GPS), limiting their usability to

structured environments and ruling out different field

applications.

Among the many different building block behaviors that can

be executed by an aerial swarm, in this work, we consider the

basic problem of coherent group motion, still far from being

considered solved in real-world scenarios. Throughout the work,

we refer to this problem as flocking even though, as pointed out

by Logan and Malikopoulos (2021), a problem arising from the

literature is the use of such a term to summarize different modes

of motion. Originally inspired by biological entities such as fish,

birds, and even bacteria, flocking schemes have evolved and are

applied to artificial entities—usually referred to with the generic

term boid, shorthand for bird–android. We analyze the problem

of designing self-organized flocking of unmanned aerial vehicles,

UAVs, by putting the accent on robustness and scalability and at

the same time, considering real-world applications. We are not

the first to do this, and over the past years, the problem has been

tackled from multiple perspectives, different models and

formulations have been proposed, and impressive results have

been achieved. Some of these works are presented and analyzed

better in the following sections where we present an overview of

the current state-of-the-art and compare it with the approach

presented here.

The presented approach builds upon previous works

(Ferrante et al., 2012; Ferrante et al., 2014; Amorim et al.,

2021) and, in particular, on Albani et al. (2022), opting for a

path different from other models that build over the so-called

Vicsek model (Vásárhelyi et al., 2014; Vásárhelyi et al., 2018;

Balázs et al., 2020) or others building on the Cucker–Smale

formulation (Cucker and Smale, 2007). Among the many open

challenges, we tackle the problem of dynamic tuning of the

interactions between the focal agent and the different sources

of local information—such as its neighbors and the

environment—to enable faster and more stable flocking. This

is carried out using a specifically designed Gaussian kernel on

which every agent, in a distributed fashion, relies to automatically

weight its neighbors and the target. This is the main conceptual

contribution of this work, and it not only enables fast and stable

flocking but also allows for more complex behaviors such as

group splitting and joining. This work also possesses

experimental contributions: first, we show how our approach

reacts to a real-world and challenging scenario as the Abu Dhabi

desert; next, we analyze long-range group splitting and joining

behaviors along with an insight into performed experiments; and

finally, insights about the use of the sensing technology based on

ultra-violet cameras and its expected behaviors are also

presented. Experiments and simulations were performed both

in the presence and absence of communication, over long

distance, and at an allowed top speed up to 8 m/s.

As anticipated, the following section focuses on the state-of-

the-art and presents some related work. With a clear perspective

of the current status of the research, we then introduce our

proposed flocking controller in Section 3 and move to its

performance analysis in Section 4. Here, both simulated and

field results of a group of up to 10 robots are presented. In the

same section, we also report real field experiments performed in

the complete absence of communication and we present

simulated results with a large group of 25 agents. The latter

offers a comparison of the proposed approach against a state-of-

the-art controller recently proposed. Section 5 closes the paper

with conclusions and take-home messages.

2 State-of-the-art

The seminal work on flocking is the one by Reynolds (1987)

fromwhich a great part of the interest in flocking originated over the

last decade. In this work, three heuristics are proposed: cohesion,

agents in the swarm are attracted to the average position of

respective neighbors; separation, robots are repulsed from

neighboring robots; and alignment, each agent converges to the

average velocity of its neighbors. These three heuristics set the

foundation of future works (Crowther, 2004; Hauert et al., 2011;

Ferrante et al., 2012; Amorim et al., 2021) and other sharing the

concepts of attraction and repulsion in similar fashion (Vásárhelyi

et al., 2014; Balázs et al., 2020). In the remaining part of this section,

we first analyze the works that are more closely related to the

contribution of this paper—primarily those focusing on flocking

with UAVs. Then, we describe other literature reports that are less

strongly related and that also encompass works on different robotic

platforms such as UGVs. Finally, the section concludes by analyzing

works in which relative localization systems, such as those used by

our drones, are used.
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Among the works that are more closely related to the seminal

paper of Reynolds and the present paper, we find the one by

Crowther (2004) and one by Hauert et al. (2011). Here, a fourth

rule, migration, is applied to steer the swarm toward a wanted

direction or migration point. In particular, in Hauert et al. (2011),

each of the four rules generates a vector which is merged with the

other, producing a single output from the flocking controller.

During motion, each agent modifies its heading with an angular

rate proportional to the difference between the current heading

and the desired heading given by the controller output at each

cycle. As shown both in simulation and with the use of fixed-wing

unmanned aerial vehicles, over time, the robots converge toward

a common direction and migrate to the migration point in a

cohesive manner. From an experimental point of view, the state-

of-the-art for quadrotor autonomous drones is set by Balázs et al.

(2020) where an impressive number of 52 have been put to work.

The peculiarity of this work is the introduction of a “will,” an

agent-centric perception of the neighbors’ persistence related to a

perceived level of leadership. The assumption is that this

information is shared among the swarm, by means of a

communication mechanism, to aid the alignment with the

neighbors’ velocities and eventually rule out local fluctuations.

