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In the context of keyhole surgery, andmore particularly of uterine biopsy, the fine automatic
movements of a surgical instrument held by a robot with 3 active DOF’s require an exact
knowledge of the point of rotation of the instrument. However, this center of rotation is not
fixed and moves during an examination. This paper deals with a new method of detecting
and updating the interaction matrix linking the movements of the robot with the surgical
instrument. This is based on the method of updating the Jacobian matrix which is named
the “Broyden method”. It is able to take into account body tissue deformations in real time
in order to improve the pointing task for automatic movements of a surgical instrument in
an unknown environment.
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1 INTRODUCTION

During minimally invasive surgery (MIS), instruments and imaging devices are inserted into a
patient through small orifices. The orifice can be artificial, e.g., during laparoscopy where cannulas
are placed through the abdominal wall. It can also be natural, e.g., during a vaginal manipulation
where a manipulator (and/or an ultrasound probe) is inserted through the patient’s vagina.

When an instrument is inserted through an orifice, forces appear at the insertion area and induced
mechanical constraints. In order to guarantee the patient’s safety during a robotic keyhole surgery,
these forces should be minimized and the most commonly solution is a kinematic solution. More
precisely, inserting an instrument through an orifice is equivalent to rigidly constrains the
movements of the instrument along 4 degrees of freedom (DOFs): one translation along the axis
of the penetration and three rotations around a given point R. This kinematic constraint come from
the assumption that the body stiffness in an orifice is maximal at an anatomical point A located a few
millimeters under the body surface. Therefore, to minimize the forces at the insertion area it is
necessary to achieve R � A.

Numerous solutions are implemented in the literature to cope with the kinematic constraint due
to the insertion of the instrument through a cavity such as in laparoscopy or during prostate biopsies,
etc. But most of them assume that the insertion point plays the role of a 2-DoF kinematic constraint.
For example, it is the case for the 4-DOF robot exhibiting a remote center of motion (RCM) (Guthart
and Salisbury, 2000; Wei et al., 2005) which needs a pre-operation placement prior to the instrument
manipulation. Another solution is to use a fully actuated robot such as in (Schneider et al., 2004;
Konietschke et al., 2009) where the kinematic constraint is solved by the robot control. This solution
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is currently used because it does not require a specific placement
in the operating room but a registration of the insertion point is
still necessary prior to the operation (Boctor et al., 2004; Dombre
et al., 2004; Pham et al., 2015). The main limitation of all these
approaches is that they use a model which does not always
correspond to the reality. Indeed, in many cases, due to the
deformation of the insertion area, minimizing the interaction
forces at the entry of the instrument is not equivalent to perfectly
pivoting around a fixed point. In different works, (Chalard et al.,
2018; Smet et al., 2019), it has been shown that during different
kinds of MIS it is not possible to consider the insertion area as a
fixed point A around which the instrument rotates. Therefore,
using solution as an installation calibration, registration, or
control appears as not appropriated to deal with the
minimization of the forces at the insertion area of the
instrument. To cope with this assumption, the free-wrist
robots (a spherical wrist without actuators, (Sackier and
Wang, 1994; Munoz et al., 2000; Ortmaier and Hirzinger,
2000; Low and Phee, 2004)) are of great interest. With these
devices, as the robot lets the instrument freely orient around the
wrist center W, the insertion point constraint is automatically
respected when the instrument tip is inserted into the patient.
Moreover, the wrench applied to the patient at the insertion point
is naturally minimized. However, a main drawback occurs when a
precise location is to be reached by the instrument tip T. In such a
situation, the robot positions its wrist center W in order to
manipulate the tool from outside the patient. Obviously, the
position of the tool tip T inside the patient results not only from
the position of point W but also from the location of the so-called
insertion point. In practice, one can rarely rely on the definition of
a fixed insertion point, as backlash or deformation of the tissues
surrounding the insertion area occur. This is particularly true for
the uterine manipulation (Smet et al., 2019) which is one of the
application of this paper.

The paper is as follows: Materials and Methods describes
firstly the proposed procedure to biopsy deeply the uterus. The
second part of the Materials and Methods is focused on the
overall system to assist the gesture. Then, based on the anatomical
description and other work, (Smet et al., 2019), robot
specifications are defined and a robot probe-holder is chosen.
This robot is an anthropomorphic arm with 3 actuated joint and a
free wrist. Because of the free wrist, precise positioning requires
the estimations of the kinematic constraint due to the interaction
between the probe and the tissues. Two online model estimation
based on the Adaptable Lever Arm Model (ALAM) and the
Broyden method are described and tested in Precise Positioning
and Simulation Results. It is implemented on a robotic control
law in order to accurately position the probe tip. Finally, Results
highlights different results validating our approach.

