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A rapidly growing field of aquatic bio-inspired soft robotics takes advantage of the
underwater animals’ bio-mechanisms, where its applications are foreseen in a vast
domain such as underwater exploration, environmental monitoring, search and rescue,
oil-spill detection, etc. Improved maneuverability and locomotion of such robots call for
designs with higher level of biomimicry, reduced order of complex modeling due to
continuum elastic dynamics, and challenging robust nonlinear controllers. This paper
presents a novel design of a soft robotic fish actively actuated by a newly developed kind of
artificial muscles—super-coiled polymers (SCP) and passively propelled by a caudal fin.
Besides SCP exhibiting several advantages in terms of flexibility, cost and fabrication
duration, this design benefits from the SCP’s significantly quicker recovery due to water-
based cooling. The soft robotic fish is approximated as a 3-link representation and
mathematically modeled from its geometric and dynamic perspectives to constitute the
combined system dynamics of the SCP actuators and hydrodynamics of the fish, thus
realizing two-dimensional fish-swimming motion. The nonlinear dynamic model of the SCP
driven soft robotic fish, ignoring uncertainties and unmodeled dynamics, necessitates the
development of robust/intelligent control which serves as the motivation to not only mimic
the bio-mechanisms, but also mimic the cognitive abilities of a real fish. Therefore, a
learning-based control design is proposed to meet the yaw control objective and study its
performance in path following via various swimming patterns. The proposed learning-
based control design employs the use of deep-deterministic policy gradient (DDPG)
reinforcement learning algorithm to train the agent. To overcome the limitations of
sensing the soft robotic fish’s states by designing complex embedded sensors,
overhead image-based observations are generated and input to convolutional neural
networks (CNNs) to deduce the curvature dynamics of the soft robot. A linear quadratic
regulator (LQR) based multi-objective reward is proposed to reinforce the learning
feedback of the agent during training. The DDPG-based control design is simulated
and the corresponding results are presented.
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1 INTRODUCTION

The nascent field of bio-inspired robotics has gained a huge
popularity over the past 2 decades with numerous designs and
developments contributed to the community (Pfeifer et al., 2007;
Kim et al., 2013; Shi et al., 2015; Laschi et al., 2016; Christianson
et al., 2019; Olsen and Kim, 2019), envisioning their applications
in domains such as environmental monitoring, deep-sea
exploration, search and rescue, and disaster response
(Morgansen et al., 2007; Zheng Chen et al., 2010; Marchese
et al., 2014; Phamduy et al., 2015). Taking advantage of
natural biological structures, functions, and motions of aquatic
animals aids us in creating underwater robots which are energy
and locomotion efficient, and possess agile maneuverability, for a
diverse range of purposes. Our research focuses on developing a
biomimetic underwater soft robotic fish that can self-learn its
locomotion to achieve different goals such as regulating its angle
of orientation and adapting to variable swimming speeds
(Rajendran and Zhang, 2018), which eventually serve as
decomposed control tasks for high-level control objectives
such as traversing along a planned trajectory and studying fish
swarming behavior like schooling and shoaling.

The biological fish that employ body/caudal fin for propulsion
typically adopt one of the following swimming styles, namely
carangiform, sub-carangiform, anguilliform, and thunniform
(Videler, 1993). Most of the traditional robotic fish prototypes
designed in the past, comprise of two or more serially connected
structures (Wen et al., 2012; Zhong et al., 2017), whose
coordinated discrete movements result in undulations
mimicking one of these swimming styles. The body of these
robots are structurally constructed using rigid materials such as
plastic, metal and glass-fiber (Raj and Thakur, 2016), which
consequently increases the rigidity and mass of the robot. To
overcome this limitation, over the past demi-decade, researchers
have been exploring the usage of soft materials (Lauder et al.,
2011) such as silicone rubber/elastomer (Katzschmann et al.,
2018), silicone prepolymer (Aubin et al., 2019) and silk hydrogel
(Donatelli et al., 2018) to construct the body of the fish robot
(Olsen and Kim, 2019). The adoption of such soft materials in the
construction of the robotic fish greatly contributes towards
mimicking the flexibility of the biological fish body, thus
generating a continuous deformation and streamlined
displacement of water.

Traditional actuators such as electrical motors and pneumatic/
hydraulic cylinders which are employed to realize fish
undulations in the aforementioned multi-link robotic fish
prototypes, although offer a high output force/torque, are
generally heavy and quite rigid, thus making fish robots less
flexible. Hence, the use of soft actuators such as artificial muscles
like pneumatic artificial muscles (PAM), ionic polymer-metal
composites (IPMC) (Chen, 2017; Olsen and Kim, 2019), dielectric
elastomer actuators (Christianson et al., 2019), and super-coiled
polymers (SCP) (Yip and Niemeyer, 2017; Rajendran and Zhang,
2018; Simeonov et al., 2018) is on the rise. Not only are artificial
muscles slender, but also strong, flexible, lightweight, and
analogously compliant to biological muscles. This offers
appealing advantages to fish robots in terms of flexibility,

maneuverability, propulsive energy efficiency and the ability to
precisely mimic the biological fish from its anatomical
perspective.

Over the past 3 decades, researchers from a wide field of
disciplines have performed numerous visual experiments and
numerical analysis to study and model the various swimming
styles in different species of fish (Triantafyllou et al., 2000; Lauder,
2015; Webb and Gerstner, 2021). Most of the traditional models
follow Lighthill’s elongated-body theory describing fish
locomotion as traveling waves (Lighthill, 1971), or employ a
mathematical dynamic model derived via system identification.
As contemporary research focuses onmimicking the physical and
biological structure and function of aquatic animals using soft
materials, the necessity of arriving at a precise dynamic model for
motion prediction and controller design is also simultaneously
increasing. Nevertheless, this is becoming correspondingly
difficult due to the continuum dynamics and high
dimensionality involved in soft robots.

