AUTHOR=Harris Elsa J. , Khoo I-Hung , Demircan Emel TITLE=A Survey of Human Gait-Based Artificial Intelligence Applications JOURNAL=Frontiers in Robotics and AI VOLUME=8 YEAR=2022 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.749274 DOI=10.3389/frobt.2021.749274 ISSN=2296-9144 ABSTRACT=

We performed an electronic database search of published works from 2012 to mid-2021 that focus on human gait studies and apply machine learning techniques. We identified six key applications of machine learning using gait data: 1) Gait analysis where analyzing techniques and certain biomechanical analysis factors are improved by utilizing artificial intelligence algorithms, 2) Health and Wellness, with applications in gait monitoring for abnormal gait detection, recognition of human activities, fall detection and sports performance, 3) Human Pose Tracking using one-person or multi-person tracking and localization systems such as OpenPose, Simultaneous Localization and Mapping (SLAM), etc., 4) Gait-based biometrics with applications in person identification, authentication, and re-identification as well as gender and age recognition 5) “Smart gait” applications ranging from smart socks, shoes, and other wearables to smart homes and smart retail stores that incorporate continuous monitoring and control systems and 6) Animation that reconstructs human motion utilizing gait data, simulation and machine learning techniques. Our goal is to provide a single broad-based survey of the applications of machine learning technology in gait analysis and identify future areas of potential study and growth. We discuss the machine learning techniques that have been used with a focus on the tasks they perform, the problems they attempt to solve, and the trade-offs they navigate.