2 MATERIALS AND METHODS

2.1 Proposed System
2.1.1 New Uterine Biopsies Procedure
There are a number of tools used by clinicians to diagnose women
with tumors. It included physical exam, serum biomarkers,

sampling/cytology, ultrasound (US), hysteroscopy,
hysterosalpingography, magnetic resonance imaging (MRI)
and computed tomography imaging. However, the only gold
standard to distinguish a malignancy from a benign condition
is a biopsy. Until now, only endometrial sampling performed.
Endometrial biopsies may not provide the correct diagnosis
unless the lesion has reached the surface of the endometrial
cavity (Van der Bosch et al., 2012). These uterine biopsies are
performed thanks to a hysteroscope inserted through the vagina
into the uterus (Tamura et al., 2015). This procedure allows to
sample only the tumors visible in the uterus cavity (submucosal
tumor). It cannot be used to sample deeply in the uterus (subseral
and/or intramural tumors), see Figure 2. In case of uterine
fibroids, several studies (Van der Bosch et al., 2012), (Bansal
et al., 2008), demonstrate the importance of exploring deeply the
uterus in order to specify whether an observed tumor is benign or
malignant. A targeted uterine biopsy system appears as essential
(Kawamura et al., 2002), (Tamura et al., 2015) to reach prior to
laparoscopic surgery of any uterine mass (see Figure 1). However,
there is no routine tool allowing reliable deep sampling in the
uterus. It requires the development of innovative functions
exploiting state of the art in imaging and robotics to enable a
secure, reproducible, and accurate sampling.

A study in progress (Tamura et al., 2015) on 63 patients
concludes that ultrasound-guided needle biopsy may be a reliable
preoperative diagnostic procedure for uterine tumors with
suspected malignancy by MRI. The proposed approach,
detailed in (Fazel et al., 2016), is based on trans-vaginal
ultrasound needle biopsy. This procedure is similar to the
procedure to sample the prostate under transrectal ultrasound
images (Vitrani et al., 2016). During the proposed intervention,
the patient lies on gynecological position. A trans-vaginal
ultrasound probe and a needle guide attached to it are
inserted in the patient’s vagina. Then, the clinician moves the
probe toward a first desired biopsy site. When they think that the
probe is well positioned, the clinician can proceed to the biopsy by
inserting the needle through the needle-guide. They repeat the
above procedure until all the biopsies have been done.

To reach each position, the probe is inserted through the
vagina and its tip is in contact with the cervix (base of the uterus)
which anatomy is described in (Bouton et al., 1990) (see
Figure 2). According to surgeons, the probe tip has a small
mobility within a 1 cm radius circle limited by the cervix and the
vaginal wall, (Smet et al., 2019). Furthermore, the overall probe
has to be moved in many orientations limited by the vagina wall.
The overall workspace of the probe can be modelled by a
truncated cone with 40° top angle, Figure 3.

2.1.2 Robotic Specification
To our knowledge, only two robots are proposed to manipulate a
probe within a vagina, (Akrivos and Barton-Smith, 2013) and
(Yip et al., 2017). Both of them are used for trans-vaginal uterine
manipulation which does not require high precision. However,
for uterine biopsy, the surgeon has to precisely position the probe
(and the needle) while maintaining minimal effort on the cervix
and the vagina (insertion zone). The robot control law must take
into account the displacement and the deformation of the vagina.
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The mechanical-based RCM strategies can’t be relevant in our
work. One can refer to two particularly interesting studies: the
system presented in (Bonneau et al., 2004) which does not use any
force sensor and the work of (Abolmaesumi et al., 2002). These
systems focus on an ultrasound probe holder controlled by
machine-vision to center a section of the carotid in the image:
3 degrees of freedom are controlled by machine-vision while the
operator can control the other 3. An other work on robot-assisted
ultrasound-guided biopsies have shown similar degree of
precision in robot assisted transrectal prostate biopsy

described in (Poquet et al., 2015). This is why we propose to
use a comanipulated robot to assists the clinician’s gesture.

2.1.3 Robot Apollo
Apollo (Figure 3) fits in the category of the free-wrist
comanipulators, although it differs from the existing systems
by the functions it provides (Poquet et al., 2013). Instead of
separating between robotic autonomous probe placement and
human needle placement, it lets the clinician position the probe.
This choice is motivated by the difficulty of planning a trajectory
for the probe positioning when accounting for uterine
displacement, eventual movements from the patient,
anatomical constraints, etc.

It exhibits 6-DoFs to be compatible with all the required probe
movements (Robotic Specification) while avoiding to constrain
its placement with respect to the patient. While the robot base is
placed close to the entry point, on the examination table, it allows
the probe to cover the required workspace. This workspace was
determined based on the clinical literature, (Bouton et al., 1990),
(Tan et al., 2006), (Luo et al., 2016). Apollo is made of six pivot
joints serially assembled according to a conventional
anthropomorphic geometry. The three first active joints form
the shoulder and the elbow while the wrist is composed of the
three last passive joints. The wrist axes coincide at Point W (see
Figure 3). The kinematics are sketched in Figure 3, where Point
W is the wrist center while Point T is the probe tip. Note that the
position of Point W with respect to the robot base only depends
on the three first joint positions while the position of Point T also
depends on the positions of the wrist joint. Kinematic models
mapping joint positions into PointW or Point T positions follows
directly from the Denavit and Hartenberg parameters given in
Table.1, (Denavit and Hartenberg, 1955).