While different classical and modern control techniques have
been analytically researched and experimentally developed, the
nonlinearity of contemporary soft robots keeps rising
continuously. As several robotic fish prototypes adopt various
closed-loop control techniques such as PID control (Yu et al., 2004;
Berlinger et al., 2021), PI control (Zhang et al., 2015a), central
pattern generator control (Jeong et al., 2011), pre-trained neural
networks (Thuruthel et al., 2019), robust control (Zhang et al.,
2015b), to improve the performance of locomotion, others employ
open-loop control techniques whereby a predefined swimming
profile is generated to perform a coded set of actions (lookup table)
which is predominantly used in cases of complex or highly
nonlinear robotic fish dynamic models (Yu and Wang, 2005;
Korkmaz et al., 2012). However, in order to address the
problems of high nonlinearity and intrinsically infinite system
dimension, researchers are looking into various present-day
techniques in artificial intelligence (Rajendran and Zhang, 2018;
Bhagat et al., 2019; Thuruthel et al., 2019), more specifically
behavior-based or adaptive machine learning-based control.

Our previous work investigated the performance of SCP
actuators while submerged in water and the compatibility of
using SCP in a simple robotic fish model (Rajendran and
Zhang, 2017). SCP, a recently developed artificial muscle
actuator, is lightweight, flexible, strong with a high power-to-
weight ratio and fabricated with silver-plated nylon threads (Yip
and Niemeyer, 2017). Our study also showed through simulation
that speed control of a one-dimensional robotic fish was
successfully done with SCP actuators using reinforcement
learning (Rajendran and Zhang, 2018; Sutton and Barto, 2018).
Nevertheless, besides employing a sparsely discretized state space
in the dynamics, our previous model is dimensionally limited
which is too simplified to mimic the biological fish and study
the swimming motion. This enforced the use of a lookup table
which comprised of all the state-action combinations. However,
since physical robots comprise of continuous action and state
spaces, the use of Q-learning algorithm (Watkins andDayan, 1992)
in such a continuous environment would require an enormous
lookup table, as a result, drastically increasing the number of
computations.
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In this paper, we propose a novel approach in designing a soft
robotic fish using antagonistically arranged SCP artificial muscle
actuators. The soft robotic fish is modeled geometrically as a
three-link model combined with the antagonistic configuration of
the SCP muscles, and modeled dynamically by incorporating the
SCP actuator dynamics (Rajendran and Zhang, 2017; Yip and
Niemeyer, 2017) with the hydrodynamic forces (Wang et al.,
2015) to describe its two-dimensional swimming motion. To
overcome the predicament of having a highly nonlinear and
multi-dimensional control system, in addition to consideration of
control computation times, this paper proposes a learning-based
controller design approach for the dynamically modeled soft
robotic fish using an improved, continuous reinforcement
learning method, namely deep deterministic policy gradient
(DDPG) algorithm (Lillicrap et al., 2015), which adopts an
actor network to perform an action given a state, and a critic
network to criticize the chosen action. To exemplify the use of
DDPG in the dynamic model, this paper investigates the closed-
loop control of the swimming orientation and path following of
the soft robotic fish on a 2D plane.

This paper is organized as follows. Section 2 gives a brief
overview on the experimental performance of SCP muscles when
submerged in water. Section 3 presents the design of a three link
soft robotic fish and its two-dimensional dynamic model. Section
4 illustrates and elucidates the geometric and dynamic model of
the robotic fish. Section 5 proposes the deep-deterministic policy
gradient learning based control design for the soft robotic fish to
self-learn its swimming profiles to regulate the orientation and
achieve path following by the fish. Simulation results are
presented to validate the proposed controller design in Section
6. Finally, conclusion remarks are provided in Section 7.

2 PRELIMINARY BACKGROUND

Our previous work presented a two-link flapping prototype
driven by an SCP muscle actuator and investigated its
performance by submerging and testing the entire two-link

prototype in ordinary non-deionized non-conductive tap water
at room temperature (Rajendran and Zhang, 2017). As a proof of
concept of the SCP actuation, we conducted the experiment using
one 2-ply muscle as shown in Figure 1A, which was attached to
one side of the two-links connecting both the ends spaced at 2.5
cm away from the links. Initially, only a little deformation (less
than 0.5%) was observed in the SCP actuators when immersed in
water. We conjecture that this comes from the fast heat
dissipation in water, which eventually causes the muscle to
hardly contract. To overcome this problem the muscle was
coated with silicone conformal spray along with a layer of
siliconized acrylic caulk as shown in Figure 1B and also a
higher voltage (2 V per centimeter of the muscle) for
excitation was applied. This resulted in a deformation of
around 1%, eventually causing the flap angle to change by 16
degrees approximately. Moreover, the time taken for the flap to
return to its original position was around 2 s on average, which is
five times faster than when tested in air. From the results, it was
evident that the recovery speed of the SCP actuator was
significantly improved when tested in water. However, the
maximum attainable flap angle became smaller in water. Also,
a higher voltage had to be applied to the SCP actuator thus
consuming more power. Having made these inferences, it
comes to a design trade-off between actuation/recovery speed
and energy consumption when using enhanced SCP actuators
for underwater robots like robotic fish. With the proposed
antagonistic design and muscle contraction in alternating
directions, fish-like swimming is achievable with the SCP actuators.

Following this, aiming towards a phased approach at
developing reinforcement learning-based control for the soft
robotic fish, a foundational Q-learning (Watkins and Dayan,
1992) based controller was designed and simulated to control the
speed of a three-link robotic fish which consisted of discretized
state and action spaces (Rajendran and Zhang, 2018). The robotic
fish was restricted to one-dimensional locomotion and the agent
was trained until the Frobenius norm between the current and
previous Q-tables was minimized to a threshold. We observed
from the simulation results that the robotic fish followed the
learned swimming profile and regulated the speed to the reference
value with a very small speed control error. Eventually, the
averaged acceleration became zero, thus maintaining a quasi-
steady-state forward swimming velocity. Another interesting
observation was that the agent forcefully went to its resting state,
i.e., all actuators at rest, in order to lower the speed when it exceeded
the desired velocity. Likewise, with different desired velocities, we
found a difference in the flapping frequency and amplitude.
Considering the coarse scale of discretization, we consider the
learning based speed control design succeeded in the simulation
example, thus promising a scope to design advanced learning-based
controllers for continuous action and state spaced robots.

3 DESIGN OF A 3-LINK SOFT ROBOTIC
FISH

The design of our soft robotic fish as shown in Figure 2, is
inspired by the natural and biological structure of Tilapia cichlid

FIGURE 1 | SCP artificial muscles (Rajendran and Zhang, 2017). (A)One
2-ply SCP muscle coated with silicone and acrylic caulk; (B) three 2-ply SCP
muscles twined together.

