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The inverted pendulum system has great potential for various engineering applications,
and its stabilization is challenging because of its unstable characteristic. The well-known
Kapitza’s pendulum adopts the parametrically excited oscillation to stabilize itself, which
generally requires a complex controller. In this paper, self-sustained oscillation is utilized to
stabilize an inverted pendulum, which is made of a V-shaped, optically responsive liquid
crystal elastomer (LCE) bar under steady illumination. Based on the well-established
dynamic LCE model, a theoretical model of the LCE inverted pendulum is formulated, and
numerical calculations show that it always develops into the unstable static state or the
self-stabilized oscillation state. The mechanism of the self-stabilized oscillation originates
from the reversal of the gravity moment of the inverted pendulum accompanied with its
own movement. The critical condition for triggering self-stabilized oscillation is fully
investigated, and the effects of the system parameters on the stability of the inverted
pendulum are explored. The self-stabilized inverted pendulum does not need an additional
controller and offers new designs of self-stabilized inverted pendulum systems for potential
applications in robotics, military industry, aerospace, and other fields.
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I. INTRODUCTION

The pendulum in an inverted position is a multivariate, high-order, nonlinear, strong coupling, and
natural unstable system (Nivedita and Soumitro, (2020); Gonzalez and Rossiter, (2020)). The
implementation of an inverted pendulum system can effectively reflect many typical problems in
control, such as nonlinear, robustness, stabilization, follow-up, and tracking problems (Junkun et al.
(2020); Atilla and Firat, (2020)). The stabilization of the inverted pendulum can be used to test
whether a new control method has a strong ability to deal with nonlinear and unstable problems. At
the same time, its stabilization methods are widely used in the fields of robotics, military industry,
aerospace, and other fields, such as stabilization in the robot walking process, perpendicularity
control in rocket launch, and attitude control in satellite flight (Balcerzak (2020)). The challenge of
studying the inverted pendulum system is not only the control difficulty caused by the multistage
inverted pendulum, but also its own complexity, instability, and nonlinear characteristics. Therefore,
it is required to study and expand new theoretical methods to apply to new control objects and
provide a better experimental theory and platform (Zheng et al. (2020)).

At present, various inverted pendulum systems are proposed, in which a complex controller is
usually required to achieve its stabilization. For example, the well-known Kapitza’s pendulum adopts
parametrically excited oscillation to stabilize itself, which requires additional controllers to apply
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specific periodic external forces (Kapitza (1951)). To simplify the
system, self-excited oscillation may be used to achieve self-
stabilization of inverted pendulums (Li et al. (2003); Maeda
et al. (2007); Serak et al. (2010); Jenkins (2013)). Self-excited
oscillation is a phenomenon in which the system has continuous
state change under constant external stimulation (Uchida et al.
(2015); Kumar et al. (2016); Nocentini et al. (2018)). Various self-
excited oscillations are constructed based on many kinds of
passive and active material systems (Kinoshita (2013);
Chakrabarti et al. (2020); Bartlett et al. (2015); Wehner et al.
(2016)). Because of their unique advantages, self-excited
oscillations have broad application prospects in many fields,
such as energy harvesters (Baumann et al. (2018)), soft robots
(Nocentini et al. (2018)), medical devices (Hu et al. (2018)), and
micro/nano devices (Huang and Aida, (2019)). The stimuli-
responsive materials for the self-excited oscillation systems
include hydrogels, ionic gels, liquid crystal elastomer (LCE),
etc. Different from classic conservative systems, the energy loss
of self-excited oscillation caused by system damping requires
external energy inflow and energy compensation. Based on
different stimuli-responsive materials and structures, different
feedback mechanisms are proposed to realize energy
compensation, such as a coupling mechanism between
chemical reaction (Lahikainen et al., 2018) and large
deformation (Cheng et al., 2019), a self-shading mechanism
(Serak et al., 2010), and a coupling mechanism in a droplet
evaporation multiprocess (Chakrabarti et al., 2020). These
mechanisms originate from the nonlinear coupling of multiple
processes for implementing feedback.

