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Complex contact-rich insertion is a ubiquitous robotic manipulation skill and usually
involves nonlinear and low-clearance insertion trajectories as well as varying force
requirements. A hybrid trajectory and force learning framework can be utilized to
generate high-quality trajectories by imitation learning and find suitable force control
policies efficiently by reinforcement learning. However, with the mentioned approach,
many human demonstrations are necessary to learn several tasks even when those tasks
require topologically similar trajectories. Therefore, to reduce human repetitive teaching
efforts for new tasks, we present an adaptive imitation framework for robot manipulation.
The main contribution of this work is the development of a framework that introduces
dynamic movement primitives into a hybrid trajectory and force learning framework to learn
a specific class of complex contact-rich insertion tasks based on the trajectory profile of a
single task instance belonging to the task class. Through experimental evaluations, we
validate that the proposed framework is sample efficient, safer, and generalizes better at
learning complex contact-rich insertion tasks on both simulation environments and on real
hardware.
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1 INTRODUCTION

Contact-rich insertion is a ubiquitous robotic manipulation skill in both product assembly and home
scenarios. Some contact-rich insertion tasks involve nonlinear and low-clearance insertion
trajectories and require varying force control policies at different phases, which we define as
complex contact-rich insertion tasks, such as ring-shaped elastic part assembly and USB insertion.
Such tasks demand skillful maneuvering and control, which makes them challenging for robots.

Imitation learning (IL) is a promising approach to tackle complex contact-rich insertion tasks by
reproducing the trajectory and force profiles from human demonstrations. However, there are some
concerns that prevent IL from working efficiently and safely in actual applications:

1) Force profiles are not easy to acquire from demonstrations compared with trajectory profiles:
Trajectory profiles can be easily obtained from kinesthetic teaching, teleoperation, simulation,
among other methods, but force profiles usually demand additional haptic devices (Kormushev
et al., 2011). Even with the force sensor that is integrated into the robot, it suffers from the strict
position limit, i.e., the hand of the demonstrator should never be between the end-effector (EEF)
and the force sensor, which usually makes the demonstrations of the complex contact-rich tasks
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inconvenient. Also, when there is no real robot available, force
profiles from simulated environments can be unsuitable for
actual tasks due to the reality gap (Mirletz et al., 2015).

2) Motion shift of the EEF of the manipulator exacerbates the
compounding error problem (Ross and Bagnell, 2010; Ross
et al., 2011) of IL because IL usually learns a one-step model
that takes a state and an action and outputs the next state, and
one-step prediction errors can get magnified and lead to
unacceptable inaccuracy (Asadi et al., 2019).

3) Demonstrations are usually task specific and require human
repetitive teaching efforts for new tasks even if
demonstrations with topologically similar trajectories have
already been collected.

For the first concern, the lack of proper force profiles in
human demonstrations can be complemented by model-free
reinforcement learning (RL), which is an effective method to
handle contact-rich insertion tasks (Inoue et al., 2017; Vecerik
et al., 2019) by interacting with the environment. Beltran-
Hernandez et al. (2020) presents an RL-based control
framework for learning low-level force control policies to
enable rigid position-controlled robot manipulators to
perform contact-rich tasks. However, the exploratory nature
of RL can lead to low-quality trajectories for complex contact-
rich insertion tasks, which causes hardware wear and tear or
even damage due to a myriad of collisions during the training
process on a real robot. Therefore, high-level control policies,
which can give proper commands of nominal trajectories of the
EEF of the manipulator are necessary to alleviate the situation.
We define the high-level control policy which provides the
nominal trajectory as the skill policy, and the low-level control
policy which generates the specific parameters of the controller
as the motion policy. A skill policy can be learned by IL, but as
the second concern above presents, the motion drift of EEF
away from the demonstrated trajectory usually occurs during a
task. Therefore, we proposed a novel hierarchical goal-
conditioned IL (HGCIL) method (Wang et al., 2021) to
learn the skill policy to facilitate the EEF to recover from
deviate poses through self-supervised learning. Finally, as the
last concern states, there are situations where a human has to
demonstrate a set of tasks with topologically similar
trajectories. These tasks differ from each other in terms of
geometric characteristics such as size or shape of the work-
pieces. Therefore, we seek to generalize an existing trajectory
profile to its variations so that human efforts on new
demonstrations can be reduced. Dynamical movement
primitives (DMPs) (Ijspeert et al., 2013) model is a typical
dynamic system-based technique that has been widely applied
in the field of IL for encoding both periodic and discrete
motion data. DMPs can generate a trajectory or control
signal that can be flexibly adjusted to guide the real system
without manual parameter tuning or affecting the overall
convergence and stability. They can also be modulated to
meet different requirements, such as obstacle avoidance
(Park et al., 2008; Hoffmann et al., 2009), by adding
feedback terms. Therefore, we consider using DMPs to
adapt an existing trajectory profile to new tasks so that we

can learn new control policies based on the generalized
trajectory profiles.