Frontiers in Robotics and AI | www.frontiersin.org March 2022 | Volume 8 | Article 8094273

Rajendran and Zhang Learning-Based Control of Robotic Fish

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


fish species, which is specifically chosen to moderate the amount
of volumetric material in the construction of the soft robotic fish
body, and to build a lighter robot for greater maneuverability. The
entire 3D model of the fish is designed using freeform modeling
in AutoDesk Inventor, by tracing the front, side and top views of
the cichlid fish as shown in Figures 3A–C, to maintain the shape
of a streamlined body. Two symmetric molds are designed based
on the generated CAD fish model and then 3D printed using PLA
filament as shown in Figure 3D. These molds are then casted with
Ecoflex 00–20 silicone rubber by Smooth-On with a curation
period of 4 h.

Once the silicone rubber bodies are cured, three links which
form the skeletal bone of the fish to provide rigidity to the
robot’s soft body in the process of actuation, are designed and
3D printed. The three links are attached in series together using
the hinges on the links as shown in Figure 3E and by inserting
straightened steel paper clips to provide a medium of pivoting.
To form the electrical connections, steel crimps and copper
tapes are attached around the poles on both sides of the links.
The poles on the first and third links are connected together to
form the common ground terminal. Long flexible wires are

connected to the rest of the four poles on the second link, and
one wire to the ground terminal, resulting in five wires that exit
the robot.

To increase the propulsion efficiency of the robot, a truncated
flat type passive caudal fin is attached close to link three using a
flexible silicone rubber adhesive. This fin is casted on a 3D
designed and printed shallow mold, using the same silicone
rubber material. Within 12 min of the material being casted,
thinly 3D printed semi-flexible rods which mimic the fin rays in a
caudal fin are placed on a growing fashion in the casted mold, so
that the fin rays are submerged, thus forming a semi-flexible
caudal fin once cured. Two pole extensions are attached on the
newer version of our soft robotic fish in order to provide more
room for the bundled SCP actuator, consequently exhibiting
more deformation in the actuator resulting in higher
deflection of the tail. The pole extensions also have the ability
to house multiple actuators in parallel.

4 3-LINK ROBOTIC FISH MODEL

The soft robotic fish is modeled from its geometrical and
dynamical perspectives. In this paper, the soft robotic fish is
constrained to a planar swimming motion, thus fixating its
altitude.

4.1 Geometric Model
The geometry of the 3-link fish robot with the artificial muscle
actuators attached, is illustrated in Figure 4A, is defined with
respect to the soft robotic fish’s body or local reference frame F b

with 2D Cartesian coordinates given by (x, y). The fish robot is
modeled as three serially connected rigid links l1, l2 and l3, which
correspond to the head, body and tail links respectively, thus
forming joints j1 and j2. Link l2 is orthogonal to the y axis and
fixed to the x axis in the body frame with its center defined as the
origin O of body frame. Four SCP muscle actuators m1, m2, m3,
and m4, whose current lengths are given by L1, L2, L3, and L4,

FIGURE 2 | Soft robotic fish with passive caudal fin, bundled SCP
actuator and pole extensions attached.

FIGURE 3 | Soft robotic fish design components. (A–C) Illustration of the
robotic fish CAD design, from left to right: front, side and top views (Rajendran
and Zhang, 2018); (D) 3D-printed fish molds (Rajendran and Zhang, 2018);
(E) 3-link hinged attachment.

FIGURE 4 | Robotic fish modeling. (A) Geometric model schematic; (B)
dynamic model schematic.
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connect the ends of the subsequent pairs of links (l1, l2) and (l2, l3)
on either side thus forming two agnostic-antagonistic muscle
pairs, as illustrated in Figure 4A. With the lengths of the three
links denoted as |l1|, |l2|, and |l3|, the length of a muscle mi is
expressed as

Li � di |l1| + |l2|( )[[i∈ 1,2{ }]] |l2| + |l3|( )[[i∈ 3,4{ }]], (1)

where di is the deformation ratio between the current and original
resting length of a muscle mi satisfying i ∈ (1, 2, 3, 4), and [[ (·) ]]
denotes the Iverson bracket such that [[ (condition) ]] � 1 when the
condition is true and equal to 0 otherwise (Knuth, 1992). The
coordinated actuation of these SCP muscles causes
deformation with respect to their lengths, consequently,
causing flapping movements of the links l1 and/or l3 with
respect to link l2. The angles formed due to the rotations of
links l1 and l3 around joints j1 and j2 are denoted by the flap or
deflection angles ψj1

and ψj2
, following Fleming’s right hand

rule. The geometric model defining these two angles can be
summarized by the expressions

ψj1
� −1( )δi2 cos−1 L2

i − |l1|2 − |l2|2
2|l1‖l2|( )[[i∈ 1,2{ }]]

, (2)

ψj2
� −1( )δi3 cos−1 L2

i − |l2|2 − |l3|2
2|l2‖l3|( )[[i∈ 3,4{ }]]

, (3)

where δi2 and δi3 are Kronecker delta functions, and i represents
the current muscle which is activated. From past research
conducted by fish biologists and roboticists, a maximum
oscillatory amplitude by a flap angle of 25° is adequate (Zhong
et al., 2017) to achieve a considerable swimming speed of the
robotic fish, and is easily achieved in the aforementioned
geometric model with a deformation of an SCP muscle
reaching as low as 2.5% or di � 0.025 (Rajendran and Zhang,
2017; Rajendran and Zhang, 2018), provided that the muscles are
placed close to the links unlike the experimental prototype
described in Section 2.

4.2 Dynamic Model
The schematic of the soft robotic fish along with relevant
reference frames and variables that describe the motion of
the robot is illustrated in Figure 4B. The inertial or
stationary frame of reference is denoted by F i which
comprises of 3D Cartesian coordinates (xi, yi, zi) and origin
Oi, and represents all of the global positions and orientations
of the fish. The origin of the body frame O also corresponds
to the center of mass of the robotic fish. The dynamic model of
the soft robotic fish employed in this paper encompasses the
dynamics of the SCP actuator, the geometry of the 3-link fish
model, and the hydrodynamic forces which include the drag
and thrust with respect to the planar dynamics of the soft
robotic fish.