Light is an excitation with the unique advantages of remote
precise control, no noise, being clean, and so on (Kim et al.
(2021); Adam et al. (2018)). In addition, these advantages of light
make it more convenient to induce customized feedback to realize
self-excited oscillation by various means. LCE is a polymer
network structure formed by crosslinking liquid crystal
monomer molecules (Gelebart et al. (2017)). When stimulated
by external fields, such as light, heat, electricity, and magnetism,
liquid crystal monomer molecules rotate or undergo phase
transition to change their configurations, which induce
macroscopic deformation (Boissonade and Kepper, (2011); Li
et al. (2014)). LCE generally has the characteristics of rapid
deformation response, deformation recovery, and being
noiseless. Compared with other types of active materials, LCE
also has several unique advantages (Lee et al. (2011); Yamada
et al. (2008); Cheng et al. (2021)). For example, compared with
pneumatic artificial muscles, temperature-sensitive gels, and
moisture-sensitive gels, optically responsive LCE has the
advantage of wireless, contactless driving, which is conducive
to a lightweight structure and less affected by the environment.
Moreover, different from polyelectrolyte gels, there are no
chemical by-products for optically responsive LCE.

Based on a light-fueled, self-excited oscillation, we propose a
new self-stabilized inverted pendulum system in this paper. It is
made up of a V-shaped LCE bar and can autonomously rotate
around its pivot under steady illumination. The inverted
pendulum does not need an additional controller, which
simplifies the system and provides new designs of self-

stabilized inverted pendulum systems for potential
applications. The object of the paper is to theoretically study
the self-stabilization of the LCE inverted pendulum under steady
illumination, elucidate the mechanism of the self-stabilized
oscillation, and systematically investigate the effects of various
physical and geometric parameters on the motion modes, its
amplitude, and period. The text reads as follows. In Sec. II, based
on the well-established dynamic LCE model, the governing
equation of the LCE inverted pendulum is derived, and then
the difference scheme and solution method for the dynamic
equations are given. In Sec. III, the two motion modes of the
system are discussed, and the detailed mechanisms are elucidated.
In Sec. IV, parameter analysis is carried out to investigate the
influence of various parameters on the triggering condition,
amplitude, and period of the self-stabilized oscillation. The
final section presents the conclusion.

II. MODEL AND FORMULATION

A. Dynamics of the LCE Inverted Pendulum
Figure 1 sketches an inverted pendulum made up of a V-shaped
optically responsive LCE bar, which can be constructed by
rigidly connecting two LCE bars fabricated by the two-step
method (Yakacki et al. (2015)). The two bars, OA and OB, have
the same length, width, and thickness and have the same mass
m. The V-shaped LCE bar is in the xOy plane and can rotate
about its pivot O. The vertex angle of the V-shaped LCE bar is
2θ1, and the nonillumination zone is set to be (−θ1, θ1). There
may be a critical value between 0° and 90°, which is discussed in
detail in section IV. The original length of the two bars before
being illuminated is l0. The initial position of the V-shaped LCE
bar is denoted by the angle θ0 between its symmetry axis and
y-axis, and the initial angular velocity is set to be zero. The
current position is denoted by the angle θ(t). We assume that
the thickness of the V-shaped LCE bar is much smaller than the
penetration depth of the light. Therefore, the two bars under
illumination only contract, and their lengths lA(t) and lB(t) vary
with time, which causes the change of the gravity moment and,
in turn, results in self-stabilized oscillation of the LCE inverted
pendulum.

According to angular momentum theorem, dynamics of the
LCE inverted pendulum are governed by

dΦ
dt

� MZ, (1)

where the angular momentum Φ of the inverted pendulum about
the pivot is

Φ � Jz(t) dθ(t)
dt

, (2)

where Jz is the moment of inertia of the V-shaped LCE bar about
the pivot,

Jz � Jz1 + Jz2, (3)

where Jz1 � 1
3ml2A is the moment of inertia of OA about the

pivot, and Jz2 � 1
3ml2B is the moment of inertia of OB about
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the pivot. During the formulation above, the rod is assumed
to be rigid, and the bending under the applied torques is
ignored for the ratio of the deflection to the length is
estimated to be very small for the typical value of the
parameters given in Sec. III.