• The FREE mode, characterized by high transparency and
gravity compensation. This allows for manually positioning
the probe under US guidance.

• The LOCKED mode, during which the clinician has his/her
hands free to perform the needle placement and the biopsy.
Here, it is desired that the robot maintains precisely the
target position, while preserving the patient’s safety.

A third mode is aimed at automatically displacing the probe
toward a desired anatomical location named “ADJUSTMENT”.

FIGURE 1 | The new procedure which is able to identify the fibroids classification.

FIGURE 2 | (A) Uterus description with all types of tumors (Ochsner,
2021),modified. In blue (label 1) it is the submucosal tumors, in yellow (label
2,3,4) the intramural tumors and in orange (label 5) the subserosal tumors. (B)
Clinical routine for transvaginal echography and (C) Vaginal measured
description (Luo et al., 2016) modified.
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This control mode is designed for controlling the desired position
of the robot’s wrist center,Wd, while also preserving the patient’s
safety (see Figure 4).

The control law used is an impedance controller generating
forces in response to position errors. Due to the passive wrist, the
force transmission model at the W point is written:

τ � JTv1,W f . (1)

Where:

• τ � [τ1 τ2 τ3]T is the vector of the first 3 torques of each of
the 3 motors;

• f is the equivalent force to the W point;
• Jv1,W is the Jacobian matrix associating the velocity of the
first three joints of the robot with the cartesian velocity of
the robot at the W point. By rating abuse, it will now be
noted JW.

The control law described in Figure 4 is then written:

τmotors � τgrav + JTW kpεW + ki ∫t

0
εWdu( ) (2)

With:

• τgrav corresponds to the torque required to achieve the
gravity compensation (Poquet et al., 2013);

• εW � Wd − W is the error between the desired position and
the current position of the robot’s wrist W;

• kp and ki are the proportional gain and the integral gain,
respectively, both of which are scalars.

Note that choosing sufficiently low values for kp and ki allows
low stiffness at the Point W with a null static error (slow error
cancellation despite perturbations at the insertion point).

It is antagonistic in the context of robot control: usually
precision is achieved thanks to high stiffness while in order to
respect the safety of the patient, control law requires a low
impedance.

2.2 Precise Positioning
2.2.1 Problem Description
As explained in Robotic Specification, the goal of the robot is to
improve the surgeon’s precision during the pointing task. The
more the pointing task will be accurate the more the biopsy will be
relevant. Based on the controller described previously (Robot
Apollo), when a desired location Td is specified for the tip, one has
to compute the corresponding desired position of the wrist center,
Wd, which is easily controllable from the three first actuated joints
of the robot. As both T and W belong to the probe (rigid body),
one can write :

vT � JvW (3)

where vT and vW are the velocities of the probe with respect to the
robot base expressed at point T and W respectively ; J is an
interaction matrix. The displacement ΔT � Td − T0, between Td
the desired position of T and T0 the initial position of T, is reached
if the robot controls the position of W according to:

Wd � W0 + ΔW � W0 + J−1ΔT (4)

FIGURE 3 | (A) Required workspace to manipulate the probe within the vagina (B) Apollo robot and (C) Kinematics scheme (Poquet et al., 2013).

TABLE 1 | DH parameters of the Apollo robot.

i αi ai di+1 θi+1

0 0 0 θ1 0
1 π/2 0 θ2 0
2 0 25 cm θ3 0
3 π/2 0 θ4 30 cm
4 − π/4 0 θ5 0
5 − π/2 0 θ6 0

Apollo thus offers 2 different control modes.
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where W0 is the initial position of W. The resulting controller is
shown Figure 5.

Because of the free wrist, it is not possible to control the
position of Point T only based on the robot kinematic model. In
the literature (Low and Phee, 2004; Ortmaier and Hirzinger,
2000; Dong and Morel, 2016), free wrist robots are used with
the hypothesis that the insertion point is considered as a fixed
rotation center of motion (RCM). However, it appears that the
mapping fromW displacements to T displacements depends on
how the tissues surrounding the insertion site are deformed. In
particular, the vagina is far from being precisely described by a
fixed fulcrum model. It results in a complex relationship
between the position of the robot wrist center W and the tip
position T (see Figure 3) as it has been shown in (Smet et al.,
2019). Thus, the matrix J has to be continuously updated to take
it into account.

Therefore, in order to generalize a control law able to adapt to
any medical application and more specially in uterine biopsy, it
appears necessary to develop an estimator able to take into
account the variability of the rotation point throughout an
examination. Thus, a precise targeting task can be performed
in gynecology and also in other MIS as laparoscopy, urology, etc.

To solve this new problem, two different estimators are
developed.

