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Approaches to robotic manufacturing, assembly, and servicing of in-space assets range
from autonomous operation to direct teleoperation, with many forms of semi-autonomous
teleoperation in between. Because most approaches require one or more human operators
at some level, it is important to explore the control and visualization interfaces available to
those operators, taking into account the challenges due to significant telemetry time delay.
We consider one motivating application of remote teleoperation, which is ground-based
control of a robot on-orbit for satellite servicing. This paper presents a model-based
architecture that: 1) improves visualization and situation awareness, 2) enables more
effective human/robot interaction and control, and 3) detects task failures based on
anomalous sensor feedback. We illustrate elements of the architecture by drawing on
10 years of our research in this area. The paper further reports the results of several multi-
user experiments to evaluate the model-based architecture, on ground-based test
platforms, for satellite servicing tasks subject to round-trip communication latencies of
several seconds. The most significant performance gains were obtained by enhancing the
operators’ situation awareness via improved visualization and by enabling them to precisely
specify intended motion. In contrast, changes to the control interface, including model-
mediated control or an immersive 3D environment, often reduced the reported task load but
did not significantly improve task performance. Considering the challenges of fully
autonomous intervention, we expect that some form of teleoperation will continue to be
necessary for robotic in-situ servicing, assembly, and manufacturing tasks for the
foreseeable future. We propose that effective teleoperation can be enabled by modeling
the remote environment, providing operators with a fused view of the real environment and
virtual model, and incorporating interfaces and control strategies that enable interactive
planning, precise operation, and prompt detection of errors.
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Abbreviations: AR, Augmented Reality; AV, Augmented Virtuality; CAD, Computer-Aided Design; CAM, Camera-based
visualization; DOF, Degrees Of Freedom (of a robot); dV, da Vinci Surgical System; GPU, Graphics Processing Unit; GUI,
Graphical User Interface; HSV, Hue-Saturation-Value color model; IPSE, Interactive Planning and Supervised Execution; KB,
Keyboard (and mouse) input; LED, Light Emitting Diode; MLI, Multi-Layer Insulation (encases a satellite); MTM, Master Tool
Manipulator of da Vinci Surgical System; NHVF, Non Holonomic Virtual Fixture; PD, Proportional-Derivative controller;
TLX, NASA Task Load Index; VNHC, Virtual Non Holonomic Constraint; VR, Virtual Reality.
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1 INTRODUCTION

Robots can enable exploration of space beyond human limits, as
they can bring nearly human-like (and sometimes super-human)
capabilities in sensing and manipulation to extreme
environments, and at a lower cost and reduced risk compared
to missions with human crews. In addition, the robot’s
operational lifetime can be designed to suit the mission. We
consider applications in servicing, assembly, and maintenance to
extend human capabilities into space through remote semi-
autonomous teleoperation. Currently, this includes robots
operating in Earth orbit, in cislunar space, or on the lunar
surface, but in the future could include robots on the surface
of another planet, with humans in spacecraft orbiting that planet.
Essentially, we consider scenarios where the communication
latency between the humans and robots is on the order of
seconds or tens of seconds, rather than minutes or tens of
minutes. In these cases, telepresence and teleoperation are
feasible, though challenging, and provide motivation for many
research efforts.

For the last 10 years, we have been conducting research to
develop, evaluate, and demonstrate new technologies for
telerobotic servicing of satellites on-orbit. Much of our effort
has focused on one crucial step in on-orbit refueling, which is to
gain access to the satellite’s fuel ports by removing a portion of the
multilayer insulation (MLI, see List of Abbreviations) that
protects the outside of the satellite body. The configuration of
the MLI that covers the fuel ports can be significantly different
between satellites, as described below, thereby requiring different
cutting approaches. In addition, we considered path planning of
the robot, within its confined workspace, to exchange tools and
perform the tasks required for satellite refueling.

This paper describes a model-based system architecture that
enables semi-autonomous teleoperation, where the models can
improve the visualization and situation awareness of the operator,
provide assistance during teleoperation, and interpret sensor
feedback to detect potential task failures or update the models.
We report the results of experiments performed to evaluate

elements of this architecture for satellite refueling tasks, but
the architecture could be extended to other applications, such
as in-space servicing, assembly and maintenance, and to support
multiple operators and robots.