The entire dynamics of the soft robotic fish driven by
artificial muscles is modeled using two subsystems. The first
subsystem comprises of the thermo-electrical and thermo-
mechanical dynamics of the SCP muscle actuators which
takes in the actuating voltage potentials and outputs the

deformations in the muscles’ lengths (Yip and Niemeyer,
2017). The system input vector is given by
u � [u1, u2]T � [−V1 + V2,−V3 + V4]T, where Vi represents
the actuating voltage potential applied to the muscle mi

where i ∈ (1, 2, 3, 4). The antagonistic arrangement of the
muscles restricts actuation to only one or none of the muscles in
the pairs (m1, m2) and/or (m3, m4) at a time, consequently
holding the expression V1V2 � V3V4 � 0 true at all times. The
system dynamics of the SCP actuator derived from (Yip and
Niemeyer, 2017; Rajendran and Zhang, 2018) are incorporated
in this model to suit the antagonistic configuration of the
actuators. The dynamics mainly include the change in muscle
length ΔLi, rate of change in muscle length _ΔLi and change in
temperature ΔTi with respect to the ambient temperature T0 of
the actuator mi where i ∈ (1, 2, 3, 4). Due to the antagonistic
configuration we consider ΔL1 � −ΔL2 and ΔL3 � −ΔL4. The
states of the SCP actuator subsystem can be collectively put as
xmi � [ΔLi, _ΔLi,ΔTi]T � [xmi,1, xmi,2, xmi,3]T where i ∈ (1, 2, 3, 4).
The complete dynamic model of the SCP actuator subsystem is
then given by

_xmi,1 � xmi,2, (4)

_xmi,2 �
−1( ) i∈ 1,3{ }[ ][ ]

Mm
Fm2 − Fm1( )[[i∈ 1,2{ }]]

Fm4 − Fm3( ) i∈ 3,4{ }[ ][ ],
(5)

_xmi,3 �
u2 i∈ 1,2{ }[ ][ ]
1 u2 i∈ 3,4{ }[ ][ ]

2 − λRmxmi,3

CthRm
, (6)

where Mm is the mass of the SCP muscle actuator, λ is the
absolute thermal conductivity, Rm is the electrical resistance of
the actuator, Cth is the coefficient of thermal mass, Fmi is the
force generated by the muscle mi where i ∈ (1, 2, 3, 4) and is
given by

Fmi � cmxm3 − kmxm1 − bmxm2, (7)

where bm is the damping coefficient, cm is the thermal constant
and km is the mean stiffness constant of the SCP actuator.

The deformed lengths of the muscles are used to derive the soft
robotic fish’s profile or discretized curvature in its body frame
using the 3-link geometric model as equated in Eqs. 1–3.
Consequently, the joint angles establish the input to the
second subsystem which comprises of the planar positional
dynamics and hydrodynamics of the robotic fish. The states of
the second subsystem are collectively given by the vector
x � [xi, yi, θ, vx, vy ,ωz]T � [x1, x2, . . .x6]T, where xi, yi, and θ
represent the pose (2D Cartesian coordinate position and
orientation) of the robot respective to its inertial frame F i,
and vx, vy, and ωz represent the surge, sway and angular
velocities of the robot respective to its body frame F b. The
angular velocity of fish is also termed as swinging motion
(Farideddin Masoomi et al., 2015). The output vector of the
entire soft robotic fish system is given by y � [θ,ωz, α, vtotal]T,
which is primarily considered in the design of the learning-based
controller to implement various control objectives. In the
aforementioned system output vector, the angle of attack of the
robotic fish is expressed as α � tan−1 (x5/x4), and vtotal �

������
x2
4 + x2

5

√
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is the swimming velocity of the robotic fish. The kinematic and
dynamic model of the soft robotic fish is then equated by

_x �

x4 cos x3 − x5 sin x3

x4 sin x3 + x5 cos x3

x6

Mf +My( )x5x6 + Fx

Mf +Mx

− Mf +Mx( )x4x6 + Fy

Mf +My

τz
Jz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where Mf is the mass of the robotic fish, Mx and My are the
added masses along the x and y directions respectively, Jz is
the mass moment of inertia of the robotic fish about the z
axis, Fx and Fy are the forces acting along the x and y
directions in the body frame, and τz is the moment or
torque about the z axis. These forces and moment are
expressed as

Fx � −FT1 cosψj1
+ FT2 cosψj2

− FD cos α
+FL sin α,

(9)

Fy � FT1 sinψj1
+ FT2 sinψj2

− FD sin α
−FL cos α,

(10)

τz � MDz + FT1KM1 sinψj1
+ FT2KM2 sinψj2

, (11)

where FT1 and FT2 are the hydrodynamic thrust forces exerted
due to rotations of the links l1 and l3 around joints j1 and j2
respectively. FD is the hydrodynamic drag force acting on the
opposite direction of the robot, and FL is the lift force acting
orthogonal to the robot which contribute predominantly to
the forward motion of the robot.MDz is the damping factor of
the moment and KM1 and KM2 are the moment coefficients of
joint j1 and j2 respectively. The hydrodynamic forces of the
robotic fish follow (Wang et al., 2015) and are determined
from

FD � KD + KDαα
2( )v2total, (12)

FL � KLαv
2
total, (13)

MDz � −KMω
2
zsgn ωz( ), (14)

FT1 � Kj1|l1| _ψj1

2, (15)

FT2 � Kj2|l3| _ψj2

2. (16)

Here, KD is the drag coefficient of the soft robotic fish body,
KDα is the drag coefficient pertaining to the swimming direction
respective to the body frame, KL is the lift coefficient, KM is the
damping coefficient with respect to the rotational velocity ωz

in the body frame of the robot, Kj1 and Kj2 are the thrust
force coefficients pertaining to joints j1 and j2, and their
corresponding flapping angular velocities _ψj1

and _ψj2
are

obtained by taking the time derivatives of the head and tail
flap angles ψj1

and ψj2
that are expressed in Eqs 2, 3 respectively,

thus giving

_ψj1
� −1( )δi1 2Lixm2

2|l1‖l2|
�����������
1 − cos2 ψj1

( )√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠[[i∈ 1,2{ }]]

, (17)

_ψj2
� −1( )δi4 2Lixm2

2|l2‖l3|
�����������
1 − cos2 ψj2

( )√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠[[i∈ 3,4{ }]]

. (18)

The aforementioned soft robotic fish dynamics is
approximated as a simplified three-link model, which ignores
the fluid structure interactions, however, considers the
hydrodynamic forces of robotic fish per se in its dynamic
model. The fish prototype presents its own limitation such as
bounded tail-flapping range due to the geometric constraints
involving the SCPs, thus restricting the range of undulations too.
Additionally, the actuation frequency of the soft robotic fish is
implicitly restricted by taking the SCP dynamics into
consideration, whereby the SCP’s time constant approximates
to 0.8 s when submerged in water (Rajendran and Zhang, 2017),
thus bounding the upper actuation frequency to ≤ 1.25Hz.