• The first estimator, named Adaptable Lever Arm Model
(ALAM), uses the well known lever arm model but
continuously updates the Ĵxx and Ĵzz values of the
interaction matrix.

• The second method is derived from numerical methods for
solving nonlinear problems of type y � F(x). This method,
named Broyden’s method, allows to estimate directly a
Jacobian matrix of size 3 × 3 linking two distinct variables.

It is now necessary to present and test them first in simulation
and then on an experimental set-up.

2.2.2 Adaptable Lever Arm Model
When a desired position Td is specified to the robot for the tip of
the instrument, it is necessary to calculate the corresponding
desired position of its wrist center,Wd, which is controllable from
the first three joints of the robot. However, as explained earlier,
the interaction between the tip of the instrument T and the wrist
center of the robot holding the instrument W cannot be
considered as a perfect lever arm model with a fixed
instrument rotation point. Clearly, the correspondence
between the displacements of W and those of T depends on
how the tissue surrounding the insertion site deforms. If we
consider small movements (local representation), it is reasonable
to assume that the behavior is linear, i.e., it is possible to write:

δT � ĴδW �
Ĵxx 0 0
0 1 0
0 0 Ĵzz

⎛⎜⎜⎝ ⎞⎟⎟⎠δW . (5)

This specific structure of J comes from the fact that the
inserted instrument is assumed to be rigid. Therefore, the
displacements of W are assumed to be equal to the
displacements of T on the �y penetration axis.

As explained inNewUterine Biopsies Procedure, during robot
manipulation of the instrument, Ĵ must be continuously updated
because it cannot be considered constant. An instantaneous
estimation of J can be computed from the instantaneous
velocities values of W and T. Indeed, the temporal
differentiation of Eq .5 leads to:

vT � ĴvW . (6)

An instantaneous measurement of the velocities vW and vT is
thus sufficient to identify the 2 unknown elements of J because
two equations are available (corresponding to the first and third
lines of equation.6). However, exploiting the n successive
measurements of vT and vW, assuming that they were
recorded in sufficiently close configurations to consider that J

FIGURE 4 | Control law of the robot’s wrist W.

FIGURE 5 | Controller with a well-known mapping between T and W displacements.
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is constant, allows to estimate Ĵ thanks to a least square
optimization. Denoting Ĵinst the resulting instantaneous
estimation of J, it is possible to implement the online
estimation of Ĵk at a given time k as:

Ĵk � (1 − λ)Ĵk−1 + λĴinst, (7)

where λ is a scalar gain verifying 0 < λ < 1. In practice, λ is set
small enough to filter out measurement noise and large enough to
ensure a satisfactory adaptation rate.

Although this estimator allows to take tissue deformations
around the insertion area of the instrument through the patient
into account, it is still subject to the diagonal construction
assumption of the interaction matrix. As a reminder, this
assumption comes from the definition of the minimally
invasive surgery instrument insertion problem as a linear
annular connection.

However, making this assumption about the construction of Ĵ
means that the forces on the walls of the insertion zone are
decoupled along each axis and do not interfere with each other. It
is complicated to confirm this hypothesis from an anatomical
point of view because of the difference in elasticity between each
insertion zone (uterus, anus, trocar, etc.) of each patient.
Therefore, an estimator based on non-linear systems is
developed in order to get rid of the assumption of
construction of the interaction matrix used until now. It is
thus possible to identify any interaction matrix of the form:

J �
Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

⎛⎜⎜⎝ ⎞⎟⎟⎠. (8)

2.2.3 Broyden Model
System identification is a branch of automatic control that
consists in obtaining a mathematical model of a system from
measurements on it. The problem discussed here is written as the
resolution of a nonlinear system.

In keyhole surgery, errors in the estimation of the
instrument-patient interaction lead to a deterioration of
the closed-loop behavior when the T point is returned to
the controller. This can have a significant impact in real-
world situations, where the interaction cannot be modeled as
a support point and not known precisely in advance. For
example, in (Chalard et al., 2018), it was shown that the
insertion point can be moved more than 20 mm during a
prostate biopsy. In (Smet et al., 2019) it is shown that
manipulation of the uterus with an instrument through the
vagina during surgery cannot be modeled as a pivot joint.

In fact, the mapping of J displacements from W to T depends
on how the tissues surrounding the insertion site deform. As the
deformation of the tissues cannot be modeled and depends on the
insertion zone (uterus, anus, stomach, etc.), the interaction
between _W and _T can be modeled with the general shape:

J �
Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

Moreover, to take the deformation of the tissues when the
instrument is handled into account, J must be continuously
estimated as Ĵ. In the previous section (Adaptable Lever Arm
Model), the problem was partially solved by assuming that the
structure of J can be simplified.

The problem stated above is a nonlinear optimization
problem since the matrix J depends on the position W and
the unknown environment. In the literature, the most common
numerical method to solve this kind of problem is the Newton
method. More particularly, when it is necessary to estimate a
Jacobian matrix, the Broyden method is used. This is an
iterative method that can be used to estimate the Jacobian
matrix (Mansard et al., 2006) of a robot. This method uses an
initial guess to generate an improvement sequence of
approximate solutions. It gives good results assuming that
the initial value is not too far from the actual value. In
addition, this method has a low computational cost that
allows for online estimation.