2 MATERIALS AND METHODS

Figure 1 shows an overview of our model-based architecture. The
models are created based on sensor feedback from the remote
environment and/or by operator input. Although not explicitly
shown in the figure, the models are used by all other system
components. In addition to the conventional direct teleoperation,
we created two primary control approaches: model-mediated
teleoperation and interactive planning with supervised
execution (IPSE). In model-mediated teleoperation, the
operator works with a simulated model and the results of the
simulation are streamed into space. The robot in space uses
sensor-based control to attempt to recreate the simulation, and
contains a task monitor to detect when it has failed. In the IPSE
system, the operator plans robot motions in the simulated
environment, with the ability to preview and adjust the
motions before sending them to the robot.

Figure 1 also shows the two teleoperation consoles used in this
research:

1) da Vinci master console: This consists of mechanical
components from a da Vinci Surgical System (Intuitive
Surgical, Inc., Sunnyvale, CA), coupled with the open-
source electronics and software provided by the da Vinci
Research Kit (dVRK), Kazanzides et al. (2014). The master
console contains two 7-DOF Master Tool Manipulators
(MTMs) for user input and haptic feedback, a stereoscopic
display, and footpedals.

2) Conventional monitors and keyboard: The conventional
console consists of multiple monitors, keyboard and
mouse. In some experiments, we add a 3D mouse and/or a
3D monitor with shutter glasses.

FIGURE 1 | Model-based architecture, showing two teleoperation consoles (conventional and da Vinci) and two test platforms (Firm-MLI and Soft-MLI setups).
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In addition, Figure 1 shows the two ground-based test
platforms used for the experiments. The Firm-MLI setup
consists of a 7-DOF Whole Arm Manipulator (WAM) robot
(Barrett Technology, Boston, MA) equipped with a stereo tool
camera and a wrist-mounted force sensor (JR3, Inc., Woodland,
CA). The primary workpiece is an aluminum plate with an MLI
flap, as shown in Figure 2A. The Soft-MLI setup consists of a UR-
5 or UR-10 robot (Universal Robots, Odense, Denmark), with the
same JR3 wrist-mounted force sensor, a monocular tool camera
(PointGrey BlackFly, FLIR Integrated Imaging Solutions, BC,
Canada), and a rotary cutting motor. The workpiece is a mock
satellite that includes a soft MLI hat structure (Figure 2B),
beneath which are three thin-walled stainless-steel tubes to
emulate fill/drain ports.

The following sections provide further details on the major
components of the architecture. For clarity, we separate the initial
model construction from the model update.

2.1 Model Construction
Figure 1 indicates that models can be created from sensor data or
via user specification. The following sections present an example
of each: Section 2.1.1 describes how sensor (camera) data can be
used (with manual feature identification) to create an
environment model, and Section 2.1.2 indicates how operator
input can be used to create a task model.

2.1.1 Creating an Environment Model
During teleoperation, the operator often views the remote
environment via one or more camera images. In these cases,
there is no environment model other than the mental model in
the operator’s imagination. For improved visualization of the
remote environment, however, it is possible to create a 3D
environment model from multiple 2D camera images acquired
during a robotic survey. The process consists of registration to
known objects and 3D reconstruction of unknown (or
imprecisely known) objects, as shown in Figure 3.

Registration to known objects: We register to known objects,
such as a satellite, by locating the object’s natural landmarks
within the images, then using pose estimation to find the object
pose that best fits these observations. If the camera’s pose
(extrinsic parameters) is known from robot kinematics, then

the object’s pose with respect to the camera will also yield a
registration of the satellite to the robot’s base frame. Pose
estimation is sensitive to the landmark observation accuracy;
thus, we combine pose estimates from multiple camera
viewpoints to obtain more accurate registration.

This registration procedure requires the camera’s extrinsic and
intrinsic parameters. The camera intrinsics can be calibrated
prior to launch, and they are unlikely to change during the
mission. However, it is possible to re-calibrate the camera
during flight using a checkerboard pattern or natural
landmarks. Similarly, the extrinsic parameters of the tool
camera can be calculated using either natural features or a
checkerboard pattern. For this hand-eye calibration, we first
use the method of Tsai and Lenz (1988) to solve the
conventional AX � XB hand-eye formulation, then refine X
using reprojection error minimization.