The main contribution of this paper is the development of an
adaptive imitation learning framework for robot manipulation
(Figure 1), which introduces DMPs into a hybrid trajectory and
force-learning framework in a modular fashion, to learn the
control policies of a specific class of complex contact-rich
insertion tasks based on the trajectory profile of a single
instance (note that a trajectory profile can include several
trajectory demonstrations of a task instance), thus, relieving
human demonstration burdens. We show that the proposed
framework is sample efficient, generalized to novel tasks, and
is safe enough to be qualified for the learning on both simulated
environment and real hardware.

The rest of this paper is organized as follows: After discussing
the most related work in the Related work section, we set up our
problem and introduce some techniques applied in our
framework in the Preliminaries section. In the Adaptive
robotic imitation framework section, we describe the overview
and details of the proposed adaptive imitation learning
framework. Then we experimentally evaluate the performance
of this framework on simulated environment and real hardware
using a UR3e robotic arm in the Experimental evaluation section.

2 RELATED WORK

In this section, we provide an overview of the application of IL
and RL approaches in the context of contact-rich insertion tasks
and the position of our work in the existing literature.

2.1 Imitation learning
Imitation learning (IL), also referred to as learning from
demonstration (LfD), is a powerful approach for complex
manipulation tasks, which perceives and reproduces human
movements without the need of explicit programming of
behavior (Takamatsu et al., 2007; Kormushev et al., 2011;
Suomalainen and Kyrki, 2017; Hu et al., 2020). Among the IL
approaches, DMPs (Ijspeert et al., 2013) have shown the ability to
generalize demonstrations in different manipulation tasks (Peters
and Schaal, 2008; Metzen et al., 2014; Hu et al., 2018; Sutanto
et al., 2018). However, the forces and torques that a human
applies during the demonstrations of contact-rich tasks are
required to regress a proper admittance gain of robot
controller (Tang et al., 2016) or to match with modified
demonstrated trajectories using DMPs (Abu-Dakka et al.,
2015; Savarimuthu et al., 2017). To quickly program new peg-
in-hole tasks without analyzing the geometric and dynamic
characteristics of workpieces (Abu-Dakka et al., 2014) exploits
demonstrations and exception strategies to develop a general
strategy that can be applied to the objects with similar shapes,
which need to be inserted. However, force profiles are still
essential for such strategies to modify the trajectories of the
learned movements.

In contrast, we study the case wherein only the trajectory
profile of a single instance is available in a class of complex
contact-rich insertion tasks, and based on this trajectory profile,
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wemanage to solve other variations of this instance with different
object sizes or shapes but topologically similar insertion
trajectories without explicitly knowing the concrete geometric
characteristics. In this context, it does not help even if the original
force profile is available because the new trajectories are unknown
so that we cannot match the trajectory and the force profiles.

2.2 Reinforcement learning
Reinforcement learning (RL) methods have been widely used for
contact-rich robotic assembly tasks (Inoue et al., 2017; Thomas
et al., 2018; Vecerik et al., 2019; Beltran-Hernandez et al., 2020) to
circumvent difficult and computationally expensive modeling of
environments. However, sample efficiency and safety problem
have always been issues that affect its practicality in complex
contact-rich manipulation tasks.

To improve the sample efficiency and guarantee the safety of
RL, human prior knowledge is usually incorporated for learning
complex tasks. One such way is reward shaping (Ng et al., 1999),
where additional rewards auxiliary to the real objective are
included to guide the agent toward the desired behavior, e.g.,
providing punishment when a safety constraint such as collision
is violated (Beltran-Hernandez et al., 2020). Generally, reward
shaping is a verymanual process. It is as difficult to recover a good
policy with reward shaping as to specify the policy itself
(Johannink et al., 2019). Although some prior work considers
reward shaping as a part of the learning system (Daniel et al.,
2015; Sadigh et al., 2017), human efforts are still necessary to rate
the performance of the system. Therefore, another way occurs
that human prior knowledge is included in RL through
demonstration (Atkeson and Schaal, 1997) to guide the
exploration. Some work initializes RL policies from
demonstration for learning classical tasks such as cart-pole

(Atkeson and Schaal, 1997), hitting a baseball (Peters and
Schaal, 2008), and swing-up (Kober and Peters, 2009). Beyond
initialization using demonstration, some promising approaches
incorporate demonstrations with the RL process through replay
buffer (Vecerik et al., 2017; Nair et al., 2018) and fine-tuning with
augmented loss (Rajeswaran et al., 2018). However, these
methods require humans to be able to teleoperate the robot to
perform the task so that the observation and action spaces of
demonstration (state–action pairs) are consistent with the RL
agent, which is not always available for an industrial manipulator.

Considering the lack of teleoperation system, residual RL
(Johannink et al., 2019) combines the conventional
controller, which ships with most robots with deep RL to
solve complex manipulation tasks, where the problems can be
partially handled with conventional feedback control, e.g.,
with impedance control, and the residual part, including
contacts and external object dynamics, is solved with RL.
Based on Johannink et al. (2019), Davchev et al. (2020)
proposes a residual LfD (rLfD) framework that bridges
LfD and model-free RL through an adaptive residual
learning policy operating alongside DMPs applied directly
to the full pose of the robot to learn contact-rich insertion
tasks. However, Davchev et al. (2020) does not discuss how to
handle different force requirements at different phases, e.g.,
the search phase and insertion phase, of the insertion task.

