
Visual Collaboration Leader-Follower
UAV-Formation for Indoor Exploration
Nikolaos Evangeliou1*, Dimitris Chaikalis2, Athanasios Tsoukalas1 and Anthony Tzes1

1Robotics and Intelligent Systems Control (RISC) Lab, Electrical and Computer Engineering Department, New York University Abu
Dhabi, Abu Dhabi, United Arab Emirates, 2Electrical and Computer Engineering Department, New York University, Brooklyn, NY,
United States

UAVs operating in a leader-follower formation demand the knowledge of the relative pose
between the collaborating members. This necessitates the RF-communication of this
information which increases the communication latency and can easily result in lost data
packets. In this work, rather than relying on this autopilot data exchange, a visual scheme
using passive markers is presented. Each formation-member carries passive markers in a
RhOct configuration. These markers are visually detected and the relative pose of the
members is on-board determined, thus eliminating the need for RF-communication. A
reference path is then evaluated for each follower that tracks the leader and maintains a
constant distance between the formation-members. Experimental studies show a mean
position detection error (5 × 5 × 10cm) or less than 0.0031% of the available workspace
[0.5 up to 5m, 50.43° × 38.75° Field of View (FoV)]. The efficiency of the suggested scheme
against varying delays are examined in these studies, where it is shown that a delay up to
1.25s can be tolerated for the follower to track the leader as long as the latter one remains
within its FoV.
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1 INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) towards autonomous task completion has received
increased attention in the past decade. Indicative tasks include aerial manipulation in Gassner et al.
(2017), Gkountas and Tzes (2021), Nguyen and Alexis (2021), Li et al. (2021), surveillance in Bisio
et al. (2021), Tsoukalas et al. (2021), as well as Simultaneous Localization and Mapping (SLAM) in
Papachristos et al. (2019a), Tsoukalas et al. (2020), Dang et al. (2019) or inspection in Papachristos
et al. (2016), Steich et al. (2016), Bircher et al. (2015); these works necessitate the collaborating agents
to exchange their relative pose (position and orientation).

High frequency measurements from the inherent Inertial Measurement Unit (IMU) within each
UAV are filtered using an Extended-Kalman-Filter (EKF) for attitude estimation (Abeywardena and
Munasinghe, 2010) in Flight Control Units (FCUs). Migrating from the attitude to the altitude
estimation necessitates the use of additional onboard sensors. Among these, the Global Positioning
System GPS/GNSS (Qingbo et al., 2012) typically feeds at 5Hz positioning data to the FCU. In
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GPS-denied indoor environments, other sensing modalities are
deployed for estimating the drone position within a swarm. These
include LiDaR sensing (Kumar et al., 2017; Tsiourva and
Papachristos, 2020; Yang et al., 2021), RSSI measurements
(Yokoyama et al., 2014; Xu et al., 2017; Shin et al., 2020), RF-
based sensing (Zhang et al., 2019; Shule et al., 2020; Cossette et al.,
2021) and visual methods (Lu et al., 2018).

1.1 Visual Relative Pose Estimation Sensors
and Techniques
Optical flow sensors in Wang et al. (2020), Chuang et al. (2019),
Mondragon et al. (2010), monocular SLAM in Tsoukalas et al.
(2020), Dang et al. (2019), Papachristos et al. (2019b), Schmuck
and Chli (2017), Trujillo et al. (2020), Mur-Artal et al. (2015),
Dufek and Murphy (2019), McConville et al. (2020) and
binocular SLAM in Mur-Artal and Tardós (2017);
Smolyanskiy and Gonzalez Franco (2017) are typically used to
infer the pose of mobile aerial agents. These methods usually
require structural features and can result in error accumulation.
More recently, deep learning techniques for relative pose
estimation have been introduced for accurate results
(Mahendran et al., 2017; Radwan et al., 2018; Patel et al., 2021).

Regarding techniques using an external reference shape for
pose extraction, these typically include passive markers, including
ArUco (Xavier et al., 2017) and April tags (Wang and Olson,
2016) fiducial markers. These methods introduce a variety of an
a-priori known planar, rectangular, black and white pattern,
which, when in line of sight, allows the computation of its
relative pose to the camera. The extension of this is relative
pose estimation for every unit bearing such a marker
arrangement.