The current lengths of OA and OB bars are

lA � [1 + ε1(t)]l0, lB � [1 + ε2(t)]l0, (4)

where ε1(t) and ε2(t) are the light-driven contraction strain of
OA and OB, respectively. For simplicity, the light-driven
contraction strain of the material is assumed to be
proportional to the cis number fraction φ(t),

ε1(t) � −C0φ1(t), ε2(t) � −C0φ2(t), (5)

where C0 is the contraction coefficient. The number fraction ϕ(t)
is given in the following section IIB.

In Eq. 1, Mz is the total moment of all the external forces
about its pivot. The damping moment is assumed to be
proportional to the angular velocity. Therefore, the total
moment is given as

Mz � Mg −Mf , (6)

where thegravitymomentMg � 1
2mg[lB sin(θ1 + θ) − lA sin(θ1 − θ)],

g is the gravitational acceleration, the damping moment
Mf � 1

3 ζ(l3A + l3B) dθdt, ζ is the damping coefficient, and dθ
dt � _θ is

the angular velocity of the inverted pendulum.

B. Dynamic LCE Model
To determine the motion of the inverted pendulum, we first obtain
the current lengths of OA and OB, which depend on the number
fraction of cis isomers in the LCE bars. Here, the well-established
dynamic LCE model is utilized to determine the number fraction
(Warner and Terentjev, (2003)). Generally, the number fraction of
cis isomers depends on thermal excitation from trans to cis,
thermally driven relaxation from cis to trans, and light-driven
trans-to-cis isomerization. Considering that thermal excitation
from trans to cis is often negligible relative to the light-driven
excitation, the evolution of the number fraction of bent cis isomers
is derived as (Warner and Terentjev, (2003)),

zφ

zt
� η0I0(1 − φ) − φ

T0
, (7)

where η0 is the light absorption constant, I0 is the light intensity,
and T0 is the thermal relaxation time from cis to trans state. The
solution to Eq. 7 can be easily obtained as

φ(t) � η0T0I0
η0T0I0 + 1

+ (φ0 −
η0T0I0

η0T0I0 + 1
) exp[ − t

T0
(η0T0I0 + 1)],

(8)

where φ0 is the number fraction of cis isomers at t � 0. In the light
zone, for initially zero number fraction of cis isomers, i.e., φ0 � 0,
Eq. 8 can be simplified as

φ(t) � η0T0I0
η0T0I0 + 1

{1 − exp[ − t

T0
(1 + η0T0I0)]}. (9)

FIGURE 1 | Schematic of an inverted pendulummade up of a V-shaped optically responsive LCE bar. Under steady illumination, the inverted pendulum can be self-
stabilized due to the reversal of gravity moment resulting from light-driven contraction of the LCE bars.
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In the dark zone, namely, I0 � 0, φ0 can be set as the maximum
of φ(t) in Eq. 9, namely, φ0 � η0T0I0

η0T0I0+1, and Eq. 8 can be
simplified as

φ(t) � η0T0I0
η0T0I0 + 1

exp(− t

T0
). (10)

By defining the dimensionless quantities �I � η0T0I0, �t � t/T0

and �φ � φ(η0T0I0 + 1)/η0T0I0 in the light zone, Eq. 9 is
rewritten as

�φ � 1 − exp[ − �t(�I + 1)], (11)

and in the dark zone, Eq. 10 is rewritten as

�φ � exp(−�t). (12)

C. Governing Equations of the LCE Inverted
Pendulum
Here, we define the following dimensionless quantities:
�g � gT2

0/l0,
�ζ � 2ζT0l0/m, and �MD � 2MDT2

0/(ml20). It is
noteworthy that �g can be rewritten as �g � (T0/

����
l0/g

√ )2 by the
natural period

����
l0/g

√
of a single pendulum, which represents the

cis-to-trans thermal relaxation time relative to the natural period.
The larger �g is, the slower the cis-to-trans conversion.