Based on the Broydenmethod (Broyden, 1965), it is possible to
use the Broyden matrix by applying it directly to the context of
medical robotics. Thus, the estimated matrix Ĵk is computed such
that:

Ĵk � Ĵk−1 + α
δTk − Ĵk−1.δWk

‖δWk‖22
.δWT

k (10)

where:

• δTk � Tk − Tk−1 is the measured displacement of the
instrument tip T between the two iterations.

• δWk �Wk −Wk−1 is the measured displacement of the robot
end effector W between the two iterations.

• α is a scalar gain.

The parameter α is a scalar gain between 0 and 1 which defines
the update speed of the Algorithm.When setting this parameter, a
compromise must be found between convergence speed and
robustness. If the variation of the input data is too small or
null, the computation can become unstable. To avoid this
instability, it is necessary to verify:

δWT
k .δWk � ‖δWk‖22 ≠ 0 (11)

A threshold is then introduced to ensure that the previous
condition is verified:

‖δWk‖2 ≥ rε (12)

where rε must be set according to the application. If the threshold
is not reached, the matrix is not updated and:

Ĵk � Ĵk−1 (13)

3 SIMULATION RESULTS

3.1 Identification Process
To choose the model that will give an identification as close as
possible to the real interaction matrix, there is a multi-step
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identification procedure (Rachad et al., 2015), (Liu et al., 2015)
that allows to test and compare different identification model
structures. All categories are defined as:

• Test protocol: it needs sufficient data that represent the
dynamics of the system. Pseudo-random signals are
typically used as input to the system in order to have a
good excitation of the system;

• Measurement and signal processing;
• Choice of model structure: choice of model type, initial
conditions and convergence factor;

• Parametric identification: use of a parametric optimization
algorithm;

• Validation of the model: execution of verification tests,
analysis of the results;

To find the better identificationmodel, the procedure consists in :

• first step: performing measurement and signal processing
based on a test protocol;

• second step: extracting a parametric identification based on
the measures in step one and the choice of a model;

• third step: validating the model.
• updating step : if the model is not validated, it is possible to
repeat the procedure by updating the choice of the model,
the test protocol and the parametric identification until you
find the correct identification.

Based on this procedure, an experimental protocol is
developed.

3.2 Data Acquisition
Two experiments were conducted to validate the proposed
estimation method. During these experiments, the instrument
is moved in comanipulation with the Apollo robot (the robot
being in free mode). The positions of T and W are measured
thanks to the sensors of the robot and acquired. Two experiments
have been performed:

• For the first experiment, no environment applies any constraint
to the instrument. The user freely manipulates the probe
according to perpendicular translations while maintaining a
constant orientation as illustrated in Figure 6). In this case, the
displacement of T is equal to the displacement of W. This
experiment will hereafter be called “movement 1”.

• In the second experiment, the instrument is inserted into an
anatomical phantom. The user manipulates the instrument
as they would during a gynecological or prostate
examination (Figure 6). This experiment will be called
‘”movement 2”.

After the experiment, the data are exploited in post-processing. In
order to verify that the two estimators are performing well, they are
both tested on the two experiments performed.

To validate their behavior, they are implemented in a simulation
using the software Matlab. By recovering the positions of the robot
end effector (PointW) and the positions of the instrument tip (Point
T) it is possible to reconstruct a position of the instrument tip, noted
Trec. It is calculated from the measured position ofW and the matrix
estimated by each of the two estimators, see Algorithm 1 and
Algorithm 2.

FIGURE 6 | Experimental setup without environmental constraints (A), in an anatomical phantom (B).

Algorithm 1 | Reconstruction of the instrument tip based on the Adaptable Lever
Arm Model (10 ms).
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Whatever the experiment and the estimator, the interaction
matrix Ĵ is initialized as a fixed RCM model. With a manual
calibration, Ĵinit is defined as.

Ĵinit �
−0.15 0 0
0 1 0
0 0 −0.15

⎛⎜⎝ ⎞⎟⎠. (14)

Also, note that the values rε, α and λ are empirically chosen as:

• rε � 0.0001 (m);
• λ � 0.6;
• α � 0.5;

In particular, the rε value was set based on physical limits. Indeed,
as defined in the previous section (Broyden Model), this threshold
affects the Jacobian update based on the input data. In our case, the

input data is the displacement of the point W. It was decided to
update the Jacobian matrix if the robot is moving. Therefore, to take
this into account, the rε value was set to one tenth of a millimeter
between each 10milliseconds. Then, thanks to an iterative method,
the α and λ values were fixed in order to find a compromise between
the convergence speed and the error reconstruction. Indeed, the
closer their values are to 1, the higher the convergence speed of the
algorithm. However, it strongly impacted by the input variation and
conversely if the values of λ and α are close to 0.