1.2 Limitations of Pose Estimation Systems
The onboard IMU on a UAV provides both orientation and
position information when coupled to a GPS/GNSS receiver. Its
average positioning accuracy (Upadhyay et al., 2021) is close to
3m, with maximum errors reported close to 10m. The causes of
such error are: weather conditions and signal refractions from
obstacles such as large buildings in the proximity, and poor signal
under bad environmental conditions (clouds, dust) (van Diggelen
and Enge, 2015). Even with the use of a Real Time Kinematic
(RTK) component, GPS-RTK measurements drift as much as
6.5cm in the horizontal plane and 30cm in the vertical axis under
the assumption of 1h tuning of the base station prior to the
measurement collection (Sun et al., 2017). Similarly, the
orientation accuracy suffers from constant drifting with time
(LaValle et al., 2014; Upadhyay et al., 2019) Even with the
utilization of bias correction methods, such as the use of
magnetometer sensors for correcting the yaw drift, an RMS
error of more than 5° is found in orientation on every axis.

Onboard LiDaR sensors reduce the quantizationmeasurement
error from 0.15m up to 1m (Chen et al., 2018), depending on the
number of instantaneous scans performed at each position. The
main concern with respect to LiDaR is the weight (close to 1Kg)
and the high acquisition cost. RSSI and RF-based methods can be
a viable alternative having a positioning noise deviation of 0.1m

(Cossette et al., 2021). The drawback stems with the requirement
for precise placement of at least four external anchor nodes, with
additional nodes required for multi-agent experimentation, and
need of absence of metallic objects proximity to the antennas
(Suwatthikul et al., 2017).

Another viable solution discussed is the use of onboard visual
modalities for self-localization in monocular or binocular pose
estimation applications. In the case of image feature extraction
used in SLAM, a few centimeters error is reported (Daniele and
Emanuele, 2021). However, the feature identification is
computationally intensive and passive markers can be
employed to ease this load. The black border of these markers
assists in their fast detection, and distance error of 15cm, when
placed up to 2.75m from the imaging modality (López-Cerón and
Canas, 2016) have been reported.

1.3 Contributions
In this work the utilization of multiple markers placed on an
Archimedean solid configuration is used for visual relative
localization. The reported distance error is approximately
7.5cm in a hovering scenario of a dual UAV multi-agent
system. The overall pose estimation duration is close to
30msec and this scheme provides robustness under varying
lighting conditions and partial occlusion, despite any relative
yaw-angle between these UAVs. The fiducial-marker carrying
UAVs are then used in a leader/follower formation. The UAVs’
dynamical equations are linearized and the maximum allowable
delay that the advocated controller can tolerate is provided. It is
shown that as long as the leader remains within the follower’s Fov,
the controller can tolerate more than 57 samples (missing
frames). We should note that the major advantage stems from
the lack of using RF-communication for exchanging the UAVs’
pose and possibly saturating the communication channel in such
a case.

This article is structured as follows. The concept behind the
visual localization is presented in Section 2, followed by the
linearized UAV-dynamics in Section 3. The adopted controller
and the maximum allowable delay in computing the relative pose
is described in Section 4. Experimental studies appear in Section
5 followed by concluding remarks.

2 VISUAL-ASSISTED RELATIVE POSE
ESTIMATION

An indicative setup of two drones bearing imaging modalities is
showcased in Figure 1 for evaluating the proposed technique in
an experimental real-world leader-follower scenario.

In this work, we assume the existence of multiple UAV agents,
each bearing an imaging modality without zooming capabilities,
while their cameras are assumed to be mounted at the front of the
vehicle. Having already introduced several methods for pose
detection in Section 1, this research work focuses and extends
the use of the ArUco fiducial markers framework (Romero-
Ramirez et al., 2018). The identification process consists of a
filtering process with local adaptive thresholding for edge
extraction. This is followed by a contour extraction and a
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polygonal approximation to identify the rectangular markers.
Then a size based elimination and marker code extraction is
carried out, to be followed by marker identification and marker
pose estimation. When applied to visual object pose tracking,
assuming object distances of less or equal to 5m, this framework
can provide a robust and accurate result of position and
orientation (Xavier et al., 2017).

Each UAV is carries the fiducial marker arrangement
similar to the one in Tsoukalas et al. (2018). This so called
RhombicubOctahedron (RhOct) arrangement is comprised
of squares and isosceles triangles as its facets and has an
overall weight of 75g. The utilization of this Archimedean-
solid, depicted in Figure 2 (left), allows for concurrent
observation of these fiducial markers, as shown in
Figure 2 (right).