5 MOTION PLANNING OF SOFT ROBOTIC
FISH USING LEARNING-BASED CONTROL

This section aims at designing a learning-based controller to meet
various motion planning control objectives of the soft robotic fish
which includes 1) regulating the yaw angle θ and 2) path
following via tracking given waypoints. Nevertheless, the
consolidated dynamics of the various subsystems constituting
the soft robotic fish model as given in Eqs 4–18, is fairly complex
and nonlinear, exhibits hysteresis, and uncertainties usually in
dynamics of the actual systems, thus necessitating a robust
nonlinear controller. To alleviate the challenges which mostly
arise in designing a traditional nonlinear controller, this paper
combines a contemporary reinforcement learning algorithm
from the field of artificial intelligence and a customized
framework to design a learning-based controller. In contrast to
the simple Q-learning based approach employed in our previous
work (Rajendran and Zhang, 2018), this paper adopts a much
more sophisticated and efficient deep reinforcement learning
algorithm called deep-deterministic policy gradient algorithm
(DDPG), which is compatible with continuous action and
state spaces (Lillicrap et al., 2015). The following subsections
describe the architecture of the learning framework consolidating
the aforementioned soft robotic fish model with the learning
environment, and gives an overview of DDPG reinforcement
learning algorithm, the deployed reward function and hyper-
parameters.

5.1 Learning Framework and Architecture
5.1.1 Agent and Environment
The inherent cognitive realization of the soft robotic fish is
characterized as a learning agent that takes in the current
system state s obtained from feedback of the robot and
outputs the best possible action a. The learning agent
primarily constitutes of an actor deep neural network (DNN),
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which is iteratively trained using the DDPG learning algorithm.
An action performed by the agent at any given time instant,
comprises of the voltage potential Vi applied to the SCP actuators
miwhere i ∈ (1, 2, 3, 4). The action vector follows the system input
vector as defined before in the dynamic model in Section 3, which
is collectively put as a � [u1, u2 | |u1|≤Vmax, |u2|≤Vmax]T ∈ R2,
and is bounded by a maximum voltage potential Vmax that is
applicable to an actuator such that Vi ∈ (0, Vmax). The agent’s
actions and states are defined in the continuous action and state
spaces denoted by A and S respectively. The agent’s state is
defined as s � f (ψ, x, yp) which is a function of the soft robot’s
curvature dynamics (joint angles and flapping angular velocities)
given by ψ � [ψj1

, _ψj1
,ψj2

, _ψj2
], dynamic system state vector x

that corresponds to the soft robotic fish and the system output
reference vector yp. The significance of including the flap angles
and angular velocities in the agent’s state vector, lies in the
necessity to provide the agent with the knowledge of the
robot’s 3-link discretized curvature or profile in its body
frame, and which is also proportionally related to the SCP
muscle dynamics. The agent’s environment encompasses the
system dynamics and state progression of the soft robotic fish
which consequently outputs an evaluation of the newly
transitioned state in the form of reinforcements.

5.1.2 Image-Based Observations
Foreseeing the experimental validation on the physical soft
robotic fish, most of the states in s, necessary for the agent to
envision the robot’s pose, can be obtained through feedback via
electronic sensing by embedding various position sensors such as
inertial measurement unit, accelerometer, and/or gyroscope.
Obtaining the curvature of the soft robotic fish is equally
indispensable for the agent to envision the robot’s profile,

however, employing the use of flex sensors or distributed
sensing elements in/around the soft body has its own
limitations. While flex sensors require a complex arrangement/
construction to maximize the frictional and spatial contact
between the sensor strip and the soft body, use of distributed
sensing elements such as pressure sensors not only limits to a
finite set of discretized measurements of the soft body profile in
contrast to its continuum curvature, but also requires an optimal
position of sensor placement.

In order to overcome the above limitations and obtain the soft
robotic fish’s continuous curvature incorporating the SCP actuators’
dynamics, this paper presents a novel state representation of the soft
robot’s profile using grayscale images. These grayscale images are
computationally generated such that they identically replicate the
masked top view of the soft robotic fish, in order to speed up the
training of the agent rather than depend on the visual processing/
feedback from experiments on the robotic fish. First, as shown in
Figure 5A, the three links of the fish are geometrically plotted using
the joint angles [ψj1

,ψj2
] such that the vector of 2D coordinates

[Xl,Yl] ∈ R4×2 marks the vertices of the three links, where
Xl � 1

2[−|l2| − 2|l3| cosψj2
,−|l2|, |l2|, |l2| − 2|l1| cosψj1

]T and
Yl � [|l3| sinψj2

, 0, 0, |l1| sinψj1
]T. Second, as shown in Figures

5A,B discretized set of 2D coordinates forming a perimetric offset
around the three links are generated by applying a coordinate
transformation function Λ(·) given by

Λx Xl( ) � ρ Xl + Xd, ξ cos β, Xl + Xd( )J |Λx |[ ] + q

2
, (19)

Λy Yl( ) � ρ Yl + Yd, ξ sin β, Yl − Yd( )J |Λx |[ ] + p

2
, (20)

where ρ is the ratio between the maximum coordinates and
required image size of dimensions p × q,
Xd � [−4cosψj2