The reconstructed positions of the instrument tip Trec are then
compared to the actual position of the instrument tip measured by
the robot, denoted Tmeask. The reconstruction error εTk is defined as:

εTk
� Tmeask − Treck (15)

In this way, the smaller the εTk error is, the more the algorithm
is able to artificially reconstruct the position of the instrument tip.
In practice, this means that if εTk tends to zero at any time, the
estimators are able to identify the interaction between the part of
the instrument located inside the patient (point T) and the one
located outside (point W). Thus the estimators tend to the value
of the real interaction matrix J.

3.3 Reconstruction of the Interaction Matrix
Based on ALAM and Broyden Method
The results of the four experiments are shown in the Figure 7.

For the movement 1:

• the average reconstructed error (εTk) with the Adaptive Lever
ArmModel is less than 0.721mm (standard deviation 1.09mm).

FIGURE 7 |Measured position of the robot wrist (green) and the instrument tip (red) during a displacement. Evolution of the reconstruction error εTk (blue) during the
two experiments with the ALAM (A,B) and Broyden (C,D) estimators.

Algorithm 2 | Reconstruction of the instrument tip based on the Broyden
algorithm (10 ms).
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• the mean reconstructed error (εTk) with the Broyden model
is less than 0.257 mm (standard deviation 0.477 mm).

Moreover, for the movement 2:

• the average error (εTk) with the Adaptive Lever Arm Model
is less than 0.232 mm (standard deviation 0.314 mm).

• the mean error (εTk) with the Broyden model is less than
0.235 mm (standard deviation 0.191 mm).

Whatever the movement or the chosen estimator, we can note
the presence of error peaks (black circle) in Figure 7. They appear
in the case of a sudden change in the direction of motion,
highlighted by the dotted black vertical line. However,
Figure 7 show that the two proposed methods succeed in
cancelling the error after a few iterations.

Moreover, taking into account the particular link of the W
and T points for the movement 1 (the wrist of the robot and
the tip of the probe have the same speed), the green circle
visible on Figures 7A,C highlights a peak in the
reconstruction error due to the initial value of Ĵ which is
totally different from the real value.

Concerning the ‘movement 2′, the changes of direction are
smoother because of the constraint of the insertion which has the
effect of making the peaks of reconstruction error almost
disappear. This can also be seen from the mean values of the
reconstruction errors as well as their standard deviation for
‘movement 2′ which are, for both estimators, lower than for
‘movement 1’.

3.4 Discussion
As a comparison, a simulation using a fixed lever arm model was
tested. This model is one of the most used in the literature and
was implemented based on a pre-test placement (Wei et al.,
2005). It was only implemented on the “movement 2” which
corresponds to a mini-invasive type of movement. The results of

this simulation can be found in Figure 8. The average error (εTk)
with the fixed Lever Arm Model is 16.4 mm (standard deviation
2.9 mm).

Regardless of the movement, based on the mean error (and
standard deviation) and overall performance (Figure 7), it can
be concluded that both of the proposed methods for
estimating the interaction matrix continuously are more
effective than the fixed lever arm model. They both
correctly estimated the position of the instrument tip at
any time. To face these problems of non-fixed or even non-
existent insertion point, it is proposed to implement the
estimators tested in simulation on an experimental set-up
to validate their interest.

4 RESULTS

4.1 Experimental Set-Up
As explained in Problem Description, it is possible to realize
fine automatic movements by controlling the wrist of the
robot thanks to the controller detailed previously (Figure 6).
Moreover, as highlighted in Precise Positioning, to reach a
target with the probe tip (point T) by controlling the
robot wrist (point W), it is necessary to accurately
estimate the J interaction between W and point T (see
Figure 9). The estimators are thus implemented in the
open-loop control described in Problem Description.
Indeed, by implementing the two estimators in the open
loop control and by comparing them to a classical
calibration estimate at the beginning of the test, it is
enough to look at the final positioning error to know the
most efficient and reliable method. Based on this
consideration, the accuracy of the estimator could be
measured through real displacements of the probe.
Indeed, by controlling the wrist of the robot, the better the
estimation of the interaction matrix, the closer the final

FIGURE 8 |Measured position of the robot wrist (green) and the instrument tip (red) during a displacement. Offline reconstructed error εTk (blue) during the ‘motion
2′ determined with the fixed lever arm model.
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position T will be to the desired position T. To quantify
the displacements, a laser is attached to the probe. The
laser is pointed on a graph paper and the pointing error is
thus recorded at the end of the probe movement (see
Figure 10).