There is a strong assumption that we try to relax in this work, by

proposing a control algorithm shown to work in the complete

absence of communication—see Section 4. In the study by Balázs

et al. (2020), similar to its preceding work (Vásárhelyi et al., 2014;

Vásárhelyi et al., 2018), the control method is composed of short-

range potential repulsion, middle-range velocity alignment, and

global position constraint for flocking and formation flights. The

first two rules recall the original work by Reynolds on boids; the

third, on the other hand, is a newly introduced mechanism used

to maintain the flock within specific global boundaries to achieve

a coherent motion which would not be attained otherwise.Works

such as those by Ferrante et al. (2012)and Ferrante et al. (2014)

seek to maintain specific positions during motion by “locking in-

place” the members of the swarm by specifically designed

controllers seeking the local minima of the surrounding

forces. These works have been designed having ground non-

holonomic robots in mind, and only in Amorim et al. (2021) do

we see the original control scheme from Ferrante et al. applied to

quadrotors. The work is based on virtual potentials that generate

areas of minimum repulsion and attraction. Such local minima

distribute in space-defining “locking” regions: a rhomboid shape

in the case of four robots in a two-dimension space or a sphere-

like arrangement for bigger swarms in three dimensions. A

difference between the controller we describe in this work and

that if of Amorim or Ferrante et al. is the absence of non-

holonomic constraints. The absence is justified by a different

objective: we aim to orchestrate between flocking and migration

forces, and thus, we assume all agents to have a target, with no

need for holonomic constraints in such a setup. Moreover, while

in Amorim et al. (2021) and Ferrante et al. (2014) the robots are

forced to turn in place and align toward the motion direction, we

consider instantaneous motion on every axis and from that

output a single velocity vector that defines the motion of the

single. Moreover, even though we share repulsion and attraction

rules, we dynamically relax the region of minimum force,

relaxing the formation but improving the overall speed and

reaction of the flock.

We conclude this section by analyzing other works carried

out in the context of engineering self-organized flocking. In a

survey, Logan and Malikopoulos (2021) proposed a partition

in the engineering flocking literature. The authors proposed to

divide the state-of-the-art into two big subsets, namely, line

flocking and cluster flocking. The former aggregates all those

works where the objective is to minimize the energy

consumption of the entire swarm—similar to geese. The

cluster flocking category, on the other hand, encompasses

those works where the designer chases the optimization of a

system-level cost function tailored to control the policy of each

agent in the swarm. Other works rely on schemes similar to the

aforementioned one, for instance, Ali et al. (2008), Kownacki

and Daniel (2016), and Dmytruk et al. (2021). In 2018, Ali

et al. (2008) presented a new robotic platform called Kobot,

equipped with an infrared sensor for measuring the distance

between robots and obstacles, and a sensor for perceiving the

relative headings of neighboring robots. A behavior based on

proximal control and heading alignment is then put in place

on such a platform and shown to be capable of generating self-

organized flocking in a swarm. The most recent of the

aforementioned works is that of Dmytruk et al. (2021). The

work presents a bio-inspired decentralized flocking algorithm

working in environments with high obstacle density that only

relies on local perceptions. The approach couples both obstacle

avoidance, because of the use of Voronoi diagrams, and flocking in a

single control scheme. On the other hand, Kownacki and Daniel

(2016) built directly upon the work of Reynolds (1987). The

peculiarity of this approach is the presence of informed leaders

who act as guides for the whole swarm, steering the so-called

followers in a coherent manner. This last work falls within a

whole different sub-set of the flocking literature, studying

leadership in flocking. This is also true for approaches such as

those by Hung and Givigi (2016) and Yan et al. (2021) that apply

reinforcement learning to the leader–follower flocking problem.

Hung and Givigi (2016) uses Q-learning in a Markov decision

process where the agents are modeled as small fixed-wing UAVs.

Yan et al. (2021) used deep reinforcement learning instead to teach

collision-free policies for a scalable fixed-wing UAV swarm. Both

works share a similar reward function consisting of a flocking reward

that encourages the followers to maintain the desired distance from

the leaders and a collision penalty. Overall, the leader vs. leader-less

problem has been studied both in biological settings in birds (Bajec

andHeppner, 2009) and in artificial settings on boids (Jia and Vicsek,

2019). The conditions under which leader-driven cluster flocking is

optimal are an open question and we leave it out for the remainder of

this work as it is not related to the approach we present.
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We conclude the state-of-the-art section by analyzing a few

works that rely on relative location in a similar fashion as we

propose here in this work. Coppola et al. (2018) used blue-tooth

antennas to communicate velocities, altitude, and orientation

and estimate the range using the signal strength. The authors

then used this information to build a navigation scheme for

quadrotors and prove how it is possible to achieve a collision-free

flight on a small swarm of three robots. A different approach is

the ultra-violet light detection and ranging system, UVDAR

(Walter et al., 2018; Walter et al., 2019). As shown by

Petracek et al. (2020) and in this work, this system can be

used for estimating the relative position of surrounding

robots. The system consists of UV LED markers placed at the

quadrotors’ edges and UV-sensitive cameras covering as much

field of view as possible. Classic computer vision techniques are

then used to extract the position of the other agents from the

markers perceived by the ultra-violet cameras. More details about

the system are given in the following sections as we introduce the

hardware setup for the real-robot experiments.

3 Flocking controller

Overall, the proposed control architecture is an evolution of

the one presented in Albani et al. (2022) but also shares

similarities with Hauert et al. (2011). The main difference

between this approach and the aforementioned one and

others (Vásárhelyi et al., 2014; Vásárhelyi et al., 2018; Balázs

et al., 2020) is that we do not seek velocity alignment. The absence

is compensated by the use of a Gaussian mixture specifically

designed for the scope. Furthermore, we do not rely on the

friction component used in some of the aforementioned works to

over-damp the velocities, and no global constraints are in place

other than the migration force steering the swarm toward the

target.