In the proposed framework, we utilize DMPs on the skill level
together with a novel HGCIL approach to provide nominal
trajectories for the controller to follow and learn the motion
policy of the controller by RL. Specifically, the framework learns
the time–variant force–control gains to behave accordingly at
different phases of the insertion task, which is not discussed in
Davchev et al. (2020), and DMPs are also updated by RL to adapt

FIGURE 1 | System overview of the adaptive robotic imitation framework. The upper and the lower part are the trajectory learning and the force learning parts,
respectively. The switch symbol between the reinforcement learning (RL) agent and the dynamical movement primitives (DMPs) module means the update of DMPs is
executed using a modular learning strategy.
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the existing nominal trajectories to new tasks during the training
process.

3 PRELIMINARIES

In this section, we describe the problem statement and provide
fundamentals of some key techniques utilized in our adaptive
robotic imitation framework.

3.1 Problem statement
Let A be a complex contact-rich insertion task class, which
represents a set of tasks with topologically similar trajectories.
We define a task A(n) ∈ A as the nth instance of A. P(n) is the

demonstrated trajectory profile of A(n) consisting of k
demonstrated trajectories, Γ, i.e., P(n) � Γ1, Γ2, . . . , Γk{ }(n), and
each Γ in P(n) consists of a sequence of the EEF poses, p, in the
task space. Using the hybrid trajectory and force learning
framework proposed by Wang et al. (2021), we can learn a
proper control policy for each A(n) if P(n) is accessible.

To clarify, we assume an L-shaped object insertion (L
insertion) task class, referred to as A. The goal of L insertion
is to insert an L-shaped workpiece held by a robotic gripper into a
groove with a corresponding shape, and the clearances are no
more than 1 mm. There are some instances where
A(1), A(2), A(3), A(4){ } ∈ A, and Figure 2 shows the L-shaped
workpiece, L, involved in each instance. With A(1) as the base
instance, the L of A(2) gets its shape by applying an affine
transformation to the L of A(1); the Ls of A(3) and A(4) further
reshape it by extending the bottom and doubling the entity,
respectively.

In this paper, we assume that only the demonstrated trajectory
profile of A(1), P(1), is available as shown in Figure 3. We know
that other instances ofA have similar trajectories to A(1) but have
no access to concrete information of these trajectories or
geometric characteristics of objects involved in these instances.
Although we can collect their trajectory profiles through
demonstrations, it would be time-consuming and tedious
when the number of instances is quite large, which brings
huge burdens to the human demonstrator. Therefore, we need
an effective trajectory learning approach that can adapt an
existing trajectory profile to new similar scenarios to reduce
the human burden, and this is the motivation that we
introduce the DMPs to the hybrid trajectory and force
learning framework.

3.2 Dynamical movement primitives
3.2.1 Positional dynamical movement primitives
Following the modified formulation of positional DMP
introduced by (Park et al., 2008), the differential equation of a
one-dimensional positional DMP has three components. The first
component is the transformation system that creates the
trajectory plan:

τ _v � K[(g − x) − (g − x0)s + f(s)] −Dv (1)

where x ∈ R and v � τ _x are the position and velocity of a
prescribed point of the system, respectively. τ ∈ R+ is a
temporal scaling factor. x0, g ∈ R are the initial and goal
positions, respectively. K,D ∈ R+ are the spring and damping
terms, respectively, and D is chosen as D � 2

��
K

√
to keep the

system critically damped. s is a phase variable, and it is governed

FIGURE 2 | A class of L-shaped object insertion tasks. The shapes and
sizes of workpieces are different among tasks, but these tasks possess
topologically similar insertion trajectories (unit: mm).

FIGURE 3 | The insertion trajectory of A(1).
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by the second component of DMP formulation, a canonical
system: τ _s � −αs, α ∈ R+.

The third component is a nonlinear function
approximation term (called forcing term), f, to shape the
attractor landscape,

f(s) � ∑N
i�1ωiψi(s)∑N
i�1ψi(s)

s (2)

where ψi(s) � exp(−hi(s − ci)2) are Gaussian basis functions
with centers ci and widths hi, and ωi is their weights.

In this paper, we utilize three-dimensional DMPs for the three
positional degrees of freedom (DoF). Therefore, we rewrite Eq. 1
in multidimensional form as shown in Eq. 3:

τ _v � K[(g − x) − (g − x0)s + f(s)] −Dv
τ _x � v

{ (3)

Each DoF has its own transformation system and forcing term
but shares the same canonical system.