In order to ensure the accuracy of the estimators, the
targets are chosen to be able to verify the correlation and/
or the decorrelation of the displacements due to tissue
deformations. Indeed, it is interesting to perform
displacements along a single axis and also along 2 axes
simultaneously. The targets are defined as the corners of
the square (Targets 5, 6, 7 and 8, see Figure 10). The
square is designed as a 40 mm side square. Each middle of
the sides of the square forms the other 4 targets (Targets 1, 2, 3
and 4, see Figure 10). For each targeting task, the starting
point is the center of the square. This allows movements of
different lengths (20 and 28.3 mm). In addition, the square is
covered three times, so each target was reached three times.
Moreover, in order to simulate anatomical constraints
(elasticity, no RCM, etc), the insertion point is covered
with foam (see Figure 10). Thus, regardless of the
displacement, the interaction between the W and T points
is still unknown. Note that in order to be relevant with the
Sec.2.2.1, the initial value of the interaction matrix J is always
the same.

In order to be able to position our work with respect to the
existing literature on the positioning of surgical instruments
during prostate or uterine surgery, a fixed RCM type control

found in the literature (Yip et al., 2017) was also implemented
(see Figure 5). In this configuration, the initialization of the
interaction matrix Ĵ is fixed a :

Ĵfixe−br �
−1.55 0 0
0 1 0
0 0 −1.55

⎛⎜⎝ ⎞⎟⎠. (16)

It should be noted that for the displacements with
the Adaptive Lever Arm Model (ALAM) the displacements
will be restricted to targets 1, 2, 3 and 4 with displacements
of 10 mm. Moreover, as the experiments were not

FIGURE 9 | Open loop control of the Apollo robot for automatic fine movements of the instrument tip taking into account the elasticity of the environment.

FIGURE 10 | Set-up and targets.

TABLE 2 | Displacement standard for each transverse side given by Apollo with Ĵ
constant and updated.

ΔT desired of 10 mm with Ĵ constant with Ĵ updated

Displacement of T 7.5 12.2
6.4 10.5

along �x 8.5 10.8
(mm) 8.1 10.3

Displacement of T 5.7 11.1
6.1 10.2

along �z 9.8 9.8
(mm) 9 8.8

Average error 2.36(23.6%) 0.81(8.1%)

Clearly, consideration of an anisotropic pattern and online pattern identification
significantly reduces the targeting error of the instrument tip.
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performed at the same time as those for the Broyden model,
the initial value of the initialization matrix differs and is
fixed at:

Ĵfixe−lam �
−0.8 0 0
0 1 0
0 0 −0.8

⎛⎜⎝ ⎞⎟⎠. (17)

In order to standardize the results obtained for each of the two
estimators, they are both compared to a classical calibration
method performed with robotic systems having RCM (as it
has been defined in Discussion).

4.2 Evaluation of the Two Estimators
4.2.1 Adaptable Lever Arm Model
Table.2 contains the different errors obtained by using a constant
Ĵ interaction matrix and those obtained with the ALAM estimator
which allows to update Ĵ. The error calculated for each of the 8
steps is the absolute value of the difference between 10 mm
(desired displacement) and the actual displacement measured
at point T. The average error when using a constant Ĵ is 2.36 mm
while it is reduced to 0.81 mm with a continuously updated Ĵ.

4.2.2 Broyden Model
Figure 11 compares the errors obtained using a fixed RCMmodel
and a continuously updated Ĵ interaction matrix. The error
calculated for each of the 24 steps is the absolute value of the
difference between the desired displacement and the actual
displacement measured at point T. In Figure 11, the
displacements correspond to two classes. The first class
includes the 12 displacements of 20 mm along the �x and �z
axes of the probe (targets 1, 2, 3 and 4). The second class
includes the other 12 displacements that move simultaneously
along the �x and �z axes of the probe (targets 5, 6, 7 and 8).

It appears that the controller based on the continuous
estimation of the interaction matrix using the Broyden method
is better than the controller based on the fixed RCM.

Specifically, for targets 1, 2, 3, and 4 the Broyden controller
reduces the pointing error by more than 2 mm for a 20 mm
displacement compared to the fixed RCM controller. In
addition, for targets 5, 6, 7, and 8, we reduce the pointing
error by more than 3 mm. Overall, for all displacements,
the accuracy of the pointing task is improved by 11.8% with
the Broyden controller. In detail, the accuracy for all
moves is:

• Broyden controller accuracy � 91.1%
• Fixed RCM controller accuracy � 79.3%

4.3 Discussion
Clearly, taking a numerical model based on the Broyden
method to continuously identify the J interatcion matrix
into account significantly reduces the pointing error.
Although both estimators improve the open-loop control
with our set-up in a similar way, the choice of the Broyden
model is selected. Indeed, although trying to reproduce the
behavior of the vagina anatomy as well as possible, the set-up
seems to be more similar to the conditions of prostate biopsy
or laparoscopy. In this context both estimators improve the
overall behavior of the open-loop control compared to the
fixed lever armmodel. However, if we look at the description of
the uterus, the Broyden algorithm is more recommended than
the adaptive lever arm model. Indeed, in (Smet et al., 2019), it
is shown that it is impossible to consider the insertion zone as a
rotation point. Therefore, the estimation model based on an
adaptive lever arm model appears less relevant for this medical
examination.