,0,0,ξ cosψj1
], Yd � [4sinψj2

,−1.5,−2,ξ sinψj1
],

ξ � 2.5, β � [−90°, −70°, . . ., 90°], and J |Λx| ∈R
|Λx|×|Λx| is a

backward identity or standard involutory permutation matrix
(Horn and Johnson, 2012). Next, the generated offset coordinates
are interpolated and characterized by a cubic spline
algorithm, which can be easily achieved using predefined
functions in commercial simulation software such as
interp1 in Matlab, thus forming a streamlined airfoil-like
boundary of a fish as shown in Figure 5C. Finally, the
interpolated coordinates form a polygon which is the
Region of Interest (RoI) and can be converted to a binary
image matrix zp,q ∈Zp×q where zp,q(i,j) ∈ (0, 1) refers to the
(i, j)th entry of the image matrix, by applying a masking
function such as poly2mask in Matlab. However, for further
discretized transformations and grayscale image processing, the
generated image domain is mapped to theR space such that zp,q1f
(zp,q) and f: Z→R. The generated image now illustratively
exhibits the curvature profile of the soft robotic fish as shown in
Figure 5D. In order for the learning agent to acquire knowledge on
the curvature dynamics also, the temporal information comprising
the flapping angular velocities [ _ψj1

, _ψj2
] is embedded onto the same

image by overlaying the previous frame as shown in Figure 5E. For
the purpose of brevity, if the entire image generation process at time
t is mathematically denoted as Φ(ψ(t)), then the overlayed image
generated at time t is given by

FIGURE 5 | Sequential approach towards generating an image-based
observation zp,q(t) of a sample soft robotic fish profile with ψ j1 � 0° and ψ j2 �
−30° at time t. (A) Geometric plot of 3-link robotic fish; (B) generating a
perimetric offset around the three links; (C) cubic spline interpolation of
the perimetric offset; (D) generated Region of Interest by masking the
interpolated closed polygon; (E) inclusion of curvature dynamics [ _ψj1

, _ψj2
] by

overlaying previously generated image zp,q (t − to) for a soft robotic fish profile
with ψ j1 � 0° and ψ j2 � −20°.
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zp,q t( ) � sat10
1
2
|4Φ ψ t( )( ) −Φ ψ t − to( )|( ), (21)

where sat10(·) denotes the saturation function limiting every pixel
in the range (0, 1), and to is the time interval between two
subsequent observations. The state observation input to the
learning agent, thus becomes a concatenated structure of the
image matrix, and a function of the system state and output
reference vectors such that s � f (Φ(ψ), x, yp).

5.1.3 DDPG Learning-Based Controller Design
TheDDPG algorithm (Lillicrap et al., 2015), as illustrated inFigure 6
and elucidated in Algorithm 1, primarily employs the use of a critic
C and an actor A neural network. Due to the image-based
observational input to the agent, the actor neural network is
modeled as a combination of a convolutional neural network
(CNN) and a DNN as shown in Figure 6. The algorithm inputs
the grayscale image matrix zp,q(t) to the CNN and performs a
sequential convolution on the image with a kernel or filter of size
kf at a stride of length kl to extract the features from the image. The
convolved image goes through a pooling layer, fully flattened,
concatenated with the rest of the state vector f(x, yp), and is then
collectively fed to the actor DNN. Throughout the agent’s life span
ttotal which constitutes one training episode, the actor estimates the
best action a at every time step ta that can be carried out in a given
state s as per its most recently trained policy πf, aka the
representation of state-action mapping. An Ornstein-Uhlenbeck
noise process of variance σ2 is induced to the selected action to
influence global exploration while training. The agent performs the
chosen action by executing the soft robotic fish dynamics as
described in Eqs 4–18 stepping through a time interval of ts
where ts ≪ ta, followed by which the environment returns a new
state s′ and a reward r. These entities collectively establish a
transition tuple ε � (s, a, r, s′) that is incrementally stored in a
huge dataset known as the experience replay bufferE. At every action
time ta, a mini-batch Emb of nmb transitions is randomly sampled

from E, and its targets are determined from the Bellman equation
(Lillicrap et al., 2015). A mean-squared error loss between the target
values and its estimates are determined and back-propagated
through the critic network C. The propagated gradients of the
updated critic network are then used to reform the actor
network. A recent target replica of the actor A′ and critic C′
DNNs are retained to chase a set of temporarily fixed targets,

FIGURE 6 | DDPG process chart incorporating image-based
observations.

TABLE 1 | Simulation parameters.

Definition Symbol Value (unit)

Soft robotic fish system design parameters

Action time step ta 0.5 s
Dynamics simulation time step ts 0.01 s
Observation interval to 0.5 s
Duration of episode ttotal 300 s
Maximum voltage to SCP Vmax 25 V

Image observation parameters

Dimension of image p 128 pixels
Dimension of image q 128 pixels
Image coverage ratio ρ 5
Convolution kernel size kf 8 × 8 pixels
Convolution stride length kl 2 pixels

Training/Hyper-parameters

Size of minibatch n 128
Size of experience buffer |E| 1,000,000
Learning rate of actor αA 0.000 1
Learning rate of critic αC 0.001
Target smooth factor ζ 0.001
Actor noise variance σ2 0.8
Far/near reward discount factor γ 0.99
Actor DNN hidden layer size — 300 × 400
Critic DNN hidden layer size — 300 × 400
Reward scaling factor η 1.212 9 × 10–7

Fish dynamics parameters

Length of each link |l| 5 cm
Mass of the robotic fish Mf 10 g
Added mass along x axis Mx 0.85 g
Added mass along y axis My 1.25 g
Mass moment of inertia Jz 0.003 5 g.cm2

Coefficient of drag force KD 0.5 g.cm2

Coefficient of drag along α KDα 0.000 7 g.cm
Coefficient of lift force KL 2.17 g.cm2

Coefficient of thrust force FT1 Kj1 0.004 g.cm2

Coefficient of thrust force FT2 Kj2 0.05 g.cm2

Damping coefficient KM 0.001 05 g.cm2

Moment coefficient of j1 KM1 0.25 cm
Moment coefficient of j2 KM2 0.25 cm

SCP actuator dynamics parameters

Original length of muscle mi L0 10 cm
Mass of SCP actuator Mm 0.05 g
Electrical resistance Rm 8 Ω
Thermal mass Cth 0.5 W.s/°C
Absolute thermal conductivity λ 0.85 W/°C
Mean stiffness km 1.65 N/m
Damping coefficient bm 1.1 N.s/m
Thermal constant cm 0.03 N/°C
Ambient temperature T0 25°C
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thus encouraging convergence of the algorithm. The overall training
lasts for N episodes, with a terminal condition based on a reward
averaged over a set of latest episodes.