Reconstruction of unknown objects: Unknown (or imprecisely
known) objects, such as the MLI hat on the Soft-MLI setup, are
reconstructed by manually locating natural landmarks on the
object that are unambiguously identifiable on at least two images
taken from different view angles. Once the landmark observations
are added, the system can automatically calculate the landmark
positions in 3D space with respect to the world coordinate frame.
The triangulation problem can be solved using a closed-form least
squares method to find the best positions given at least two
observations per landmark. Knowing the 3D coordinates of the
landmarks enables the user to create triangular or quadrilateral
‘faces’ between the landmarks and build a model of the unknown
object. The landmarks serve as vertices and the faces are
converted into triangles that form the topology of the mesh.

2.1.2 Creating a Task Model
The goal of teleoperation is to achieve a task objective. An
operator may attempt to accomplish the task by using an
input device, such as a joystick or keyboard, to issue motion
commands to the remote robot. By creating a task model, the
operator can “configure” the teleoperation system to provide
assistance to complete the task. One common example is a
virtual fixture, Rosenberg (1993), which performs a function
analogous to that of a physical fixture (e.g., a ruler) and can
be adjusted in a virtual environment at run time. Virtual fixture

FIGURE 2 | Test platforms: (A) Firm-MLI setup, with MLI flap taped onto rigid surface of underlying satellite; (B) Soft-MLI setup, with MLI in shape of a
rectangular hat.
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primitives, such as “stay above a plane”, “move along a line”, and
“rotate about a line”, can be combined to provide assistance for
complex manipulation tasks, Kapoor et al. (2006).

Xia et al. (2012) described a user interface that enables the
operator to place graphical primitives, such as planes and lines, to
define task goals and/or constraints. This task model can be
transformed into virtual fixtures for haptic feedback to the
operator and can define frames for hybrid position/force
control on the remote robot, Xia et al. (2013). This requires a
registration between the remote environment and the operator’s
environment, which can be a virtual environment created by
modeling the remote environment (Section 2.1.1), or can be real

images of the remote environment. In the latter case, the
graphical primitives are implemented as augmented reality
overlays on the real images. Figure 4 shows examples of these
cases: (A) placing a virtual plane, on the camera image, to push
against while sliding along to cut the tape in the Firm-MLI setup,
Xia et al. (2012), (B) overlaying a virtual line on the camera image
to guide cutting, and (C) overlaying the cut path (green lines) on
the virtual model for cutting the MLI hat in the Soft-MLI setup,
Pryor et al. (2019).

The first two examples illustrate placing virtual objects on
stereo camera images, which were displayed on the da Vinci
master console shown in Figure 1. In general, it can be difficult to

FIGURE 3 | Creating an environment model from a robotic 2D image survey by registering to known objects (satellite) and reconstructing unknown or imprecisely
known objects (MLI hat).

FIGURE 4 | Virtual Fixtures: (A) Virtual plane on (stereo) camera image, Xia et al. (2012); (B) Virtual line (red) on (stereo) camera image; (C) Virtual cut path (green
lines) on 3D environment model, Pryor et al. (2019).
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visually align virtual overlays with real objects, especially in depth,
but this is not an issue in these examples. The first example, placing
a virtual plane, causes the remote robot to use a hybrid position/
force controller, Raibert and Craig (1981), where force control is
used in the direction of the plane normal. Thus, the method is not
significantly affected by errors in the plane depth or angle.
Nevertheless, we developed two methods to address this
concern. First, we developed a method to enable an operator to
more accurately align the virtual plane by dynamically texturing
the virtual plane with the purpose of adding visual distortion until
the virtual plane is accurately aligned with the real plane, Leonard
(2015). Then, Li and Kazanzides (2016) reported the development
of a method to update the orientation of the virtual plane based on
sensor feedback during the task, as described in Section 2.5.

The second example, placing a virtual line (Figure 4B), is a
virtual fixture that is created by the operator during the task and is
thus already aligned with the camera image. In particular, the
operator disengages teleoperation and uses the roll joint of the
MTM to define the orientation of a virtual fixture line that passes
through the tool center and is in the plane defined by the cutting
tool, Chen (2017). When the operator resumes teleoperation,
motion of the robot will be confined to the virtual fixture line.
Additional virtual fixtures, including a nonholonomic virtual
fixture, are described in Section 2.3.1.

In the third example (Figure 4C), the virtual fixture is defined
in the 3D environment model and is therefore already registered
with the remote robot.