Consider a robot ni in the set of robots N composing the

swarm, with i ∈ N used to identify a single unit. Let the robots’

position be denoted as xi
→ ∈ Rd with d representing the

dimension of the state space on which the robots are

moving—that is, d = 3 for aerial robots and d = 2 for ground

robots. Our flocking controller ensures coherent motion by a set

of control inputs ui
→ ∈ Rd so that xi

→t+1 � xi
→t + Btui

→t
, with Bt

being the control input model, identical for all robots, and

therefore omitted in the following. With these assumptions,

for a generic robot i, the proposed flocking controller writes

ui
→ � wi ∑

j∈N̂

nj
→+ 1 − wi( ) ti→+ gi

→. (1)

Each term in Eq. 1 identifies one of the three different

components of the proposed approach which are analyzed in

detail in sub-Section 3.2: ni
→ is defined as the proximal control

vector and is used for the neighbors’ proximal control, governing

the distances between the robots; ti
→

is the target proximal control

vector for the i-th robots and is used to steer the swarm toward

the target; and gi
→ is the ground proximal control vector which, as

the name suggests, keeps the swarm at a wanted altitude from the

ground. The sum range ~N ⊆ N is defined as the subset of agents

currently perceived by the focal agent. The number of perceived

neighbors is not predefined, is not capped, and only depends on

the technology used for the task with no assumption on it—for

example, communication devices and electro-optical sensors

provide different performances. Lastly, the variable wi is called

the importance weight and represents the main novelty

introduced in this paper.

3.1 Importance weight

The role of wi is to tune the contribution of the different

components in Eq. 1 in a way that fast and group-coherent

motion toward the target is achieved. This is a common problem

when designing flocking algorithms (Balázs et al., 2020; Albani

et al., 2022) where fast motion toward the target is desired but at

the same time, the swarm should take care to avoid collisions.

This trade-off is crucial for many real-world applications and

what we propose here is an alternate solution to the problem. In

the proposed formulation, the importance weight is computed by

means of a mixture of Gaussian functions as the one shown in

Figure 2 and is expressed as follows:

W ρ( ) �
1 −N ρ, μ1, σ1( ) if ρ≤ d

1
2

1 −N ρ, μ2, σ2( )( ) if d< ρ< 2d

1
2

N ρ, μ3, σ3( )( ) if ρ≥ 2d

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2)

Here, ρ is the function sampling point, and σ and μ represent

the variance and the mean, respectively, of the respective

FIGURE 1
Aerial point of view of a swarm unit in the test location in the
Abu Dhabi desert during the experiments.
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Gaussian N � e−(ρ−μ)
2/(2σ2). The parameter d represents the

wanted distance from the sampling point and is analyzed in

more detail as follows. The aforementioned set of equation builds

up the Gaussian mixture W(ρ) used to compute the importance

weight wi in Eq. 1 as follows:

wi � ∑
j∈N̂

W ρj( ), (3)

where the sampling point ρj is the distance of the focal robot

from its j-th neighbor drone. Thus, for every algorithmic cycle,

the focal robot proceeds with the computation of the virtual

potentials and the assignment of the weights to the neighbors

in a non-linear relation to their position. The idea behind this

concept can be easily understood from the graph in Figure 2.

In the plot, d = 10 is again the wanted distance from the

sampling point—that is, in the flocking case, from a neighbor.

The three regions marked as repulsion, attraction, and

separation identify the three different Gaussian functions

that build up the mixture and whose role is defined by the

respective label. The first region from the left is designed to

provide strong importance to agents that are closer than the

wanted distance reaching a null contribution at d and a peak at

0 distance—that is, imminent collision. The central area,

denoted as attraction and defined from d to 2d, again has

null contribution at the desired distance and increases up to a

value of 0.5 importance as the distance increases, ending in a

plateau two times the desired distance. The rationale here is to

enforce an intermediate consideration of the agents within

this range providing a slack formation that, however, still

secures coherent motion. The last stretch of the function is

named the separation phase, as shown in Figure 2, and it is

defined for a distance greater than two times the desired one.

In this phase, a dynamic and smooth cut-off takes place. This

is an important region that allows the smooth separation and

re-joining of sub-groups but, at the same time, is also crucial

in a large swarm to reduce oscillation and avoid the unwanted

disengagement of the focal robot from the group. A more

detailed analysis aided by simulated swarms of the

aforementioned concepts is provided in Section 4.5.

3.2 Proximal controls

Henceforth, to favor clarity in the description of the

algorithm, we assume the robot frame of reference to be

attached to its flight control unit and described by the right-

hand rule. The horizontal plane formed by the x-axis and y-axis is

parallel to the ground and not tilted with respect to the latter. The

z-axis is perpendicular to the horizontal plane and coherent with

altitude readings: positive z-values as the drone ascends and

negative as it descends. Robot positions are not expressed in

Cartesian coordinates but rather by using spherical coordinates: a

position in space represented by a triplet of scalars (ρ, θ, ψ) where

ρ identifies the norm of the vector starting from the origin and

pointing toward the desired position—also called radial

distance—and is the same as that used in Eq. 3; θ represents

the counter-clockwise rotation on the horizontal plane; and ψ is

the rotation from the initial meridian plane. The aforementioned

conventions are dictated by the need of abstracting sensory

readings for them to match among different hardware. As an

example, in this paper, we test both with UV camera readings and

GPS readings but this is completely transparent to the proposed

approach.