The truncated RhOct comprises of 13 squares and 4 triangle
facets and has an area of Ar � 13(a × a) + 4(12 a × (a

�
5
4

√
)) ,

where a is the square facet’s edge length. The planar-rollover
of the 17 facets with their associated markers are presented in
Figure 2 (right). Marker 0 corresponds to the one that has axis Zc
� Z0 passing thru its center as shown in Figure 2, and the angles θi
and ϕi for each marker correspond to the horizontal and vertical
axes, respectively.

This configuration is expected to improve the pose estimation
accuracy when more than one marker is detected. Additionally, it
ensures robustness in occlusion and lighting conditions, as the
system can identify the pose given only a subset of the markers.
Such scenarios are depicted in Figure 3. In Figure 3C, the RhOct
is partially occluded from the view, however its upper markers are
still detected, allowing for the pose estimation process to
conclude. Similarly, in Figure 3D two frames are shown with
significant varying lighting conditions compared, and yet the
RhOct’s pose can be extracted.

The algorithm for pose estimation is initialized by generating
each fixed marker’s configuration on the RhOct. The marker
identifying number and its corner geometry on the solid are
obtained from a configuration file. Themarker’s corner geometry,
in this case refers, to the coordinates of its four corners with
respect to the axis system Xc, Yc, Zc of Figure 2. Subsequently the
online pose extraction is carried out for every new image
acquisition using the following steps: 1) Detect fiducial
(ArUco) markers in the image, 2) For each marker discovered
extract the pixel coordinates of each corner, 3) Feed all pixel
coordinates to a Perspective N–point solver of OpenCV library
(Bradski, 2000) for extracting the RhOct’s pose with respect to the
camera axis system. The algorithm encountered in the

FIGURE 1 | Developed drone-configuration for pose estimation evaluation.

FIGURE 2 | Truncated rhombicuboctahedron geometry and fiducial marker arrangement.
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EPnP-formulation (Lepetit et al., 2009) was used to solve
Perspective N-points (PnP) problem (Quan and Lan, 1999),
due to its recursive nature which starts from the previously
encountered solution. This algorithm is a significant
enhancement to (Tsoukalas et al., 2018), where the center of
the solid was extracted from each individual marker and then
averaged, leading to ambiguity in individual marker pose
extraction (Oberkampf et al., 1996). To address this, the
algorithm simultaneously passes all marker corners (in pixels)
to the solvePnP function, which in turn calculates the global
optimal pose satisfying the initial fixed geometry of the RhOct.

Additional improvements include changes in the marker
arrangement for more accuracy and improved detection frequency
using a Region-of-Interest (RoI) approach. The adopted dictionary
was “ARUCO_MIP_16h3” since this provides 4 × 4 markers which
are easier to detect at larger distance than the default ArUco 6 × 6
ones. The markers at the square (triangular) facets were set to 48.75
(22.5)mm to accommodate space for the detection method. This
method improved the accuracy, reduced jittering due to the sub-pixel
corner refinement.

The adopted recursive RoI implementation assumes that a
pose solution from the previous iteration exists, and the

FIGURE 3 | RhOct configuration (A), Detected marker (B), Occlusion case (C) and detection under various lighting conditions (D).

FIGURE 4 | Flowchart of RhOct pose estimation algorithm.
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subsequent image is only cropped at a 1280 × 720 size around the
center pixel of that solution and then passed to the pose detection
algorithm. This implementation can handle 30 FpS in an i7-CPU
implementation and the resulting algorithm is summarized in
Figure 4.

3 LINEARIZED UAV-DYNAMICS

Owing to inherent delays in the relative pose computation of the
leader demands the inference of the maximum allowable lag, so
that proper control parameters can be applied to the follower in
order to efficiently maintain the leader within its Field-of-
View (FoV).