Considering that the width is much smaller than the
amplitude of oscillation, and the time of the instantaneous
transition between bright and dark is also much smaller than
a period, the transition time is ignored in the computation.
Combining Eqs 2–5, 11, 12 leads to for θ ≥ 0 (i.e., only the OB
bar is illuminated),

d2θ(�t)
d�t2

� A1(�t) dθ(�t)
d�t

+ B1(�t), (13)

where,

A1(�t) � −4C0
�I exp(−�t)[(1 + ε1)/(�I + 1) − (1 + ε2) exp(−�I�t)] − �ζ[(1 + ε1)3 + (1 + ε2)3]

2(1 + ε1)2 + 2(1 + ε2)2

,

B1(�t) � 3�g{[1 + ε2(�t)] sin(θ1 + θ) − [1 + ε1(�t)] sin(θ1 − θ)}
2(1 + ε1)2 + 2(1 + ε2)2

ε1 � −C0�I exp(−�t)/(�I + 1) and
ε2 � −C0�I{1 − exp[−�t(�I + 1)]}/(�I + 1), and for θ < 0 (i.e., only
the OA bar is illuminated),

d2θ(�t)
d�t2

� A2(�t) dθ(�t)d�t
+ B2(�t), (14)

where,

A2(�t) � −4C0�I exp(−�t)[(1 + ε2)/(�I + 1) − (1 + ε1) exp(−�I�t)] − �ζ[(1 + ε1)3 + (1 + ε2)3]
2(1 + ε1)2 + 2(1 + ε2)2

,

B2(�t) � 3�g{[1 + ε2(�t)] sin(θ1 + θ) − [1 + ε1(�t)] sin(θ1 − θ)}
2(1 + ε1)2 + 2(1 + ε2)2

ε1 � −C0�I{1 − exp[−�t(�I + 1)]}/(�I + 1) and ε2 �
−C0�I exp(−�t)/(�I + 1).

D. Solution Method
Equations 13, 14 are ordinary differential equations with variable
coefficients, and there exists no analytic solution. Hereon, the
classic fourth order Runge–Kutta method is used to numerically
solve the ordinary differential equations by software Matlab. We
first transform the second order ordinary differential equation
with variable coefficients into two first order ordinary differential
equations with variable coefficients. Therefore, the governing
equations are rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ(�t)
d�t

� _θ

d2θ

d�t2
� f(�t, θ, _θ)

_θ(�t � 0) � _θ0

θ(�t � 0) � θ0

, (15)

where

f(�t, θ, _θ) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1(�t) dθ(�t)d�t
+ B1(�t), for θ ≥ 0

A2(�t) dθ(�t)d�t
+ B2(�t), for θ < 0

. (16)

The classic fourth order Runge–Kutta method is used to solve
the problem, The final steady-state of the inverted pendulum is
obtained by iteration. When the bar switches between light on
and light off, the evolution law is correspondingly converted
between Eqs 11, 12. At the conversion moment, the cis number
fraction ϕ(t) is kept unchanged. On the basis of this, the new time
point can be acquired when the state switches. For example, when
the bar rotates from the light on region to the light off region, the
time conversion law is �toff � −ln{1 − exp[−�ton(�I + 1)]}.
Numerically, the time point �toff in the light off region can be
computed by means of �ton in the light on region. In the light off
region, the subsequent motion begins with the time point �toff . On
the contrary, when the bar rotates from the dark to the light
region, the time conversion rule is
�ton � −ln[1 − exp(−�toff )]/(�I + 1). The time point �ton in the
light on region can be computed numerically in terms of �toff
in the light off region. In the light on region, the following motion
begins with the time point �ton.