Next, we introduce the first of the three proximal control

components defining the rules of attraction and repulsion for

each robot in the swarm. The first, acting between the focal robot

i and its neighbors, is called neighbors’ proximal control and can

be described as a pair potential. The role of this component is to

balance attraction and repulsion forces, acting as a virtual spring

and keeping the required separation among the units. The

proximal control is expressed as follows:

ni
→ � ∑

j∈ ~N

fn ρj, θj,ψj( ) (4)

The function fn(·)—with · shorthand for the spherical coordinates
triplet (ρj, θj, ψj)—uses the Lennard–Jones virtual potential

(Ferrante et al., 2014; Amorim et al., 2021) to compute single-

axis components with the same parameters previously

investigated in Albani et al. (2022). The Lennard–Jones virtual

potential is written as follows:

Ln ρ( ) � −4αϵ
ρ

2
σ

ρ
( )2α

− σ

ρ
( )α[ ] (5)

FIGURE 2
Gaussian mixture in Eq. 2 used to compute the importance
weight. The three highlighted regions in the plot identify different
roles of the importance weight function. Parameter d is the desired
distance of the focal robot from the interest point.
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The parameters α and ϵ are set to 1.2 and 3, respectively,

following previous works of Ferrante et al. (2012) and

Amorim et al. (2021). The term d is again the desired

distance that is used to center the potential, while the variable

ρ represents the sampling point. This allows us to use a single

virtual potential both for attraction and repulsion forces and to

generate single Euclidean axis velocities as follows:

fn ·( ) �
fx
n � Ln ρ( ) p cos θ( ) p sin ψ( ),

fy
n � Ln ρ( ) p sin θ( ) p sin ψ( ),

fz
n � Ln ρ( ) p cos ψ( ).

⎧⎪⎨⎪⎩ (6)

Superscripts x, y, z indicate the axis of application of the

computed force, L indicates the Lennard–Jones virtual

potential, and finally ρ and θ are the same angles used in

Eq. 4 with the j subscript dropped for ease of interpretation.

With respect to Ferrante et al. (2014), Amorim et al. (2021),

and Albani et al. (2022), no manual cut-off over the distance is

in place. Indeed, in the previous approaches, a parameter was

used to arbitrarily decide when to cut the influence of the pair

potential between two units, whereas in this study, we relax

the need of fine tuning. This is because of the presence of the

importance weight. The latter, introduced in Sub-section 3.1,

automatically tunes the interactions between agents in the

same group, removing the need of a cut-off. The role of Eq. 6 is

to project the force magnitude as output along the three

Euclidean axes of motion, generating single-axis velocities.

The function L is centered at a specific desired distance

d—one of the few design parameters present in this

work—that is the same used in Eq. 2, representing the

wanted desired gap between two robots. In Eq. 1, the

neighbors’ proximal is balanced due to the use of the

importance weight whose role is to find a dynamic trade-

off between intra-swarm motion needed for formation

control, and the swarm flows toward a generic target.

The migration of the swarm is controlled by the target

proximal and is used to steer the unit—and the overall

group—toward the wanted location.

�t � ft ρ, θ,ψ( ). (7)

Again, the input triplet expresses the target position relative to

the focal robot and the function ft(·) determines the target

attraction and repulsion components. The desired distance dt
from the target in the case of way-point navigation is set to zero,

while in other scenarios, it can be non-null to avoid colliding with

the target.

Finally, the last term in the flocking controller equation is in

charge of arbitrating the distance of the swarm from the ground.

The ground proximal control considers the terrain as a single

point of contact and is defined similar to its antagonist neighbors

and target proximal control:

�g � fg ρ, θ,ψ( ). (8)

Again, the function fg(·) produces output velocities computed

using the Lennard–Jones virtual potential set to respect a desired

altitude.

4 Swarm experiments

We start investigating the performances of the proposed

controller by illustrating real-world experiments and their

FIGURE 3
(Left): a picture of the real hardware used during the experiments; (right) an abstract representation of the UVDAR setup used during the
communication-less experiments. In the left figure, the following elements can be recognized: MobilicomMCU-30 device—gray box on the bottom
of the drone; UV LEDs—small white LEDs located at the edge of each arm; UV-sensitive camera—on the right and the left of the drones peeking out
the main body.
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simulated counterpart, and then perform a more in-depth

simulation-based analysis. Simulations were performed using

the Flightmare simulator (Song et al., 2021). Field tests have

been performed in the Abu Dhabi desert over two different

experimental campaigns, in summer and fall. Due to the harsh

conditions presented by these settings, hardware failures have

been looming throughout the campaign: drone frames

bending due to the hot weather and sun, the GPS receiver

drastically diminishing its accuracy at sunset, and altitude

estimator failures causing the drones to crash. Nonetheless, as

thoroughly analyzed in the following sections, the proposed

approach is proven to be dynamic, repeatable, and robust to

unit malfunctions.

4.1 Metrics

For a formal evaluation of the experimental results, both

simulated and real, we propose different metrics. First, we evaluate

the cluster approach velocity or CAP, which expresses the ratio of the

average velocity of the clusterCwhile approaching a given way-point.

The CAP is expressed in relation to the maximum velocity input by

the operator Vmax, which results in values ranging between 1—the

average velocity for the cluster is equal to Vmax—and 0—no motion.

It is expressed as follows:

CAP � ∑i∈C Vi
�→

sin θwpi
�Vmax

(9)

The term Vi is the i-th agent velocity re-scaled with respect to the

angle pointing toward the way-point θwi as seen from the agent i.

Moreover, with the term cluster, indicated as C, we indicate a

group of connected robots. Two robots are considered connected

under two conditions: 1) both robots cannot perceive each

other—either because they are outside the visual or

communication range or 2) the value of the importance

weight depicted as the Gaussian mixture in Figure 2 is below

the arbitrary value of 0.05—that is, the force generated from any

of the two robots affecting the other is negligible.