3.2.2 Orientational dynamical movement primitives
Besides positional DMPs, insertion tasks are also highly dependent
on orientation. Therefore, we also utilize orientational DMPs
(Pastor et al., 2011; Ude et al., 2014). A unit quaternion q ∈ S3

is commonly used to describe an orientation because it provides
a singularity-free and nonminimal representation of
the orientation (Ude et al., 2014). S3 is a unit sphere in R4. The
transformation system of orientational DMPs is:

τ _η � K[2 log(g p �q)] −Dη + f(s)
τ _q � 1

2
~η p q

⎧⎪⎨⎪⎩ (4)

where g ∈ S3 denotes the goal quaternion orientation, �q
denotes the quaternion conjugation of q, and * denotes the
quaternion product. ~η � [0, ηT]T is the angular velocity
quaternion. K,D ∈ R3×3 are angular stiffness and damping
gains, respectively. The canonical system and the nonlinear
forcing term, f(s), are defined in the same way as the positional
DMPs. We also use the quaternion logarithm log(·) and
exponential map exp(·) as given in Ude et al. (2014).

3.2.3 Coupling term
Eqs. 3 and 4 can be used to imitate a demonstrated trajectory.
However, we sometimes desire to modify the behavior of the
system online in practice. To modify a DMP online, an optional
coupling term, Ct, is usually added to the transformation system
of DMP. For example, a one-dimensional positional DMPwith Ct

has the formulation as follows:

τ _v � K(g − x) −Dv − K(g − x0) +Kf(s) + Ct (5)

Ideally, Ct would be zero unless a special sensory event requires
modifying the DMP. In the field of robotic manipulation, coupling
terms have been used to avoid obstacles (Rai et al., 2014), to avoid
joint limits (Gams et al., 2009), to grasp under uncertainty (Pastor
et al., 2009), etc. This term is vital for our adaptive framework, andwe
will discuss it in the Adaptive robotic imitation framework section.

FIGURE 4 | Comparison of different resulting trajectories by changing different components of the DMPs formulation. Green line is the original sine wave trajectory.
Blue star and red star are the original goal and the new goal, respectively.
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3.3 Goal-conditioned imitation learning
In a typical IL setting, the ith demonstrated trajectory Γi in a
trajectory profile P is in the form of state–action pairs,
i.e., Γi � (si0, ai0, . . . , siT, aiT), where T represents the total
time steps. For a complex nonlinear trajectory, some specific
states, commonly known as bottleneck states, need to be
reached to correctly imitate the whole trajectory. It is
challenging for behavior cloning (BC), a conventional approach,
which learns a policy π(a|s) from the state–action pairs, to imitate,
such a trajectory due to compounding errors in the Markov
decision process (MDP). Goal-conditioned IL (GCIL) is a self-
supervised method that learns a goal-conditioned policy that has
been proven to be more effective than BC in reproducing the said
complex trajectory (Kaelbling, 1993; Schaul et al., 2015; Ding et al.,
2019). In a goal-conditioned setting, the state–action pairs are
replaced by state–action–goal triplets, (sit, ait, sig), and a goal-
conditioned policy π(a|s, sg), which attempts to match different
goals is learned instead of π(a|s). Data relabeling (Lynch et al.,
2019) is an effective data augmentation method usually used by
GCIL, which treats each state sit+k visited within a demonstrated
trajectory from sit to sig as a latent goal state. This technique is
particularly effective in the low data regime where a few
demonstrations are available.

Algorithm 1 | Modular learning process.

4 ADAPTIVE ROBOTIC IMITATION
FRAMEWORK

4.1 System overview
The architecture of our framework is shown in Figure 1, which is
built on a hybrid trajectory and force learning framework from

our previous work (Wang et al., 2021). It consists of a trajectory
learning part and a force learning part. The former takes an
existing trajectory profile, P(m), of the task A(m) ∈ A as input and
generates the nominal trajectory, ΓN(n), of another task A(n) ∈ A.
ΓN(n) is learned from P(m) by an IL agent, which consists of an
adaptive DMP module (ADMP) and a skill policy module. The
force learning part is composed of an RL agent and a parallel
position/force controller (Chiaverini and Sciavicco, 1993). The
RL agent learns both the parameters and the position/orientation
commands of the controller following ΓN(n) to control the
industrial rigid manipulator to finish A(n) with proper force
control policy. In the rest of this section, we will introduce
each part of this framework in detail.

4.2 Modular learning strategy
In the proposed framework, we use a modular learning strategy
because end-to-end learning can become very inefficient and even
fail as networks grow (Glasmachers, 2017), which is known as the
curse of dimensionality. In contrast, structured training of
separate modules may be more robust. Moreover, assembly
tasks are naturally divided into different subtasks that can be
learned in different modules, e.g., in our problem setting, a task
can be divided into a trajectory learning part and a force learning
part. Therefore, we introduce DMPs into the framework in a
modular learning fashion expecting to overcome the curse of
dimensionality.

ADMP works in the trajectory learning part. It keeps constant
after finding a seemingly suitable nominal trajectory ΓN(n) ofA(n) with a
small amount of trial and error, and then the framework only updates
the parameters of the controller for the force learning at each training
step. If the learning performance is constantly poor with the current
ΓN(n) after certain steps, ADMP will be updated again with a given
frequency to search for an alternative ΓN(n). This mechanism is
represented by the switch symbol in Figure 1. The whole
modular learning process is shown in Algorithm 1.