2.2 Mixed Reality Visualization
Visualization is critical for the operator’s situation awareness and
ability to telerobotically interact with the remote environment.
However, the typical visualization approach is to view the delayed
video feedback from one or more cameras. These cameras may
not be optimally placed for a specific task and, in many cases, the
best view is provided by a camera mounted on the robot end-
effector. Teleoperation with a tool-mounted camera (i.e., an “eye
in hand” configuration) is not intuitive and its proximity to the
end-effector generally results in a limited field-of-view.

Mixed reality can be used to address some of these
visualization issues. The two most recognized mixed reality
concepts are augmented reality (AR) and augmented virtuality
(AV), Milgram and Kishino (1994). Both combine visual
representations of real and virtual environments. In AR,
virtual objects are overlaid on video streams. Since the 1990s,
NASA has been experimenting with AR in teleoperation while
servicing the ISS and other satellites to improve the operators’
situational awareness, Ince et al. (1991).

In contrast, in augmented virtuality (AV) the result is a
computer generated rendering of the environment in which
registered real-life images are overlaid on virtual objects. This
approach enables visualization from arbitrary points of view, as
opposed to AR, where the location of the camera is fixed. AV also
enables the rendering of stereoscopic views of the scene, which
has been shown to improve teleoperation performance, Spain
(1991).

The following sections describe some implementations of
augmented reality and augmented virtuality. We do not

include virtual reality (VR), where the entire scene is based on
the models (i.e., no reality), but this is used for the interactive
planning module described in Section 2.3.2.

2.2.1 Augmented Reality
Augmented reality (AR) is often used for systems where the
primary visualization is the camera image. In a conventional
teleoperation console, such as shown in Figure 1, there are
many displays available for presenting information to the
operator; thus, it is generally not necessary to obstruct the
camera image to display additional information. Where AR is
useful, however, is to overlay virtual objects that are registered to
the camera image. Perhaps the best example is commanded or
predictive display, Bejczy and Kim (1990); Lane et al. (2001),
which attempts to show the position of the robot without the
effects of time delay. In commanded display, the current
commanded position (e.g., based on the operator’s command
via keyboard, joystick or haptic device) is used to position a
virtual overlay of some part of the robot, often just the end-
effector, on the image. Examples of commanded display are the
blue chevron in Figure 4B, which shows the commanded
position of the chevron-shaped cutting blade, and the red
ring in Figure 4C, which shows the commanded position of
the rotary cutter (in this figure, the robot is not moving so the
red ring is aligned with the cutter image). Note that Figure 4C
also shows a yellow ring, which is similar to commanded display
but indicates the contemplated pose of the circular cutting
blade. When using the keyboard interface, the operator can
enter a robot position into a text box, which updates the pose of
the yellow ring but does not cause robot motion unless the
operator presses a “move” button. Technically, predictive
display shows the position of the robot (and possibly changes
to the environment) based on a simulation of the commands
being sent to the robot. However, in many cases, the
implementation of predictive display is the same as
commanded display and the terms are used interchangeably.

For cases where a task model is defined, it can also be helpful to
overlay graphical primitives associated with that task model.
Figure 4A shows an example of a virtual plane and Figures
4B,C show examples of a cutting path.

2.2.2 Augmented Virtuality
We developed an augmented virtuality visualization where the
operator primarily visualizes the 3D model of the scene, which
can be presented in stereo and from any perspective, Vagvolgyi
et al. (2017, 2018). This model is augmented by projections of the
live (delayed) video onto the 3D model.

Initially, we implemented the augmented virtuality visualization in
RViz, the visualization package providedwith ROS, Kam et al. (2015).
RViz does not provide dynamic texturing features by default, but
custom RViz plugins may access lower level capabilities provided by
the underlying Ogre 3D (Open source GRaphics Engine) package,
which provides an object-oriented abstraction to low-level GPU
hardware features. We therefore created a texture projection
plugin which adds a second step to the RViz rendering loop to
render the scene from the point of view of the projector (real camera)
and assign new values to the textures based on the image projection.
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As a result, a second texturedmaterial layer is added to the 3Dmodel
that mimics the appearance of an image being projected on the
model. However, we discovered several limitations with this
approach: images were also projected onto rear surfaces, occlusion
(shadowing) was not handled, and it was unsuitable for mosaicking
or image blending (e.g., of multiple camera images). We developed
some workarounds, such as creating an image mask to prevent the
cutter image from being projected onto the satellite surface (due to
lack of shadowing). But, we also discovered performance limitations,
due to insufficient low-level access and the fact that the GPU must
render the image twice.