As a second metric, we define the COR—correlated unit

flocking velocity—that we use to analyze the relation between

the single robot velocity Vi
�→

and the cluster average velocity V�c
�→

with �C, identifying the reduced cluster C without considering

the focal agent i. In contrast to the cluster approach velocity

that refers to the performance of the whole cluster, the

correlated unit flocking velocity is computed for each agent.

It is expressed as follows:

COR � Vi
�→

cos θ �C

�V �C

(10)

The term θ �C represents the angle between the cluster and the

robot motion vectors. We also note that the cluster motion vector

might not be aligned with the way-point when the COR is

high—that is, the group CAP can be lower than 1 when the

COR is very close to 1. Nonetheless, this metric is useful to

separate the cluster motion, expressed with the CAP and

originated from migration forces, from possible oscillations of

the single robot induced by the flocking controller. To this end,

we expect a value of 1 for the COR to indicate an optimal velocity

alignment between a single unit and the swarm, while more

commonly, in real experiments, values are expected to oscillate

around it.

As the third and fourth metrics, we report both the minimum

and the average distance among the agents in the cluster. These

are important to spot near-misses and collisions and to

understand the effect of the importance weight in the

proposed flocking controller.

FIGURE 4
Trajectories of 9 UAVs performing a diamond-shaped trajectory during real experiments. The color of the trajectory becomes lighter with the
flow of time; a lighter color represents the initial phase, while a darker color denotes the final phase of the experiments. The top plot (A) shows a
superposition of the trajectories performed by each UAV over three different experiments. The bottom plot (B) analyzes one single particular
experiment where two different crashes on two different units were experienced and highlighted here as yellow squares.
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4.2 Hardware setup

The platform of choice for the field experiments is the

MRS450, developed by the company Fly4Future and running

the MRS UAV-system researched by the multi-robot systems

group at the Czech Technical University in Prague (Baca et al.,

2021). It is shown in Figure 3-left. The custom platform consists

of a DJI f450 frame with four rotors, a Pixhawk 4 autopilot, and

an Intel NUC with an i7 Intel processor as an on-board

computer. From a sensory point of view, the drone is

equipped with a Garmin LiDAR Lite-V3 rangefinder for

heights above ground estimation, a standard Global

Positioning System module for self-localization.

Communication in real-world scenarios uses an ad-hoc peer-

to-peer network among the agents and from the swarm to the

ground control station (GCS) for telemetry—always present for

scientific purposes in communication-less experiments as well.

The physical and network layers are provided by the 2.4 GHz

radio-based devices Mobilicom MCU-30 Lite mounted on-board

the UAVs and by the MCU-200 plugged for monitoring

purposes. We used omni-directional low-power antennas on-

board all UAVs, while high-power antennas were used on the

GCS to ensure continuous communication with the robots for

safety reasons. Under this condition, the drones rely on a one-

hop mesh network built on a fully connected graph. No

centralization or off-load of computations from the swarm to

the GCS of any sort was put in place during the experiments. To

analyze the performances of the proposed approach in the

absence of communication, we installed on the UAVs the

ultra-violet direction and ranging (UVDAR) system (Walter

et al., 2019). The UVDAR is a relative mutual localization

system that enables estimation and tracking of relative

positions of the surrounding UAVs. The hardware

components that build up the system are a set of ultra-violet

LEDs mounted below the propellers, and two ultra-violet-

sensitive cameras were placed as shown in the schematized

representation of the drone in Figure 3-right. The setup relies

on two cameras that together provide a 320° horizontal and 110°

vertical field of view, leaving a 40° horizontal blind spot on the

back of the drone that was found sufficiently good for the

swarming experiments. The concept behind the UVDAR is to

operate in the UV spectrum due to primary natural light

sources—such as the sun and its reflections—emitting less

radiation in the chosen spectrum than in the visible light.

This generates a black-and-white image as the output that is

mostly black and is easy to process with computer vision

techniques. As with all the other software used for the

experiments, the software stack for the UVDAR runs

completely on-board each unit in the swarm and uses

computer vision algorithms to estimate the relative position of

the blinking UV LEDs of the neighbors.

4.3 Connected swarm

We start with the analysis of the real field experiments in a

communication-full scenario by exploiting the hardware setup

presented in the previous section. In all the communication-full

experiments, both real and simulated, each element of the swarm

only shares its own global position via broadcast. When a

neighboring robot within the range receives such information,

it translates it in its own local reference frame and feeds it to the

proposed controller. Indeed, the drone’s initial, intermediate, and

final positions are always expressed in respective relative

coordinates for each unit, and navigation way-points are

provided to each drone separately and in a distributed

fashion. For the real experiments, we opted for a static

network scenario. No physical obstacles other than the aerial

units were present and with the bandwidth distributed uniformly

among up to 12 communication units. In such conditions, the

observed communication persisted below 100 ms for all

UAV–UAV and UAV–GCS connections. In this scenario, the

maximum communication distance of the setup was empirically

evaluated to 650 m—that is, the GCS fully stopped receiving

telemetry information from the swarm after approximately

650 m.

Trajectories from the performed experiments are shown in

the plots in Figure 4 from which the repeatability of the proposed

solution can be immediately appreciated. The top plot presents a

top-down view of a set of three experiments with the swarm

performing a diamond-shaped trajectory while splitting and

FIGURE 5
Reported CAP metric for the simulated and real experiments
with communication. Higher y-values show better CAP
performance. The metric is not computed for the whole
experiments but only from the start until the group reaches
the merging phase at roughly 400 m from the starting position.
The last straight returning phase after the merging does not
provide additional information and is left out for the sake of clarity.
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merging along it. Lines in the plot define the trajectories of

different robots over each run. All the robots share the same

settings and the flocking controller used is the same as in Eq. 1.