The dynamic model of a quadrotor with massm forms a set of
nonlinear ODEs Sabatino, 2015. Let op � [x, y, z, ϕ, θ,ψ]T ∈ R6

the vector containing position and the Euler angle orientation of
the quadrotor in earth frame. Let its derivative be _op �
[u, υ,ω, p, q, r]T ∈ R6 containing the linear and angular
velocities with respect to body frame. Let the UAV’s inertia
matrix with respect to its center of gravity be diagonal I �
Ix 0 0
0 Iy 0
0 0 Iz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∈ R3x3. The input forces and torques to the

system are assumed proportional to the square rotational
speed of the rotors as in Eq. 1, where l is the distance of any
rotor from the drone center, b the thrust factor and d the drag
factor.

u � u1, . . . , u4[ ]T � ft, τx, τy, τz[ ]T ∈ R4, where
ft � b Ω2

1 + Ω2
2 +Ω2

3 +Ω2
4( )

τx � bl Ω2
3 − Ω2

1( )
τy � bl Ω2

4 − Ω2
2( )

τz � d Ω2
2 + Ω2

4 −Ω2
1 −Ω2

3( ).
(1)

Let the gyroscopic moments and any ground effect
phenomena be absent, then the dynamic model of the
quadrotor can be described as in

_x � f x( ) +∑4
i�1

gi x( )ui, where (2)

x � [x, y, z, ϕ, θ,ψ, _x, _y, _z, p, q, r]T ∈ R12, and c(·)�△ cos(·),
s(·)�△ sin(·), and t(·)�△ tan(·).

f x( ) �

_x

_y

_z

q
s ϕ( )
c θ( ) + r

c ϕ( )
c θ( )

q c ϕ( )[ ] − r s ϕ( )[ ]
p + q s ϕ( )t θ( )[ ] + r c ϕ( )t θ( )[ ]

0

0

g

Iy − Iz( )
Ix

qr

Iz − Ix( )
Iy

pr

Ix − Iy( )
Iz

pq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

gi x( ) � 01×12[ ]T, i � 1, . . . , 4 (3)

gT1,7 � − 1
m

s ϕ( )s ψ( ) + c ϕ( )c ψ( )s θ( )[ ],
gT1,8 � − 1

m
c ψ( )s ϕ( ) − c ϕ( )s ψ( )s θ( )[ ] (4)

gT1,9 � − 1
m

c ϕ( )c θ( )[ ], gT2,10 � 1
Ix
,

gT3,11 �
1
Iy
, gT4,12 �

1
Iz
.

(5)

Linearizing around a hovering condition x° � [x-°, y-°, z-°, 01×9]T
and u° � [mg, 0, 0, 0]T to account for the weight of the quadrotor,
where x � x° + Δx and u � u° + Δu.
Δ _x � Δ _x, Δ _y � Δ _y, Δ _z � Δ _z, Δ _ϕ � Δ _ϕ, Δ _θ � Δ _θ, Δ _ψ � Δ _ψ

Δ€x � −gθ, Δ€y � gϕ, Δ€z � 1
m
Δu1 , Δ€ϕ � 1

Ix
Δu2, Δ€θ � 1

Iy
Δu3 , Δ€ψ � 1

Iz
Δu4.

These equations can be written in a compact form where the
notation IN (0N) refers to an identity (zero) N × N matrix.

Δ _x12×1 � A12×12 Δx12×1 + B12×4 Δu4×1. (6)

FIGURE 5 | Ardupilot-based controller design for single UAV.
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Δu,

(7)

4 CONTROLLER DESIGN AND MAXIMUM
ALLOWABLE DELAY FOR LEADER/
FOLLOWER UAV-FORMATION
The controllers for the altitude and attitude, as shown in
Figure 5 within the Ardupilot framework are adopted in
this study. For the z-axis a P-differentiator converts vertical
position error to vertical velocity; this is subsequently
converted to desired vertical acceleration through a cascade
P-controller and finally through a PID-controller to motor
output. For the xy-plane control a gain differentiator coverts
the x and y position error to reference velocity, followed by a
velocity PID which converts the velocity error to roll (pitch)
when x (y) is referred. Correspondingly this amounts to a � ϕ
(θ) when xr

f (yr
f) is used. This reference roll (pitch) is sent to

the attitude controller which is a second velocity
P-differentiator along with a feedforward term which
generates the desired roll (pitch) rate. A second cascade
PID-controller is used to generate the necessary torques
along the x (y) axes. The yaw-controller is similar to the
attitude component of the roll and pitch components, as
shown in Figure 5.

The four inputs ft, τx, τy and τz are then used in Eq. 1 to
compute the Ωi, i � 1, . . . , 4 which are provided in the ESCs to
power up the brushless motors of the quadrotor.