4.3 Trajectory learning
4.3.1 Adaptive action of adaptive dynamical
movement primitives
In the trajectory learning, we hope to adapt trajectories in an
existing task trajectory profile to new trajectories that are suitable
for other similar tasks. Therefore, we introduce ADMP to achieve
this goal. As we only use ADMP to realize spatial scaling, we set
the temporal scaling factor τ to 1 in Eqs. 3 and 4.

As mentioned in the Coupling term section, the behaviors of
ADMP can be modified by changing the coupling terms, Ct, in
Eq. 5. Therefore, it is a promising approach to learn proper Ct for
ADMP to adapt to new scenarios. Moreover, the forcing term
weights, ω, can also affect the resulting trajectories.

To discern how different components of the DMP formulation
affect the results, wemake an investigation by introducing randomCt

or adding random noise to ω in the DMP formulation of a sine wave
as depicted in Figure 4. The green line is a sine wave trajectory. We
spatially scale the sine wave to match a new goal using two-
dimensional DMPs. The first subfigure in Figure 4 shows the
scaled trajectory using vanilla DMPs, which means no Ct is
added, and ω is chosen to match the original trajectory without
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noise. With such a baseline, we then add 1) only Ct; 2) only ω noise;
and 3) both Ct and ω noise to the DMP formulation to observe the
effects on the resulting trajectories. The results in Figure 4 indicate
that 1) Ct facilitate local exploration based on the original trajectory,
2) noise added to ω leads to locally smooth but globally different
trajectory, and 3) adding both Ct and ω results in a trajectory with
both global shape change and local exploration.

Considering our requirements, the global change in trajectory
may benefit the coarse adaptation to geometric characteristics of
new workpieces, and the local exploration can help to tackle some
delicate bottleneck states along the trajectory. Therefore, we
choose to add both Ct and ω noise to the DMP formulation.
In the framework, instead of meaningless variables, Ct and ω
noise are learned by the RL agent through interacting with the
environment.

4.3.2 Hierarchical goal-conditioned imitation learning
We train the skill policy using an HGCIL approach proposed in
our previous work (Wang et al., 2021). Following the goal-
conditioned setting in the Goal-conditioned imitation learning
section, we reorganize the original trajectory profile P(n) into a
hierarchical goal-conditioned (HGC) trajectory profile Pskill

(n) . A
trajectory Γ ∈ Pskill

(n) consists of a sequence of poses (p0, p1, . . . ,
pT), which are Cartesian poses of EEF in our framework. Sliding
along each sequence in P(n) with two predefined hierarchical
windows, Ws and Wm, we obtain a new sequence of triplets,

(p, pl, ph) � (pt, pt+min(w,Wm), pt+w), if t + w≤T
t � 1, 2, . . . , T;w � 1, 2, . . . ,Ws.

where p, pl, and ph represent the current pose, the subgoal pose, and
the goal pose, respectively. Note that pl plays the role of action
between two consecutive states here. All these triplets compose Pskill

(n)
and the skill policy π(pl|p, ph) is trained using a fully connected neural

network with three hidden layers, each with 256 units, a dropout rate
of 0.1, and ReLu as the activation function, which maps the
observation, (p, ph), to the action, pl. With the skill policy π(pl|p,
ph), the IL agent can spontaneously find subgoals, pl, for a distant goal
along the trajectory and provides pl to the parallel controller. All these
subgoals compose the nominal trajectory, ΓN(n). Since pl can be
periodically updated based on p and ph, the motion drift of EEF
is constrained, and the goal-conditioned setting assists the EEF in
recovering from unseen states.

FIGURE 5 | The simulated environment in Gazebo and the real experiment environment with a UR3e robotic arm. We show the setup for A(2) task where L is directly
attached to the robot.

FIGURE 6 | Learning curves of the training sessions on A(2) task with
frameworks using different trajectory learning methods: Adaptive DMPs
(ADMP), demonstrated trajectory (DEMO), and RL without trajectory learning
(w/o). The red dashed line represents the near-optimal reward.
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4.4 Force learning
4.4.1 Reinforcement learning-based controller
An RL-based controller proposed in our previous work (Beltran-
Hernandez et al., 2020) is responsible for learning the proper force
control policy decided by the gain parameters of the controller, acp, as
well as the position/orientation commands of EEF, ap. The RL-based
controller consists of an RL agent and a parallel position/force
controller. The parallel position/force controller includes a
proportional derivative (PD) controller generating part of the
movement command, ppc , based on the position feedback, and a
proportional integral (PI) controller adjusting the movement
command by pfc according to the force feedback.