Algorithm 1. Deep-Deterministic Policy Gradient Learning in
Soft Robotic Fish

5.2 Reward Function
The shaping of the reward function plays an important role in
training the agent. The high nonlinearity of the aforementioned
modeled soft robotic fish, selects in this paper a reward r equipped
with a linear quadratic regulator (LQR) cost function given by

r � −η yTeQye + uTRu( ), (22)

where η is a scaling factor, ye � yp − y is the tracking error of the
system output, and Q and R are the weight matrices bringing in a
trade-off between the system performances and control input
efforts respectively.

5.3 Hyper-Parameters
Hyper-parameters play a significant role in the duration of
training and accuracy of finding a global optimum and

convergence. These parameters include the learning rate of the
critic αC and actor αA networks such that αC, αA ∈ (0, 1), whereby
very small learning rates increase the chance of global
exploration, hence decreasing the chances of reaching local
optima. Several other parameters are the size of the experience
buffer |E| which provides adequate sampling space, size of the
sampled minibatch nwhich are generally chosen in powers of 2 to
favor computational efficiency, reward discount factor γ which
denotes the significance of the far rewards over the near rewards,
variance of the noise process σ2 to control the exploration factor,
number of episodes for averaging of reward, and terminating
criterion of the training pertaining to the averaged reward.

6 SIMULATION RESULTS

This section presents the simulation results of two control
tasks—yaw control and path following, to evaluate the
performance of the proposed DDPG-based control of the soft
robotic fish. The two control objectives serve as fundamentally
decomposed control goals in high level control objectives such as
path planning, schooling, shoaling, leader-following, etc. Table 1
shows the parameters applied in the simulations, which pertain to
the environment, learning hyper-parameters, SCP muscles and
fish dynamics. The thermo-electric and thermo-mechanical SCP
muscle parameters follow (Rajendran and Zhang, 2017; Yip and
Niemeyer, 2017; Rajendran and Zhang, 2018). While some of the
training hyper-parameters adopt (Lillicrap et al., 2015), others are
chosen by trial and error to expedite the convergence of the
training by weighting the level of global exploration versus local
exploitation. The fish dynamics parameters, however, are
designed by envisioning the soft robotic fish and its expected
planar motion comprising the hydrodynamic coefficients, and
approximating the parameters of previously modeled robotic fish
which exhibit similar motions (Marchese et al., 2014).

The system design parameters are selected considering the
reasonable SCP dynamics in conjunction with the fish flapping
tail frequency, thus having an action time step of ta � 0.5 s. The
image observation parameters are chosen based on the
performance of the CNN and foreseeing the computational
processing power of a hardware computer vision/image
processor such as OpenMV, Pixy, and Raspberry Pi Cameras
to generate image-based observations. Regardless of the camera
used in the experiments, they all support a minimum capture rate
of 60 frames per second (FPS), thus giving a wide window of time
to determine the next action a given an observation s, and
therefore, deeming the proposed visual learning-based control
algorithm realizable due to the considerable sampling time to � ta.

6.1 Yaw Control
The yaw control objective of the soft robotic fish aims at orienting
the robot at a desired angle such that θp ∈ [−π, π]. As this requires
the agent to obtain the knowledge of both the current angle θ and
desired angle θp as part of its observation s, the learning is subtly
modified to reduce the dimension of the observation s for quicker
convergence. Consequently, the observation comprises of the
difference between the current and desired angles such that
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the agent’s target remains θp � 0 at all times, whereas the agent
itself is randomly initialized to θ ∼ U[−π, π] following a uniform
distribution at the beginning of its lifespan. The state observation
thus becomes s � {Φ(ψj1

, _ψj1
,ψj2

, _ψj2
), yp}, which includes the

image containing the curvature dynamics and the system output
target vector such that yp � [ωp

z , v
p
total, α

p]T ∈ R3. As for the yaw
control task, we select yp � (0, 2, 0) in this paper. The LQR-based

reward weights are set toQ � diag (2, 0.05, 2000, 0.01) andR � diag
(0.001, 0, 0.001, 0). These weights are manually tuned such that the
yaw angle and total velocity are weighted more than the rest of the
outputs. The rest of the system states and dynamics of the soft
robotic fish are initially reset to zero at the start of every episode. A
training episode is conditionally terminated betimes upon satisfying

FIGURE 7 | Simulated result of yaw control of the robotic fish initialized at the origin with pose (xi, yi, θ) � (0, 0,−178°) and desired orientation θp � 0°. (A)Control input
u2 representing the voltages of the SCP muscles m3, m4; (B) the trajectory of the robotic fish turning from −178° to 0°; (C) the tail flap angle ψj2

; (D) the yaw angle of the
fish θ.

FIGURE 8 | Simulated result of the settling times in yaw control of the
soft robotic fish initially oriented at zero degrees and targeted to swim at every
angle spaced by 10 degrees in the range (−180°, 180°).

FIGURE 9 | Simulated result of the steady state errors in yaw control of
the soft robotic fish initially oriented at zero degrees and targeted to swim at
every angle spaced by 10 degrees in the range (−180°, 180°), where error bars
represent the steady state boundaries caused due to the flapping
oscillations.
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terminalCondition(ye) � ((θp − θ)≤ ~θ) ∨ (vtotal ≥ vptotal), where ~θ is
the acceptable threshold of angular orientation and its bounds are set
to ±10°. The agent was trained for 5,000 episodes with each episode
lasting for 300 s, and embarked convergence just after 250 episodes
while encouraging local exploitation throughout the rest of the
episodes.

The trained agent is then simulated to control the soft
robotic fish, initialized at (xi, yi, θ) � (0, 0, −178°), to achieve a
desired orientation of θp � 0°. The control input u2 generated
by the actor network is shown in Figure 7A and the
corresponding change in the tail angle ψj2

due to the SCP
muscles contractions is plotted in Figure 7C. The entire
trajectory of the soft robotic fish for the given control input
is shown in Figure 7B with the current and desired
orientations shown in Figure 7D. The simulated result of
yaw control of the soft robotic fish is also animated in
Video 1 which is included in the Supplementary Materials.
As it can be observed from these results, the agent exhibits a
learned swimming profile to orient the fish at 0° and achieves
convergence by reaching the target angle within 13 s, via
coordinated actuation of the SCP muscles m3 and m4.