The resulting closed loop stable system takes the torm

Δ _x � Ac Δx + Bc

zrf
xr
f

yr
f

ψr
f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where the subscript “f” indicates the follower quadrotor.

In a leader/follower configuration the deployment strategy
and, thus, reference paths dynamically change upon changes to
the position of the leader. Having obtain a dynamic model for a
single drone, namely the follower’s dynamic behaviour, the
potential coupling between a dynamically moving leader and
the follower’s reference path strategy allows for the generation of
a single linear model for the multi-agent UAV configuration, that
is used for assessing the system stability. It should be noticed that
for a single leader/follower UAV configuration this coupling is
not necessary.

In a leader/follower configuration we use the subsript “l” to
distinguish the leader from the follower quadrotor. The leader
quadrotor performs a motion while the follower attempts to
follow the leader’s motion at a certain distance in each axis, or
xl−xf � cx, yl−yf � cy and zl−zf � cz where cx, cy and cz are constants
and c2 � c2x + c2y + c2z. It should be noted that the presented
controllers are continuous in nature, whereas in reality they
are implemented with a 400Hz rate on a Pixhawk autopilot.
This generates minor inherent delay in the system response,
which in most cases can be neglected. However, in a real world
scenario, other inherent time delays in pose estimation can affect
the follower’s tracking performance of the leader. These delays
can be attributed to sensing modality refresh rates and
communication (if needed) of the relative poses within
collaborating aerial agents.

In this work the use of an imaging modality for computing
the relative pose between the leader and follower, means that
the information does not need to be communicated between
agents. Still, the refresh rate for the controller output cannot
exceed the refresh rate of the imaging modality. In our case this
is 30Hz, however for high resolution cameras of 12 mega-pixel
it can be as low as 5Hz, which might affect tracking
performance in the case of aggressive attitude motions from
a leader. This scenario is of similar nature with communicating
GPS sensed positioning between agents in outdoor
environments for relative positioning. Since these sensors
are bounded to a 4Hz frequency, the position of a leader
will be communicated to a follower at 250msec for
processing the calculations. Coupled to the data RF-
transmission delay this interval can easily increase up to
350msec (excluding any lost packets). The follower will
then need to compute xr

f: xl − xf ≃ cx (yr
f: yl −

yf ≃ cy) [zrf: zl − zf ≃ cz] and direct it to its controller
shown in Figure 5.

Hence there is an inherent varying delay in the feedback path
since the vector [xr

f(t), yr
f(t), zrf(t)]T is computed after

h seconds, where h ∈ [0, 350msec]. Subsequently, there exists
a motivation to assess such delays when operating multi-agent
systems. We should note that despite h(t) is time varying, we can
use polling to constrain it at a sampling period (in the
experimental section h ∈ 0.25, 1, 1.25{ } seconds. The
controller employed by the follower is a simple MIMO P-
controller, and we should note that the yaw is regulated to
zero and there is no need to infer the leader’s relative yaw; this is
due to the used RhOct that can be viewed from any yaw angle of
the leader. The employed controller is
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zrf(t)
xr
f(t)

yr
f(t)

ψr
f(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Kz 0 0 0
0 Kx 0 0
0 0 Ky 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
zl(t − h) − zf(t − h)
xl(t − h) − xf(t − h)
yl(t − h) − yf(t − h)

ψf(t − h)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

cz
cx
cy
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(9)

The follower quadrotor’s time-delayed dynamics is
expressed as

Δ _xf � Af Δxf(t) + A1,f Δxf(t − h) + Bf

cz
cx
cy
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

This system is asymptotically stable for any constant delay h:
0 < h < hmax of there exist matrices p > 0,Q > 0 and Z > 0 such that
(Gouaisbaut and Peaucelle, 2006; Xu and Lam, 2008)

PAf + AT
fP + Q − Z PA1,f + Z hmaxAT

fZ

AT
1,fP + Z −Q − Z hmaxAT

1,fZ
hmaxZAf hmaxZA1,f −Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0 (11)

An exhaustive search is needed to compute the maximum
delay that is allowed under the time-delayed leader/follower
configuration. It should be noted: 1) that the provided results
are sufficient and higher values of hmax can still provide a stable
system, and 2) the provided analysis is valid for near hovering
conditions by the follower forcing a smooth trajectory [s(ϕ) ≃ ϕ
and s(θ) ≃θ, or ϕ, θ ≤ 10°]. Furthermore the inherent assumption
is that the leader remains within the FoV of the follower’s camera
and the marker can be viewed with clarity.