The variances of the Gaussian functions used for the importance

weights in Eq. 2 are σ1 = 2, σ2 = 4, and σ3 = 6, respectively. Drone

nominal velocities are set to a maximum of 4 m/s for real

experiments and 6 m/s—larger velocities are investigated in

Section 4.5. The only exceptions are the provided way-points:

to achieve the separation and merging of the swarm, we provide

two different sets of way-points to the two different sub-groups.

The bottom plot in Figure 4 shows a detailed view of a single

run and focuses on the robustness of the approach by analyzing

the case where 2 out of the 10 robots deployed underwent a

critical system failure—a faulty barometer in one case and a

faulty motor in the other—and crashed from an altitude of

25 m—yellow dots in Figure 4B. It shows how the trajectories

of the swarm after the crashes are slightly, if not at all, affected by

the latter, showing the robustness of the approach tested on the

field. In fact, the rest of the swarm continued the mission even

though two elements of the swarm were missing, by adapting the

formation based on the number of drones left—green dots in

Figure 4B.

We then compute the previously introduced metrics with

respect to this particular set of experiments. The purple solid line

in Figure 5 shows the computed average of the CAP over the

three real-world experiments. From this, one can appreciate the

balancing role of the Gaussian kernel tuning the importance

weight coming from Eq. 1. Due to this, each robot in the swarm

actively tunes its own speed based on the position of the

neighbors, trying to generate an emergent behavior that keeps

a consistent approach velocity toward the target. During the first

phase, in Figure 5, the swarm accelerates and each unit reaches up

to 90% of the maximum velocity Vmax. After a short trait, the

“splitting” is initiated generating two different sub-groups

heading toward different way-points. The importance weight

kicks in as a reaction to the formation being broken and reduces

the overall velocity of the swarm down to 70% of Vmax. The latter

is an expected and required behavior to enforce a safe splitting

maneuver, and it is easily explainable by the visual analysis of

FIGURE 6
Four consecutive snapshots from a video of the experiments performedwith communication in the loop. Each snapshot captures an aerial top-
down view of the swarm during the “merging” phase. The images have been changed in color for readability purposes and provide an illustrative
example of two sub-swarmsmerging into one at the end of the diamond-shaped trajectory designed for the experiments. For the original video, see
the supplementary material.

FIGURE 7
Reported CORmetric for the simulated and real experiments
with communication. Close to 1 y-values show better COR
performance. The metric is not computed for the whole
experiments but only from the start until the group reaches
the merging phase at roughly 400 m from the starting position.
The last straight returning phase after the merging does not
provide additional information and is left out for the sake of clarity.

TABLE 1 Reported average distance between drones in the swarm and
its standard deviation during simulated and real experiments with
communication.

Average Standard deviation

Communication (sim) 10.48 2.03

Communication (real) 9.6 2.82

UVDAR 9.8 2.82
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Figure 2 and its mathematical representation. In other words, we

sacrifice the overall group speed for safety. This is carried out in

complete autonomy, with no operator intervention, and takes

place only when a particular maneuver—as merging and

splitting—is performed. During the creation of the two sub-

groups, all the robots are still within the sensing range and within

the consideration phase—that is, in the attraction phase where

d < ρ < 2d. Here, the overall value of w increases, reducing the

migration forces in favor of the neighbors’ consideration.

However, as soon as the two groups begin to form, the

importance weight decreases again, allowing coherent and fast

group motion. The two sub-swarms start accelerating again and

reach a consistent CAP toward the next way-points, one of the

two “edges” of the diamond. This phase is characterized by a

sudden turn of almost 90° that causes an imbalance in the

formation. As expected—but in this case, not desired—the

importance weight starts increasing again, and the overall

CAP decreases and then increases right after the formation is

re-established. The swarms speed up again until the “merging”

phase is reached. Figure 6 shows a series of consecutive snapshots

taken from the video provided as the supplementary material,

and serves as a visual illustration of the sub-swarms re-joining

during one of the real experiments. The two groups are forced to

re-join by their respective migration forces and approach each

other from a frontal direction. We observe a non-negligible

decrease in the speed of each group, a deceleration generated

by the regained consideration of the other half of the swarm. In

opposition to the “edge” phase where the action of the

importance weight needs mitigation to allow for faster change

of directions, during the “merging” phase, the reduction in the

velocity is a wanted behavior ensuring collision-free trajectories.

Additionally, Figure 7 shows the second of the proposed

metrics: the correlated unit flocking velocity or simply COR.

Being an indication of the velocity alignment between the unit

and the swarm, a stable value as close to 1 as possible is desired.

However, similar to the cluster approach velocity, the COR is

affected by the three different phases of the experiment. On

average, we measure an absolute value for the error of the

COR—displacement from the optimal value of 1—of about

0.085, a value that is quite low and, therefore, confirms the

robustness of the approach. We, however, observe peaks in the

“splitting,” “edge,” and “merging” phases. In between these

particular cases, characterized by either a group change of

motion or group velocities colliding—as for the case of the

merge, two low-variance zones are present. Associated with

the two straight paths connecting the start with the edge and

the edge with the end of the diamond, these two low-variance

zones are useful to analyze the velocity alignment of the swarm

during stable group flight. Overall, the analyzed unit velocity is

aligned with the rest of the swarm among all three different runs

but oscillations are still present. Indeed, the purple solid line in

Figure 7, representing the real experiments, oscillates around the

optimal value of 1. It is an indication of a slightly sub-optimal

FIGURE 8
Triangle-shaped trajectory performed in real experiments
with 7 UAVs equipped with UVDAR sensing technology. The
picture shows the trajectory of the center of mass of the swarm
over three experiments; different colors are associated with
each experiment. A circle represents the starting point, while a
triangle represents the endpoint of the trajectory.