III. TWO MOTION MODES AND
MECHANISMS

After numerical computations with respect to Eqs 13, 14 in Sec.
IIC, a series of results can be obtained with the variation of
physical parameters related to oscillation. In numerical
calculations, we choose the typical values of physical
parameters from accessible experiments (Marshall and
Terentjev, (2013); Nagele et al. (1997)) as follows: l � 5mm,
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b � 0.5mm, h � 0.5mm, ρ � 103Kg/m3, E � 1MPa, C0 � 0.5,
I0�105W ·m−2, T0 � 10−1s, η0 � 10−4. Then, the corresponding
dimensionless parameters are estimated as �I � 0 ∼ 1,
�g � 1 ∼ 102, �ζ � 0 ∼ 102. The numerical calculations show that
the initial condition of the number fraction does not affect the
motion mode. For simplicity, in Eqs 11, 12 , we assume that
initially the OA bar is in the nonilluminated state of �ϕ � 0,
whereas the OB bar is in a fully illuminated state of �ϕ � 1,
which is easily achieved experimentally.

A. Self-Stabilized Oscillation of the LCE
Inverted Pendulum
Figure 2 shows two typical motion modes of the LCE inverted
pendulum: the unstable static mode and the self-stabilized
oscillation mode. Figures 2A,B, respectively, draw the time
series curve and its phase diagram of the rotation angle of the

typical static mode for �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7,
θ0 � 0°, θ1 � 50°, _θ0 � 0. The results show that the inverted
pendulum tilts and quickly comes to rest, reaching its lowest
point and finally staying at a fixed point on the phase
diagram. Figures 2C,D, respectively, draw the time series
curve and its phase diagram of the rotation angle of the
typical oscillation mode for �I � 0.25, C0 � 0.4, �g � 9.8,

FIGURE 2 | Twomotion modes of the light-powered inverted pendulum.
(A) and (C) are the time series curves of the unstable static mode (θ1 � 50°)
and self-stabilized oscillation mode (θ1 � 70°), respectively. (B) and (D) are
phase diagrams of the unstable static mode and self-stabilized
oscillation mode, respectively. The other parameters are �I � 0.25, C0 � 0.4,
�g � 9.8, �ζ � 14.7, θ0 � 0°, and _θ0 � 0.

FIGURE 3 | Mechanism of the self-stabilized oscillation of the LCE
inverted pendulum. Parameters are set: �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7,
θ0 � 0°, θ1 � 70°, and _θ0 � 0. (A) The rotation angle as a function of time. (B)
The variation of the number fraction of cis-isomers in the OA bar with
time. (C) The contraction strain as a function of time. (D) Dependence of the
gravity moment on time. (E) The variation of the gravity moment with the angle
of rotation.
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�ζ � 14.7, θ0 � 0°, θ1 � 70° and _θ0 � 0. The results show that the
swing amplitude of the bar gradually becomes stable, and its
state finally stays on the limit cycle in the phase diagram. In
the following, we elucidate the mechanism of the self-
stabilized oscillation.

B. Mechanisms of the Self-Stabilized
Oscillation
To study how the LCE inverted pendulum compensates for the
damping dissipation to maintain the periodic oscillation, the time
series curves of each physical quantity in a typical mode of the
inverted pendulum are given in Figure 3. Parameters are set as
follows: �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7, θ0 � 0°, θ1 � 70°
and _θ0 � 0. Figures 3A,B describe the variation of the rotation
angle and present the curve of the number fraction of cis isomers
in the OA bar in the inverted pendulum system. The dark color
indicates that θ < 0. For θ > 0, the number fraction of cis isomers
of the OA bar gradually decreases although, for θ < 0, the number
fraction of cis isomers of the OA bar gradually increases. Finally,
the number fraction changes periodically. Figure 3C plots the
variation of the strain in the OA bar with time. For θ > 0, the
strain in the OA bar decreases gradually, and for θ < 0, the strain
in the OA bar increases gradually. Similarly, the light-driven
contraction changes periodically. Figure 3D plots the variation of
the gravity moment of the system with time. For θ > 0, the gravity
moment of the system decreases gradually, and for θ < 0, the
gravity moment of the system increases gradually. The gravity
moment also varies periodically. Figure 3E plots the dependence
of the gravity moment on the angle in one cycle of the steady
oscillation. In Figure 3E, the area surrounded by the closed curve
represents the net work done by the light illumination, which
compensates for the energy loss caused by damping to maintain

the periodic oscillation of the system. This phenomenon can also
be understood from the perspective of energy. In a cycle, the
energy converted by the V-shaped inverted pendulum under light
illumination is equal to the energy dissipated by the damping, and
thus, the stable oscillation of the system can be maintained.