5 EXPERIMENTAL STUDIES

In the following experimental study, the efficiency and accuracy
of the suggested scheme is evaluated using two identical drones in
a leader/follower formation.

5.1 Experimental Setup
The utilized quadrotors bear an imaging modality and a
unique RhOct arrangement described in Section 2.
Moreover, an Intel NUC i7 onboard computer and a
PixHawk flight controller with the open-source ArduPilot
(ArduPilot, 2021) framework are fitted for processing power
and carrying out the low level flight actions respectively. The
total weight of each UAV is 2.2kg with an allowable flight time
of 11min using a 4-Cell LiPo battery. A FLIR BlackFlyS camera
is used for image acquisition with a 2048 × 1534pixel
resolution; the achievable acquisition rate using the onboard
computer reached 37 FpS. The camera was calibrated using the
ArUco calibration board for a fixed focus at 2.75m distance. 8-
bit grayscale images were acquired to conform with the ArUco
framework image processing methods, while the shutter speed
was kept at 5nsec for minimizing blurriness. The utilized
algorithms rely on the ROS (Quigley et al., 2009)
framework and can be accessed from the following Github
repository. A rendered version and the actual prototype are
depicted in Figure 6 respectively. A motion capture system,
comprising of 24 high resolution VICON cameras (Vicon
motion systems, 2021) operating at 120 Hz was utilized for
validating drones’ pose with 0.5mm and 0.5° accuracy.

5.2 Relative Pose Measurement With
Stationary UAVs
This section investigates the maximum allowable detection
distance for the RhOct configuration and the relative pose
error as a function of the leader/follower distance. Both
stationary UAVs were set so as to increase the distance
between them |xl−xf| ∈ {1, 1.25, . . . , 4}m. At each distance
we perform pose estimation of the leader’s RhOct, using the
follower’s imaging modality for a duration of 120s. In Figure 7
the average and peak values of the pose estimation errors are
depicted.

FIGURE 6 | Developed UAV-rendering (A) and physical prototype (B).
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All translational and rotational errors seem to drift away as the
distance varies away from the optimal focal length distance of
2.75m. The algorithm operates extremely well at distances up to
4 m with a typical translational (rotational) error (3 × 4 × 15)cm
(3° × 0.5° × 0.1°).

5.3 Relative Pose Measurement With
Hovering UAVs
In order to account for the induced UAV-vibrations in measuring
their pose, two drones in a hovering condition facing each other
are used in this study. The relative error measured by our visual
algorithm compared to the one inferred by the motion capture
system is shown in Figure 8, where it is shown that the mean
(worst) translational error was 4.9 × 13.8 × 73.9mm (11.5 × 113.8
× 203.7mm) for the XYZ axes respectively. These small errors are
mainly attributed to the ArUco corner refinement algorithm and

are consistent with the large deviations reported in the Z-axis
(Ortiz-Fernandez et al., 2021).

For comparison purposes the relative position relying on raw
GPS measurements for two stationary drones is shown in
Figure 9. Thee drones are placed at 2.75m relative distance
and their GPS receivers recorded their translational
coordinates for 160s from six available satellites. The typical
error was two orders of magnitude larger compared to the one
from the visual system and is in agreement with the one reported
in the literature; the rotational error from these measurements
was constrained to 5° × 5° × 6°.

5.4 Leader-Follower Scenario Evaluation
In this scenario the leader is commanded to execute two
consecutive skewed rectangular paths with predetermined
waypoints, while these two rectangles are distanced from
each other at 1m. The follower tracks the leader at a

FIGURE 7 | Attainable pose measurement error for stationary UAVs at different distances |xl − xf |.
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distance with parameters (cx, cy, cz) � (0, 2, 0)m using the
controller from Eq. 9. The relative leader/follower distance is
estimated through the leader’s detected RhOct. When the
leader cannot be detected (i.e., being outside of the
follower’s FoV or due to occlusion from obstacles) the
follower remains in a hovering mode till the subsequent’s
leader’s detection. The theoretical maximum allowable
latency hmax was 1.9s and for emulation purposes such a
delay is induced into calculating the follower’s reference
altitude. Similarly to the previous cases, the positions of the
two UAVs are compared using the VICON system for delays of
0.25, 1 and 1.25s.