The learning process starts with pl from the trajectory learning
every time step. p is the actual Cartesian pose of EEF, and f � [ f, τ] is
the contact force, where f ∈ R3 is the force vector and τ ∈ R3 is the
torque vector. fg is the reference force of the insertion task. The pose
error of EEF, pe � pl − p, the velocity of the EEF, _p, and f serve as
inputs to the RL agent, while pe and f also serve as feedback to the
parallel position/force controller. For the controller, the RL agent
gives policy actions consisting of ap and acp. ap � [v, w] are the
position/orientation commands where v ∈ R3 is the position and
w ∈ R4 is the quaternion to control the movements of the robot;
acp � [Kp

p,K
f
p, S] are the gain parameters of the controller where

Kp
p, K

p
d � 2

���
Kp

p

√
, Kf

p , and Kf
i � 0.01Kf

p are PD proportional, PD
derivative, PI proportional, and PI integral gains, respectively, and

S � diag(s1, s2, s3, s4, s5, s6), sn ∈ [0, 1] (6)

is the selection matrix, whose elements correspond to the
degree of control that each controller has over a given
direction. Finally, the actual position command,
pc � ap + ppc + pfc , is produced by the controller based on all
inputs and sent to the manipulator.

4.4.2 Algorithm and reward
We use Soft-Actor-Critic (SAC) (Haarnoja et al., 2018) as the RL
algorithm of the scheme, which is a state-of-the-art model-free
and off-policy actor-critic deep RL algorithm based on the
maximum entropy RL framework. It encourages exploration
according to a temperature parameter, and the core idea is to
succeed in the task while acting as randomly as possible. As an
off-policy algorithm, it can use a replay buffer to reuse

information from recent operations for sample-efficient
training. We use a reward function as follows:

r(s) � w1M
pe

pmax

��������
��������1,2( ) + w2M

f e
fmax

�������
�������
2

( ) + γ. (7)

fe � fg − f is the contact force error. pmax and fmax are defined
maximum values. y �M(x), x ∈ [1, 0] linearly maps x to y ∈ [1, 0].
Therefore, the smaller pe and fe are, the higher the reward is. ‖z‖1,2
is the l12 norm (Levine et al., 2016), which is given by
1
2‖z‖2 +

�����
α + z2

√
. This norm is used to encourage the EEF to

precisely reach the target position, but to also receive a larger
penalty when far away. γ is the auxiliary term, which can be a
positive reward (100) for finishing the task successfully, a negative
one (−50) for excessive force, or 0 otherwise. w1 and w2 are
hyperparameters to weight the components.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficacy of our adaptive robotic
imitation framework in learning a class of complex contact-rich
insertion tasks from a single instance. We perform a sequence of
empirical evaluations using the L insertion task class. We divide
this section into three parts: first, applying the framework on a
simulated environment to study its sample efficiency,
generalizability to different task instances, and safety during the
training sessions; second, applying the framework to real insertion
tasks to further validate its adaptiveness in the physical world; and
third, ablation studies to investigate the effect of different
components on the overall performance of our framework.

5.1 Implementation details
We evaluate the proposed framework both on a simulated
environment built in the Gazebo nine and on a real UR3e
robotic arm as shown in Figure 5. The real UR3e robotic arm
uses a control frequency of 500 Hz, which is the maximum
available for the robot. The RL control policy runs at a
frequency of 20 Hz on both the simulated environment and
the real robot. The training sessions are performed on a
computer with a GeForce RTX 2060 SUPER GPU and an
Intel Core i7-9700 CPU. The implementation of the ADMP
method was based on the DMP implementation from the
DMP++ (Ginesi et al., 2019) repository, and for the RL agent,
we used the SAC implementation from the TF2RL (Ota, 2020)
repository.

5.2 Evaluation on simulated environment
First, we evaluated the efficacy of the adaptive robotic imitation
framework on the simulated environment. We used the L
insertion task class described in the Problem statement section,
and we assumed access to only a trajectory profile of A(1)

consisting of six demonstrated trajectories.

5.2.1 Sample efficiency
The most concerning point of the learning framework is the
sample efficiency. By providing a nominal trajectory learned from

FIGURE 7 | Learning curves and sample efficiencies of task instances
A(2), A(3), and A(4). The red dashed line represents the near-optimal reward.
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demonstration to the RL learning process, the sample efficiency
can be largely improved according to our previous work (Wang
et al., 2021). However, the framework in this paper indirectly
generates the nominal trajectory by adapting existing trajectories
using ADMP and may cost more time than using demonstrated
trajectories. Therefore, we are interested in whether the framework
is still sample-efficient compared with other alternatives.

We compared the learning curves of training sessions on A(2)

task with frameworks using different trajectory learning methods:
ADMP (ours), demonstrated trajectory (DEMO), and RL from
scratch (w/o) as shown in Figure 6.

Among these methods, ADMP showed the highest sample
efficiency of 40 K steps, even higher than the baseline DEMO
(55 K), and the learning result of ADMP was also as good as the

DEMO. Although the better performance of ADMP than
DEMO may result from suboptimal demonstration, this
result indicated that introducing the DMP component into
our framework was indeed effective in adapting to new tasks
and alleviating human demonstration burden, and the sample
efficiency was at least not lower than using demonstrated
trajectories of new tasks.