The inverted pendulum in this paper is stabilized through self-
excited oscillation and is much different from the well-known
Kapitza’s pendulum stabilized through parametrically excited
oscillations (Kapitza (1951)). Generally, parametrically excited
oscillations arise from the external excitation of periodic or
system parameters and usually adjust the parameters of the
oscillatory system through a clear process-independent time
law. The control differential equations for parametrically
excited oscillations generally have periodic time-varying
coefficients. However, compared with parametrically excited
oscillations, self-excited oscillations are caused by the internal
interaction of the elements within the system in external constant
energy situations, and the system can maintain the periodic
motion of equal amplitude through process-related self-
regulation and feedback control (Ding (2010)).

IV. PARAMETRIC STUDY

Generally, the system oscillates with a limit cycle around a
naturally unstable upper position due to the material
properties. Considering the theoretical analysis of the

bifurcation is very difficult, alternatively, we perform detailed
numerical analysis to obtain the critical condition for triggering
self-excited oscillation of the pendulum. Furthermore, we also

FIGURE 4 | Effect of the vertex angle on self-stabilized oscillation of the
inverted pendulum for �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7, θ0 � 0°, and
_θ0 � 0. (A) Limit cycles for θ1 � 70° θ1 � 75°, and θ1 � 80°. (B) Time series for
θ1 � 70° θ1 � 75°, and θ1 � 80°. The amplitude and period of self-
stabilized oscillation decreases with the increase of θ1.

FIGURE 5 | Effect of the initial position θ0 on self-stabilized
oscillation of the inverted pendulum for �I � 0.25, C0 � 0.4, �g � 9.8,
�ζ � 14.7, θ1 � 70°, and _θ0 � 0. (A) Limit cycles for θ0 � 0°, 0.5°, and 1°. (B)
Time series curves for θ0 � 0°, 0.5°, and 1°. It can be seen that the
initial position θ0 has no influence on the amplitude and period of self-
stabilized oscillation.
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investigate the effects of the system parameters on the amplitude
and period of the self-stabilized oscillation of the inverted
pendulum through the variable-controlling method.

A. Effect of the Vertex Angle
Figure 4 illustrates the effect of θ1 on self-stabilized oscillation of the
inverted pendulum. In the computation, we set �I � 0.25, C0 � 0.4,
�g � 9.8, �ζ � 14.7, θ0 � 0°, and _θ0 � 0. Figure 4A plots limit cycles
for θ1 � 70° θ1 � 75°, and θ1 � 80°. The motion mode of the
inverted pendulum can be changed by regulating the value of the
parameters θ1. Through calculation, for θ1 < 66°, the inverted
pendulum eventually evolves into static mode at θ � 180°, and
for θ1 ≥ 66°, the inverted pendulum oscillates under steady
illumination. This result means that there exists a critical vertex
angle for the self-stabilized oscillation. This is because, for smaller θ1,
the V-shaped inverted pendulum is prone to be on the side of the
y-axis, and the gravity moment is difficult to reverse. Figure 4B
presents the time series for θ1 � 70° θ1 � 75°, and θ1 � 80°. It can be
seen from Figures 4A,B that the amplitude and period of self-
stabilized oscillation decreases with the increase of θ1.

B. Effect of the Initial Position
Figure 5 delineates the effect of the initial position θ0 on self-
stabilized oscillation of the inverted pendulum. In the computation,
we set �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7, θ1 � 70°, and _θ0 � 0.
Figure 5A provides the limit cycles for θ0 � 0°, 0.5°, and 1°, and the
three limit cycles are identical. Figure 5B plots the time series curves
for θ0 � 0°, 0.5°, and 1°. By adjusting the value of parameter θ0, the
motion mode of the inverted pendulum can be found. Considering
the symmetry of the structure, we only discuss the case of θ0 ≥ 0°. For
θ0 ≤ 1.5°, the inverted pendulum oscillates under steady illumination

and the amplitude does not change as the value of θ0 increases,
whereas for θ0 > 1.5°, the LCE bar eventually evolves into static at
θ � 180°. It can be understood that, for large θ0, the gravity moment
in Eq. 6 cannot be reversed to bring the inverted pendulum back to
the upper equilibrium position θ � 0.