In Figures 10–12 the 3D-path of the leader and follower is
shown in the top-left portion, while their X, Y and Z
trajectories are shown in the top-right, bottom-left and

FIGURE 8 | Visual vs. Motion Capture System induced pose measurement error.

FIGURE 9 | GPS-altitude relative error for stationary UAVs.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7775359

Evangeliou et al. Leader Follower UAV Visual Collaboration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


FIGURE 10 | 3D Leader/Follower trajectories with h � 0.25s delay.

FIGURE 11 | 3D Leader/Follower trajectories with h � 1s delay.
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bottom-right parts respectively. These are expressed in the
ENU frame configuration (X-forward, and Z-upward). For
delays of h � 0.25s, shown in Figure 10, the follower closely
follows the path of the leader with minimal lag. The leader
completes its trajectory at 125s with a small translational
velocity, so that it remains as much as possible within the
follower’s FoV.

Similarly for h � 1s the path patterns are shown in
Figure 11. Again we notice that the follower can

accurately follow the path of the leader with an
approximate phase lag of 2s. This delay is attributed to the
UAV’s controller and the imposed h � 1s delay of applying
the estimated reference path. It is also worth noticing a
partial loss of the leader at 42s for a brief period of 3s due
to the leader’s disappearance out of the follower’s-
camera FoV.

The last iteration of h � 1.25s delay is included to showcase
the behaviour of the leader/follower configuration upon loss

FIGURE 12 | 3D Leader/Follower trajectories with h � 1.25s delay.

FIGURE 13 | Follower’s camera FoV upon loss (A) and reappearance (B) of leader.
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of leader’s reference path. This is happening owing to the
large delay, which leads to the leader’s moving out of the
follower’s FoV. In this case, the follower switches to a
hovering case per the adopted strategy, only to re-initiate
the controller when the leader reappears within FoV at
t ≃101s. This case appears in Figure 12, whereas the
moments of losing and regaining view of the leader’s
RhOct are visualized in Figure 13.

The relative Euclidean distance errors between the
follower’s reference and actual position are depicted in
Figure 14 for different delays. It should be noticed that the

error is still computed when the leader is not within the FoV of
the follower. As expected, there is significant drift of the
follower’s reference path as the delay increases. The mean
value of the error is: 1) 0.33m for 0.25s delay, 2) 0.41m for 1s,
and 3) 0.81m for 1.25s delay. The loss of the leader is
highlighted with the dashed line-segment of the error for
the case of 1 and 1.25s delay.

5.5 Extension to a Multiple-Agent Scenario
The aforementioned scheme can be extended to multi-agent
relative localization in a swarm deployment experimentation.
Such a case is shown in Figure 15, where three heterogeneous
UAVs “1 thru 3” are fitted with a RhOct shown in the top-left
portion while the pose detection algorithm is extended to
multiple agents within the FoV of each drone. In this
experiment drone 1 can view 2 and 3 (top-right), drone 2
can view 1 and partially 3 (bottom-left) while drone three can
only observe 1 (bottom-right). A directed observation visual
observation graph can be generated in this case having
selected one of these as the anchor of the graph, In a
leader/several followers scenario in this case, drone “1” is
the leader being observable by both “2” and “3”. The only
limiting factor in this case is the number of available
dictionary of markers, where with a 4 × 4 fiducial
dictionary, 1,000 markers can be generated which can be

mounted in 58 � ⌊100017 ⌋ drones. In this case, the occlusion of

some markers from the FoV of each agent necessitates the

FIGURE 14 | Follower’s Euclidean distance error vs. delay.

FIGURE 15 | Swarm flying formation and detection view per agent.
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computation of a proper control strategy (Das et al., 2002;
Mariottini et al., 2005).

6 CONCLUSIONS

In experimental leader/follower UAV-configurations, there
is need to transmit the relative pose between these UAVs.
Rather than relying on the individual FCUs and an RF-
transmission scheme, fiducial markers are attached in
each UAV. Using an onboard camera, these markers are
accurately detected and the relative pose can be inferred
within 30msec, as long as the leader is within the follower’s
FoV and at a distance up to 4m. The maximum theoretical
latency time is compared to the experimental one, while the
FoV can be extended: 1) to cover the complete space if
spherical cameras are used (Holter et al., 2021), and 2)
focus in multiple agents.
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