FIGURE 9
Reported CAP—solid purple line—metric and COR—dashed
green line—metric for the real-field experiments with the UVDAR
sensing technology. Higher y-values show better CAP
performance. Close to 1 y-values show better COR
performance.
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balancing effect of the controller and, in particular, of the

importance weight. Acting as some sort of gradient descent

looking for the minima in the Gaussian kernel, the

importance weight fails in perfectly achieving an optimal and

stable formation. This is due to several factors, analyzed better in

the conclusion section of this work, such as noise, delayed

communication and actuation, and a low-rate control

step. Nonetheless, as presented in the following, the proposed

controller does an extremely good job in balancing the swarm

velocities even in non-trivial situations such as splitting, merging,

turning, and robot failures. The latter is particularly visible in the

COR plot at approximately 160 s. A peak in the variance of the

COR is clearly visible indicating a strong velocity

misalignment—due to one robot crash—that is immediately

recovered afterward.

To strengthen the aforementioned statements, we back up

the analysis of the proposed approach not only with field

experiments but also with an extensive evaluation in

simulation. For the simulated experiments, we increase the

nominal speed by half and push the swarm to perform the

same diamond trajectory with a Vmax of 6 m/s. CAP and COR

metrics for this set of experiments are shown in Figures 5 and 7,

respectively, and identified by a dashed green line. While the

cluster approach velocity is characterized by a lower variance

than its real-experiment counterpart, the correlated unit flocking

velocity presents higher variance. Indeed, the error for the latter

is 0.17, double the real experiment value. This increase in error is

expected because it is induced by higher admitted velocities the

effect of which is mitigated by the importance weight. This is

shown in Table 1 for both simulated and real experiments. The

table reports the average of the distances and their standard

deviation among the units during the tests. The results indicate

that in the presence of communication, the average displacement

from the desired inter-agent distance of 10 m is lower than the

observed GPS noise—measured to be 0.8 m. Moreover, the

simulated experiments also confirm the other properties

highlighted in the field experiments. Overall, the simulations

are very representative of the field experiments, which motivates

the use of the simulator to perform the large swarm investigation

presented in Section 4.5. The proposed controller does a good job

in the automatic tuning of the migration and swarm forces,

presents good repeatability, allows for non-trivial behavior, and

at the same time, produces consistent and aligned velocity

outputs for the single units in a distributed and decentralized

manner.

4.4 Communication-less swarm

We now aim at testing the adaptability of our algorithm to

different conditions and its sensor abstraction capacity, that is,

how easily different sensors and readings can be integrated with

the approach. To this aim, we perform further real-world

experiments in the complete absence of drone-to-drone

communication with increased sensor noise and perceptions

gaps. To this end, we use the UVDAR sensor described in

Section 4.2 to have drones estimate neighbors’ relative

positions directly on-board. As discussed in Section 4.2, the

UVDAR technology produces different sets of reading but

that can, as for the GPS, be easily adapted to work with the

FIGURE 10
Reported CAP metric values for a single agent over 10 runs
both for “our approach”—solid purple line—and the work of Albani
et al. (2022)—dashed light-green line. Higher y-values show better
CAP performance.

FIGURE 11
Reported COR metric values for a single agent over 10 runs
both for “our approach”—solid purple line—and the work of Albani
et al. (2022)—dashed light-green line. Close to 1 y-values show
better COR performance.
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proposed approach. We also note that the precision of the

UVDAR technology is lower than that of the Global

Positioning System and decreases super-linearly with the error

from the optimal perception distance. For these new sets of

experiments, we propose a different and shorter trajectory with

no splitting and merging behaviors. The triangle-shaped

trajectory used for these experiments is shown in Figure 8

where we report three different runs performed with 7 robots.

Lastly, the hardware setup used for the experiments—as

shown in Figure 3—presents a gap in the perception of 40°, not

allowing the drone to perceive any of its neighbors on the

back. This not only has the effect of hiding specific neighbors

but also creates fluctuations to the potential functions when

one or more units are at the edge of the perception, entering

and exiting the sensing field and, thus, adding and removing

units from the set of neighbors. From the data collected during

the experiments, it was found that the number of UAVs

perceived during the flight is on average 3.87, which

corresponds to 55% of the swarm. Analyzing the error on

perception on each axis, it was found that the error on the XY

plane is higher with respect to the z-axis. In fact, the error is on

average 4.18 m on the x-axis, 5.35 m on the y-axis, and 1.49 m

on the z-axis.

CAP and COR analyses of these are shown in Figure 9. The

cluster approach velocity of the swarm aligns with the one

previously reported but with higher variance. In fact, we

observe the same decrease in velocity at the edges during

turns, followed by an immediate increase and group balancing

effect induced by the flocking controller. The COR, however,

shows a non-negligible imbalance in the unit velocities. Even in

the presence of this, the swarm cohesiveness is not affected and,

as shown in Table 1, the average intra-swarm distance and its

variance over the three runs are comparable with the

communication-full experiments.