5.2.2 Generalizability
Since the proposed framework displayed good adaptation to A(2)

task, we then tested with A(3) and A(4) to study its generalizability
to different tasks. The result is shown in Figure 7. It indicated that
the framework could generalize among different kinds of task
instances with good sample efficiencies and learning results. In
detail, the steps cost for convergence in learning A(2), A(3), and
A(4) were 40, 50, and 55 K steps, respectively. We analyzed that
different sample efficiencies mainly resulted from their different
difficulties: the object shapes in A(2) were the most similar to A(1)

with an affine transformation, while the other two involved more
variations.

5.2.3 Safety
Finally, we compared the collision percentage during the
training sessions of each task using frameworks with and
without ADMP as shown in Figure 8. Five training sessions
were implemented for each pair of task and framework, and

FIGURE 8 | Collision percentage during the training sessions.

FIGURE 9 | Sim-to-real tasks A(2), A(3), and A(4) and their learning curves. The L objects are directly attached to the robot.
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the collision percentage of each training session, Pcol, is
calculated by:

Pcol � Total Collision Number
Total Episode Number

× 100%.

With ADMP, the collision percentages of A(2), A(3), and A(4),
were diminished to 7.9%, 20.9%, and 30.5% from 30.2%, 39%, and
72.6%, respectively. The result indicated that the proposed
framework with ADMP was also qualified for our requirement
of lowering the chance of collision during the training sessions,
which reduces the equipment wear and tear and the risk of
damaging the workpieces on real hardware.

5.3 Experiments on a real robot
After evaluating the sample efficiency, generalizability, and safety
of the framework on the simulated environment, we applied it to

some real insertion tasks belonging to the L insertion task class to
test its adaptiveness in the physical world.

5.3.1 Sim-to-real transfer
We first executed sim-to-real transfers using a trained IL
agent, which learned the skill policies on simulation and
obtained the control policies for A(2), A(3), and A(4) on the
real hardware. The L objects in these tasks were directly
attached to the robot for stability. The learning curves are
shown in Figure 9. Benefiting from the learned skill policies,
our framework learned good control policies for A(2), A(3), and
A(4) at about 20 K steps. Although it took some time for the RL
agent to adapt to the physical world, the result indicated that
the skill policies learned by the framework on the simulation
provided good initialization and effectively enhanced the
sample efficiency of the real learning process.

5.3.2 Real assembly tasks
We then utilized two real assembly tasks, a USB insertion task and a
plug insertion task, to further validate the generalizability of the
framework. As shown in Figure 10, the USB and the plug were
grasped by the gripper. We assumed that they were in stable poses so
that their positions did not change too much during the training
sessions. Considering the contact area, we added a jig between the
USB and the gripper to improve the stability in case that the friction
was not enough to resist the contact force. As for the plug, we did not
utilize a jig. A structural aluminum profile played the role of an

FIGURE 10 | Two real assembly tasks and their learning curves. Left: USB insertion task. Right: plug insertion task. The objects are grasped by the gripper. A jig is
used in the USB insertion to improve the stability considering the contact area between the USB and the gripper.

TABLE 1 | Performance on the two real assembly tasks.

Task Metrics Start pose

Pose 1 Pose 2 Pose 3 Pose 4

USB Success rate 0.95 0.90 1.0 0.90
Avg. steps 172.0 156.1 120.5 113.6

Plug Success rate 1.0 1.0 0.90 0.90
Avg. steps 89.3 176.7 131.2 317.8
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obstacle to prevent theUSB or the plug from inserting into the hub or
the socket directly in each task, so that the EEF had to adopt a
trajectory like the L insertion to finish the task. Figure 10 also shows
their learning curves. It took the framework about 30 K steps and
10 K steps to learn these two tasks, respectively. We analyzed that the
difference between the sample efficiencies of different tasks resulted
from their different trajectory proximity to the initial trajectory—the
trajectory of the plug insertion was more similar to the original
demonstrated trajectory of the L insertion so that the learning process
was faster. Note that we utilized a jig in the USB insertion to reduce
the slip between the object and the gripper but not in the plug
insertion. This is why the performance dropped at about 3 K steps in
the plug insertion while the performance of the USB insertion kept
improving.

Table 1 displays the success rates and average steps cost
among 20 trials for each task. In each trial, the EEF was
initially set to a random pose in a distance range of [15, 45]
(unit: mm) and a pitch angle range of [10, 30] (unit: °) away
from the target pose. Figure 11 shows the results of the initial

and the learned control policies of the two tasks, including the
Euclidean distance errors of EEF, pitch angle errors, and the
force/torque data during the evaluation process. Note that
although only the result of a single run is provided for each
policy, it is typical enough to verify the effectiveness of the
proposed framework on learning good policies for the tasks.

5.4 Ablation studies
In this part, we executed two ablation studies to investigate how
different hyperparameters and strategies affected the
performance of the proposed framework. We ran each
ablation study on A(2) task following the settings in the
Evaluation on simulated environment section.