5 DISCUSSION

Therefore, after testing both estimators in simulation and in
experimental set-ups, the Broyden method clearly appears as the

FIGURE 11 | Average error of the scoring task with the RCM Fixed model and the Broyden Model.
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better solution. It cans take the deformation of the insertion area
into account during MIS in order to precisely position the
instrument tip.

Moreover, the best solution to reach a target with a robot is to
use a close loop controller on the instrument tip. It guarantees a
zero error for the targeting tasks of the instrument tip. Closing the
loop at point T is then possible with the following control law (see
Figure 12):

τ � τgrav + JTW kpĴ
−1
εT + ki ∫t

0
Ĵ
−1
εTdu( ) (18)

With such a controller, due to the integration of εT, a null
error at point T is guaranteed providing that the system
remains stable. The control law and the results are
described in (Chalard et al., 2020). This leads to the
conclusion that controlling fine automatic displacements of
the instrument tip in close loop control by taking the
elasticity/deformations of the insertion zone into account
thanks to the Broyden estimator allows to increase tenfold
the performances of the targeting task. Indeed, with a
continuous estimation of the J interaction matrix, the
convergence towards the desired target is achieved on
average 5 times faster than with an estimated interaction
matrix considered fixed (see Figure 13).

It should also be noted that, as with the movements made
with the open loop controllers, the insertion point around
which the instrument rotates instantaneously is not fixed.
As shown in Figure 13 it can indeed move in a 2 cm
wide area.

CONCLUSION

This paper focuses on the definition of the interaction matrix J
and its importance for the realization of a precise control in
minimally invasive robotic surgery and more particularly for
uterus biopsy. Indeed, it is shown that if this matrix is badly
estimated, it cans have undesirable consequences on the control
of the robot and sometimes lead to a divergence of the system. In
the literature, the most common method to identify J is to
consider the interaction between the instrument held by the
robot and the patient’s body as an annular linear link. This
kinematic constraint restricted the working space to 4 degrees of
freedom. Considering the insertion point as fixed, many robots
have been developed with an offset center of rotation (RCM).
These can either be mechanically imposed and are then called
“active” or directly imposed by the anatomy of the insertion point
and considered as ‘passive’. In the first case, the surgeon must
manually match the remote rotation point of the robot with the
rotation point of the instrument imposed by the anatomy. In the
second case, the rotation point of the instrument is unknown to
the robot. To overcome this problem, 6 degrees of freedom robots
have been designed. Thanks to their sensor data, they are able to
reconstruct a mean rotation point close to the actual rotation
point of the instrument using a least squares algorithm (Dong and
Morel, 2016). Although each of these options has its advantages
and disadvantages, the biggest issue lies in the assumption of their
design. Indeed, studies have shown that the actual point of
rotation of the instrument cannot be considered as fixed
throughout a surgery. It is subject to variations in position

FIGURE 12 | Closed loop control of the Apollo robot for automatic fine movements of the instrument tip taking the elasticity of the environment into account.

FIGURE 13 | (A) Convergence time for the 40 trials (Controller without adaptation vs Controller with adaptation) and (B) Highlighting of an “insertion area” in the
developed experimental set-up.
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due, among other things, to the elasticity of the tissues
surrounding the insertion zone of the instrument.

The models of the literature are till sufficient to perform tasks
requiring little precision (coarse displacement of an endoscope
controlled by the surgeon) and more generally to perform tasks
involving direct control of the robot by the surgeon. However
they cannot be applied to a task such as fine automatic
displacement where the surgeon no longer intervenes in the
control loop.

To account for this new assumption, two models (Adaptive
Lever Arm Model and Broyden) have been developed. They can
continuously identify the interaction matrix linking the
instrument tip velocity with the robot effector velocity. In this
paper, simulations on post-processed robot’s data have:

• showed the importance of taking into account the
displacement of the rotation point of the instrument
during a manipulation;

• validated the working principle of the proposed estimators
to continuously identify the J interaction matrix.

In order to experimentally validate the results obtained in
simulation, these two estimation models were then implemented
on the Apollo robot to validate them on an experimental set-up.

Both estimators were implemented in an open loop control
of the probe tip in order to evaluate their performance against
the RCM solution found in the literature. From an
experimental set-up simulating the insertion of an
endocavity probe through an unknown sinking, automatic
fine displacements are then re-assembled. Although both
estimators are better than the one developed in the
literature, only the estimator based on Broyden’s method is
retained. Indeed, the anatomical constraints related to the
biopsy of the uterus do not allow to define the displacement
of the probe from a rotation of the probe around a variable
point. Therefore, although its results are similar to Broyden’s

model, the Adaptable Lever Arm Model (ALAM) construction
hypothesis appears inconsistent with our application.

Although experimentally validated on an in vitro laboratory
set-up and implemented on a close loop controller, the Broyden
method will be necessary from now on to carry out an
experimental set-up reproducing the vagina and the uterus as
faithfully as possible. It needs to be tested and validated on an
ultra-realistic set-up in order to hope to carry out in-vivo tests.
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