4.5 Large swarm investigation

In this section, we focus on the scalability of the proposed

approach and evaluate the performances of our solution in larger

swarms of 25 units fully connected by communication. For this

evaluation, we rely on the same simulation environment

previously used to replicate the field experiments and

implement a second approach (Albani et al., 2022) for

comparison with the newly proposed one. For each approach,

we run a total of 10 experiments. At the beginning of each

experiment, drones are spawned in a grid fashion and in

predefined locations 10 m apart from each other, with a

uniform random displacement of 3 m around the point. Next,

the swarm is given a common way-point placed at a 1-km

distance and a maximum velocity Vmax of 8 m/s. The

parameters for the approach proposed in this paper are

identical to those used during the field experiments: the

distance among the agents is 10 m and values for the

Gaussian kernel are σ1 = 2, σ2 = 4, and σ3 = 6. On the other

hand, for the setup of the competing solution, we follow the same

setup proposed in the original work and set the distance among

the robots to be 10 m. Results are shown in Figure 10 for the

cluster approach velocity—CAP—while Figure 11 shows the

correlated unit flocking velocity—COR. In both plots, a purple

solid line identifies the performances of “our approach,” while a

dashed light-green line is associated with the performance of the

competing approach. We note that both plots are cut after 100 s

and before reaching the final position. This is done on purpose

due to the fact that over the 10 runs, the swarm does not show

identical behavior and reaches the endpoint at different time

instants, generating high noise and variance, providing no

information about performances on the long run. In other

words, we only focus on what can be thought as the initial

steady state part of the behavior, leaving out the final phase.

Analysis of the CAP shows that our approach is characterized

by a lower average velocity than the other approach that is,

however, balanced by a non-negligible lower metric variance.

This is related to the absence, as shown in Albani et al., of a

proper balancing action as the one introduced by the importance

weight. The work by Albani et al. presents a simple linear

combination of the components that, on one side, increases

the average CAP metric value but, on the other side, fails to

smooth agent interactions. From a practical point of view, the

latter means that the swarm center of mass moves at a roughly

constant speed, while the competing approach is characterized by

strong oscillations and sort of intermittent motion. This, caused

by sudden acceleration and deceleration, generates a disruption

in the swarm motion that might cause collisions and swarm

separation. This is indeed shown in Table 2. The first row of the

table presents results for “our approach,” and we note the

complete absence of collisions and no separation—only one

cluster is detected throughout the experiment. The bottom

row, instead, reports the results for the comparing approach

that, at a speed of 8 m/s, is not able to avoid separation and

collisions. Indeed, over the 10 runs, the latter shows an average of

6.88 agent collisions with a group separation creating roughly

two separate clusters every two runs.We also highlight how, from

an energy efficiency point of view, a smoother cruise increases the

time of flight. A property of the system is drastically linked to the

change of thrust required for sudden acceleration and

deceleration. Figure 11 confirms the CAP analysis and adds

TABLE 2 Reported average number of detected clusters and collisions
over 10 runs for “our approach” and the work of Albani et al.

Clusters Collisions

Our approach 1 0.0

Albani et al. (2022) 1.6 6.88
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further strength to the aforementioned statements showing that

single-drone and swarm velocities are not aligned toward the

same direction. This is true for both approaches, but while “our

approach” has a lower COR error of 0.15 on average, the other

approach shows an error of 0.48.

5 Conclusion and future work

In this work, we presented a novel controller for a swarm of

unmanned aerial vehicles. The proposed mechanism builds upon

the virtual potential field theory and presents an automatic

tuning mechanism of the forces that has been proven to work

well both in simulation and in real-word settings. The

experiments, performed with different maximum velocities

and different group sizes, confirmed the replicability and

effectiveness of the approach. As demonstrated in the paper,

by only relying on local interactions and due to smooth tuning of

these, the flocking controller also offers robustness and

adaptability to robot faults, noisy and absent readings induced

by blind spots in the perception. Furthermore, it has been shown

how input abstraction allows for different sensors to be

integrated with the approach. In fact, the only input required

by the algorithm is a set of spatial coordinates with no

information about the neighbors’ directions, environment

boundaries, or anything similar. This aligns not only with

common GPS readings but also with depth cameras, ultra-

wide bands, and ultra-violet sensors.

Overall, we proposed a light-weight approach with

potentially no upper-bound limit on the scalability. Along

with the ease of implementation, we believe that these make

our solution appealing to all those applications and platforms

that require high computational power for other tasks and leave

out a small percentage of it for group behaviors. Unmanned

aerial systems fall within this category.

Among all the possible improvements and further

analyses, two immediate future works we intend to proceed

with are as follows: to test the proposed solution in the

presence of obstacles and to improve the speed and stability

of the controller. We aim at integrating external objects in the

controller by acting directly on its structure, allowing for extra

repulsive elements to be considered—similar to neighbor

collision avoidance. On the other side, increasing the

stability and the speed of the swarm will require a deeper

analysis of the higher-order dynamics of the system. In

particular, direct acceleration control of the units appears

to be a possible solution to smooth the overall controller

and deal with oscillations. Indeed, during real-world tests,

we observed that the control input model—as introduced in

Section 3—plays a major role in smoothing the oscillations. An

aggressive low-level controller on a capable drone, due to it

being more reactive, makes the overall approach more

susceptible to noise and misreadings, thus leading to an

increase of the oscillations. A less aggressive controller on a

low-performing platform, on the other side, translates to

smoother behavior—due to lack of performances—but also

reduces the overall efficiency of the approach. To this end, we

are working on an improved version of the proposed controller

which will leverage third-order dynamics and generate faster,

smoother, and more controllable behaviors.

Lastly, we observe that the use of different sensors yields

different challenges among which we identified the presence of

blind spots. Even though the latter was introduced by our

hardware setup and can be mitigated by a better disposition

of the cameras, it requires further analysis as we believe in the

interest of the scientific community to study how the controller

reacts to edge perceptions.
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