5.4.1 Effects of the dynamical movement primitive
components
In the Adaptive action of adaptive dynamical movement primitives
section, we provide a simple investigation on how Ct and ω of the
DMPs affect the generalized trajectory, and the conclusion is that Ct

FIGURE 11 | Distance errors, pitch angle errors, and force/torque data of a USB insertion (left) and a plug insertion (right) using their initial/learned policies. The
error values have been mapped to a range of [1, 0] and the force/torque values have been mapped to a range of [−1, 1].
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benefits the local exploration whileω benefits the global change of the
trajectory. As we assume that both the local exploration and the
global change are necessary to efficiently learn the new trajectory, we
tune both Ct and ω of the DMPs during the learning process.

In this part, we investigated whether such a choice indeed
improved the learning performance. We compared the learning
performance of four choices: 1) ADMP (tuning both Ct and ω);
2) tuning Ct; 3) tuning ω; 4) vanilla DMP (tuning neither Ct nor ω),
on A(2), A(3), and A(4) tasks. The learning curves are shown in
Figure 12. The result showed that ADMP could guarantee both
the learning speed and the stability on new tasks. Although separately
tuning Ct or ω could also obtain good performances on some tasks, it
depended on the tasks so that it was less universal than ADMP. Also,
the vanilla DMPs hardly took effect without parameter tuning
through RL, which meant that the intrinsic compliance of the
controller could not tackle new tasks effectively.

5.4.2 Effects of the number of demonstrated
trajectories
In our framework, the skill policy plays an important role to
generate the nominal trajectory whose quality affects the learning
performance. Therefore, we investigated how the number of
demonstrated trajectories to train the skill policy would affect

the learning results. We tested three numbers, n � 1, 5, 10, and
plotted the results as shown in Figure 13.

When there was only a single trajectory, the learning
performance was poor because it was difficult for the skill
policy trained with limited data to handle unseen states during
the learning process. However, when there were 10 trajectories,
the large amount of data conversely confused the skill policy
because of the high redundancy so that the performance was
unstable. Therefore, we chose 5 as the optimal number of
demonstrated trajectories, and all the results in the Evaluation
on simulated environment and Experiments on a real robot
sections 5-2 and 5-3 were produced using this number.

5.4.3 Effects of the modular learning strategy
As mentioned in theModular learning strategy section, we utilized a
modular learning strategy for the learning of ADMP parameters
assuming the curse of dimensionality would lower the performance of
RL. Table 2 shows the number of parameters to tune in the learning
process. First, following the parameter selection ofWang et al. (2021),
we used six parameters for the position/orientation command, one
Kp

p parameter for the PD control, one Kf
p parameter for the PI

control, and six parameters for the selection matrix, S. Then, we
assigned the coupling terms, Ct, and the forcing term weights, ω, six
parameters, respectively, which were used to adjust the trajectory in
the six DoFs. Therefore, there were, in total, 26 parameters for
different functional components involved in the learning process.
Under the modular strategy in Algorithm 1, the number of
parameters was reduced to 14 by fixing the 12 DMP parameters
when a promising trajectory was found, which was assumed to be
more robust than tuning all the 26 parameters simultaneously.

FIGURE 12 | Effects of the DMPs components on the learning performance of A(2) (left), A(3) (middle), and A(4) (right) tasks.

FIGURE 13 | Effects of the number of demonstrated trajectories on the learning performance of A(2) (left), A(3) (middle), and A(4) (right) tasks.

TABLE 2 | Action space of the learning process.

Parameters Pose Controller DMPs

PD PI S Ct ω

Number 6 1 1 6 6 6
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To verify this assumption, we compared the modular learning
with the end-to-end (E2E) learning as shown in Figure 14. We
used 10 demonstrated trajectories for each task in this
comparison. From the results, we found that it was hard for
the E2E learning to converge, while the modular learning
possessed relatively higher learning speed. It indicated that
modular learning was more suitable for our framework than
E2E learning when there were large numbers of parameters with
different functions to tune.

6 CONCLUSION

In this work, we propose an adaptive robotic imitation
framework for the hybrid trajectory and force learning of
complex contact-rich insertion tasks. The framework is
composed of learning the nominal trajectory through a
combination of IL and RL, and learning the force control
policy through an RL-based force controller. We highlight
the use of the adaptive DMPs (ADMP), where the coupling
terms and the weights of forcing terms in the DMP
formulation are learned through RL to effectively adapt
the trajectory profile of a single task to new tasks with
topologically similar trajectories, which alleviates human
repetitive demonstration burdens.

The experimental results show that the proposed
framework is comparably sample efficient as a framework
using explicitly demonstrated trajectories, has good
generalizability among different instances in a task class,
and is qualified for the safety requirement by lowering the
chance of collision during the training sessions compared with
the model-free RL approach. Moreover, the ablation studies
show that a proper number of demonstrated trajectories and
the modular learning strategy play vital roles in the proposed
framework, which affects the speed and the stability of the
learning process.

From the experimental results on the real hardware, we also
found that the topological similarity of trajectories could affect
the learning speed. Therefore, it may improve the efficacy of
adapting the DMP parameters if we can represent new
trajectories topologically close to the previous ones, and it
remains an interesting issue for our future research.
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