C. Effect of the Light Intensity
Figure 6 plots the effect of the dimensionless light intensity �I on
self-stabilized oscillation of the inverted pendulum. In the
computation, we set C0 � 0.4, �g � 9.8, �ζ � 14.7, θ0 � 0°,
θ1 � 70°, and _θ0 � 0. Figure 6A presents the corresponding
limit cycle, and the time series curves for �I � 0.25, �I � 0.37,
and �I � 0.50 are shown in Figure 6B. The motion mode of
the inverted pendulum can be changed by varying the value of the
parameters within a certain range. For �I> 0.65, the inverted
pendulum eventually evolves into static mode at θ � 180°. For
�I≤ 0.65, the inverted pendulum oscillates. It can be seen from
Figures 6A,B that the amplitude of the inverted pendulum
increases with the growth of the dimensionless light intensity.
This is because the increase of dimensionless light intensity
motivates the maximum strain of the two bars of the inverted
pendulum to augment, which greatly raises the gravity moment
and expands the amplitude of the inverted pendulum.

D. Effect of the Contraction Coefficient
Figure 7 reflects the effect of the contraction coefficient C0 on
self-stabilized oscillation of the inverted pendulum. In the
computation, we set �I � 0.6, �g � 9.8, �ζ � 14.7, θ0 � 0°,
θ1 � 70°, and _θ0 � 0. Figure 7A plots the limit cycles for
C0 � 0.15, C0 � 0.25, and C0 � 0.35. Figure 7B presents the
time series for C0 � 0.15, C0 � 0.25, and C0 � 0.35. The
motion mode of the inverted pendulum can be changed by
tuning the value of the contraction coefficient. For C0 > 0.43,

FIGURE 6 | Effects of the light intensity �I on self-stabilized oscillation of
the inverted pendulum for C0 � 0.4, �g � 9.8, �ζ � 14.7, θ0 � 0°, θ1 � 70°, and
_θ0 � 0. (A) Limit cycle for �I � 0.25, �I � 0.37, and �I � 0.50. (B) Time series for
�I � 0.25, �I � 0.37, and �I � 0.50. The amplitude and period of the self-
stabilized oscillation increase with the enhancement of �I.

FIGURE 7 | Effect of the contraction coefficient C0 on self-stabilized
oscillation of the inverted pendulum for �I � 0.6, �g � 9.8, �ζ � 14.7, θ0 � 0°,
θ1 � 70°, and _θ0 � 0. (A) Limit cycles forC0 � 0.15,C0 � 0.25, andC0 � 0.35.
(B) Time series for C0 � 0.15, C0 � 0.25, and C0 � 0.35. The amplitude
and period of self-stabilized oscillation increase by increasing C0.
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the inverted pendulum eventually evolves into static mode at
θ � 180°. For C0 ≤ 0.43, the inverted pendulum oscillates under
steady illumination. With the increase of C0, the amplitude and
period of the self-excited oscillation enlarge. This is because
increasing contraction coefficient boosts the maximum strain
of the two bars of the inverted pendulum, and then the gravity
center of the inverted pendulum changes greatly, causing the
gravity moment and, hence, the amplitude of the self-stabilized
oscillation to rise.

E. Effect of the Damping Coefficient
Figure 8 illustrates the effect of the dimensionless damping
coefficient �ζ on self-stabilized oscillation of the inverted
pendulum. In the computation, we set �I � 0.25, C0 � 0.4,
�g � 9.8, θ0 � 0°, θ1 � 70°, and _θ0 � 0. Figure 8A presents the
corresponding limit cycle, and the time series curves for
�ζ � 13.23, �ζ � 14.7, and �ζ � 16.17 are shown in Figure 8B. By
varying the parameter �ζ , the motion mode of the inverted
pendulum can be adjusted. For �ζ < 12.64, the inverted
pendulum eventually evolves into static mode at θ � 180°,
whereas for �ζ ≥ 12.64, the inverted pendulum oscillates under
steady illumination. This is because, for smaller �ζ , the inverted
rotates more quickly and the LCE bars do not have enough time
to deform to reverse the total moment. With the increase of �ζ , the
amplitude of the inverted pendulum decreases, which is
consistent with the intuition.