The overall performance of the trained agent is evaluated by
simulating the soft robotic fish for 60 s, initialized at 10 degree
intervals in the range (−180°, 180°), with its desired angle set to
zero at all times. Two performance factors are taken into
consideration pertaining to the yaw angle regulation: 1)
settling time, and 2) steady state error. The settling times of
all these simulated periods are collated by obtaining the time
instants when terminalCondition is satisfied, and the resulting
plot is illustrated in Figure 8. Evidently, as shown in the figure, we
see that it only takes 20 s for the soft robotic fish to rotate 180
degrees based on the dynamics described in Eqs 4–18.
Additionally, as the difference between the current and desired
orientation angle increases, the settling time also increases. We
also find that the outcome slightly favors negative values of
desired angles over the positive values, thus appearing
asymmetrically, which can be attributed to algorithm’s

randomness such as initialization of the actor and critic neural
networks’ weights before the training, the shift in algorithm’s
Q-value during training, and convergence of the training based
on the samples selected in the experience replay buffer. In order to
balance this predicament, prolonged training of the agent is
encouraged to refine the convergence with minimal shift in
the actor NN’s weights.

The outcome of the evaluation in terms of the steady state
error in the angular orientation is shown in Figure 9, where the
steady state errors of the soft robotic fish agent at different target
angles spaced at 10 degree intervals in the range (−180°, 180°) are
collated and displayed using red squares. The error bars
corresponding to each target angle represent the steady state
boundaries caused due to the flapping oscillations. As the
minimization of the angular velocity or swinging motion is
essential to alleviate the effect of the hydrodynamic drag force
which reduces propulsive efficiency (Liu et al., 2008; Farideddin
Masoomi et al., 2015), we see that throughout the range of the
soft robotic fish’s target angles, the agent has learned to
maintain a steady state error within ±5 degrees satisfying
| ~θ | ≤ 5°, thus proving the agent’s robustness. The
difference in the error bounds at different target angles can
again be attributed to the stochasticity in the initialization of the
neural networks and the soft robotic fish, and can be mitigated
via prolonged training of the agent.

6.2 Path Following
As the trained agent is capable of successfully controlling the
orientation of the soft robotic fish, this section demonstrates the
agent’s ability to continuously follow a predefined path. Hence,
the agent is strenuously tested by simulating the robotic fish to
follow a set of planar waypoints closely constrained and
proportional to its body length (BL) in order to observe the
maneuvering range. In the first test, four waypoints are generated
and arranged equidistantly to the origin and subsequent
preceding and succeeding waypoints. The robotic fish is
initialized at the origin with the pose (xi, yi, θ) � (0, 0, 0°),

FIGURE 10 | Simulated result of the robotic fish following a path defined by (A) a cyclic set of four waypoints and (B) a line defined by the equation −xi + yi � 5.
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and set to follow the waypoints numbered (w1, w2, w3, w4) in a
cyclic manner. The target angle is determined at every action
time step ta given by θp � tan−1(ywn−yxwn−x), where (xwn, ywn

) mark
the 2D coordinates of the current target waypoint wn in the
inertial frame F i satisfying n ∈ (1, 2, 3, 4). Once the fish
reaches within 1 cm radius of its current target waypoint wn

satisfying
��������������������
(xwn − xi)2 + (ywn

− yi)2
√

< 1, a new waypoint wn+1 is
assigned as the next target to the agent. The simulated result, as
illustrated in Figure 10A and animated in Video 2 of
Supplementary Materials, shows the agent reaching all the
waypoints where each segment is constrained to a little
over 2BL.

Following this, a second test is performed to test the
agent to follow a line defined by the parametric equation
g1xi + g2yi + g3 � 0, when initializing the soft robotic fish to
different poses (x, y, θ). At every action time step ta, the cross-
track error (CTE) which is defined as the normal distance
between the center of the fish and the target line, is
computed by

CTE � g1, g2, g3[ ] · x, y, 1[ ]������
g2
1 + g2

2

√ , (23)

which leads to our design of the target orientation of the
fish θp � tan−1(−g1

g2
) − 2sat100 (CTE). The result of this outcome,

as shown in Figure 10B, demonstrates the agent starting in
different poses, eventually converging to the target line
minimizing the CTE.

7 CONCLUSION

This paper proposed a novel design of a soft robotic fish actuated
by antagonistically arranged SCP artificial muscles, which takes
advantage of the quicker heat dissipation in SCPs when
submerged in water, thus leading to faster actuation. The soft
robotic fish was modeled from its geometrical and dynamical
perspectives to realize a two-dimensional swimming motion by
incorporating hydrodynamic forces and moments. The paper
also presented a learning-based controller design, which perceives
the curvature dynamics and soft profile of the fish via image-
based state observations. We conjecture that this type of visual
learning-based controller design can be generalized and
ubiquitously used in training/inference of agents to self-learn
locomotion in soft robots that are limited with volumetric
constraints and pose challenges in embedding complex
curvature-sensing electronics. Not only this sensing approach
leads to more flexible and less expensive soft robots, but also

contributes towards decrease in the production time.
Additionally, the derived model and learning-based controller
were simulated to evaluate the agent’s performance and validate
its effectiveness with respect to two control objectives
i.e., regulating the robot’s yaw angle and following a
predefined path.

The future scope of this paper branches out to several
directions such as optimal design of SCP-actuated soft robots
and researching online reinforcement learning-based
controllers. Significantly, the visual learning-based controller
design could pave a path to embark on a new research direction
towards visual imitative learning in soft robots from real
biological lifeforms, thus not only mimicking the anatomical
functions, but also mimicking the cognitive phases in
locomotion and social behavior. Nevertheless, our future
research work primarily includes culminating the
development of the experimental platform to test the SCP-
driven soft robotic fish by addressing some current
impediments such as buoyancy control and mobile power
supply, followed by validating the proposed visual learning-
based controller design in real-time. Concurrently, we also plan
to investigate the design, outcome and performance of a fully
image-based state feedback controller to simplify the learning
approach by reducing the number of required embedded
positional sensors, aiming to expand its applications to a
wider variety of soft robots.
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