F. Effect of the Gravitational Acceleration
Figure 9 plots the effect of the dimensionless gravitational
acceleration �g on self-stabilized oscillation of the inverted
pendulum. In the computation, we set �I � 0.25, C0 � 0.4,
�ζ � 14.7, θ0 � 0°, θ1 � 70°, and _θ0 � 0. Figure 9A presents the

limit cycles for �g � 5, �g � 8, and �g � 9.8. Figure 9B displays the
time series for �g � 5, �g � 8, and �g � 9.8. The motion mode of the
inverted pendulum can be changed by tuning the value of the
gravitational acceleration. For �g≤ 11.7, the inverted pendulum
oscillates under steady illumination. With the increase of �g, the
amplitude and period of the self-stabilized oscillation rise.
According to the physical meaning of �g, the larger �g is, the
slower the cis-to-trans conversion is. Therefore, the smaller the
total moment Mz is, as shown in Eq. 6, the larger the amplitude
and period are. For �g> 11.7, the inverted pendulum eventually
evolves into static mode at θ � 180°. This is because, for large �g,
the amplitude is large, and then the total momentMz is not large
enough to bring the inverted pendulum back. The result may have
its potential applications in aerospace or under a strong
electromagnetic field.

The above results show that the increase of the light intensity,
contraction coefficient, and gravitational acceleration, and the
decrease of the vertex angle and damping coefficient are more
conducive to the stability of the inverted pendulum system.
Detailed numerical calculation shows that the optimal
parameter combination is �I � 0.25, C0 � 0.4, �g � 9.8, �ζ � 14.7,
θ0 � 0°, θ1 � 70°, and _θ0 � 0. This result has guiding significance
for the design of inverted pendulums and related robots.

V. CONCLUSION

In this paper, self-excited oscillation is adopted to propose a new
self-stabilized inverted pendulum, which consists of a V-shaped
optically responsive LCE bar. Based on the well-established
dynamic LCE model, the nonlinear dynamic theory of the
LCE inverted pendulum under steady illumination is
formulated, and numerical calculation shows that the inverted

FIGURE 8 | Effect of the damping coefficient �ζ on the self-stabilized
oscillation of the inverted pendulum for �I � 0.25, C0 � 0.4, �g � 9.8, θ0 � 0°,
θ1 � 70°, and _θ0 � 0. (A) Limit cycle for �ζ � 13.23, �ζ � 14.7, and �ζ � 16.17. (B)
Time series for �ζ � 13.23, �ζ � 14.7, and �ζ � 16.17. The amplitude and
period of self-stabilized oscillation decrease by increasing �ζ.

FIGURE 9 | Effect of the gravitational acceleration �g on self-stabilized
oscillation of the inverted pendulum for �I � 0.25, C0 � 0.4, �ζ � 14.7, θ0 � 0°,
θ1 � 70°, and _θ0 � 0. (A) Limit cycles for �g � 5, �g � 8, and �g � 9.8. (B) Time
series for �g � 5, �g � 8, and �g � 9.8. The amplitude and period of self-
stabilized oscillation increase by increasing �g.
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pendulum system always evolves into the static state or the self-
stabilized oscillation state. The mechanism of the self-stabilized
oscillation is elucidated by the reversal of the gravity moment of
the inverted pendulum. The amplitude and frequency of the self-
oscillation can be designed by modulating several system
parameters. The self-stabilized inverted pendulum fueled by
steady illumination is sustainable and does not need an
additional controller. The results provide new insights into
understanding the self-oscillation phenomenon and offer new
designs of inverted pendulum systems for potential applications
in robotics, military industry, aerospace and, other fields.
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