Although it may be possible to resolve these feature and
performance limitations through more elaborate customization
of Ogre 3D, we chose to implement a new renderer in C++, using
OpenGL, as reported in Pryor et al. (2019). The new renderer
performs real-time ray-tracing to project the camera images with
correct occlusions on the 3D scene, thereby mapping the image of
the tool assembly on the tool model and the image of the satellite
on the satellite model, without the need of an image mask. The 3D
models in the scene are all wrapped in high resolution texture,
and the renderer is capable of adding multiple camera projections
to the texture using mosaicking techniques to cover the visible
parts of the satellite model with registered real-life camera images.
On top of the static mosaic, the system also maps on the scene the
time-delayed video streams captured from the cameras. All this is
performed real-time, enabling a more realistic and dynamic 3D
visualization. The new renderer also enables the display of a
variety of status indicators in the 3D view. The indicators are
rendered as icons and text overlays (see icons at top of
Figure 4C). In this figure, the 3D model includes the satellite
CAD model (yellow), reconstructed MLI hat (red), and robotic
tool. The robot model is updated by the delayed telemetry from
the remote robot. As in the augmented reality display, overlays
include the commanded robot position (red ring), the
contemplated robot position (yellow ring), and the desired cut
path (green lines).

2.3 Semi-Autonomous Teleoperation
While predictive display, Bejczy and Kim (1990), was experimentally
shown to help operators perform positioning tasks, it (and the
related predictive control method) are not feasible when the robot
must contact the environment because current models cannot
accurately predict the future state of the system. Bilateral
teleoperation reflects the sensed environment force back to the
operator (e.g., via haptic feedback), but has been shown to be
impractical and unstable under small to medium delays,
Hashtrudi-Zaad and Salcudean (2000). Wave variable encoding
of the force and motion can restore control stability, Niemeyer
and Slotine (2004), but delayed force feedback has not proven to be
intuitive to human operators. Thus, many researchers have focused
on semi-autonomous teleoperation. This includes supervisory
control, Sheridan (1993), where the operator issues high-level
goal specifications that are autonomously executed by the remote
robot, and model-based methods, such as teleprogramming, Funda
et al. (1992); Sayers et al. (1998), tele-sensor-programming,
Hirzinger et al. (1993), and model-mediated teleoperation, Mitra
and Niemeyer (2008), where the operator interacts with a model

(simulation) of the remote environment and the results of that
interaction direct the motions of the remote robot. At a high level,
the model-based methods are similar because they all create a model
from some combination of á priori knowledge and remote sensor
feedback. Teleprogramming and tele-sensor-programming focus on
creating the model on the master side, using á priori task knowledge
and possibly also an initial survey of the remote environment, Funda
et al. (1992), whereas model-mediated telemanipulation focuses
more on the sensor-based model update, for example, to explore
a mostly unknown environment. Supervisory control implicitly
assumes that the operator has a model to determine the sequence
of goal specifications.

The following sections present two semi-autonomous
teleoperation approaches implemented within the proposed
architecture: model-mediated teleoperation and supervisory control.

2.3.1 Model-Mediated Teleoperation
The preferred cutting strategy in the Firm-MLI setup (Figure 2A)
is for the cutting blade to puncture the tape seam, then press
down against the satellite surface while sliding along to cut the
seam. Xia et al. (2012) initially defined a task model that consisted
of a plane to represent the satellite surface, as discussed in Section
2.1.2. For the model-mediated approach, once the virtual plane
was defined, it provided haptic feedback to the operator and
prevented the operator from moving beyond the plane or from
changing the orientation of the cutter with respect to the plane
normal (rotation within the plane; i.e., around the plane normal,
may be permitted). On the remote robot, the user-specified plane
determined the task frame for hybrid position/force control;
specifically, the plane normal defined the direction for force
control. Thus, while the operator interacted with the simulated
environment, the remote robot used sensor-based control to
attempt to reproduce this simulation, Xia et al. (2013).

Xia et al. (2013) used a constrained optimization controller,
Kapoor et al. (2006), to implement the virtual fixture on the
master. In particular, the controller computed an optimal
incremental motion Δxm based on the operator’s desired
incremental motion Δxdm by solving a constrained optimization
problem of the form:

min
Δxm

Δxm − Δxdm
����

����
2

(1)

s.t.
h1(Δxm)< 0

«
hN(Δxm)< 0

where h1, . . . , hN represent the constraints of N virtual fixtures.
The task model was subsequently enhanced to include

various forms of line constraints to assist with the cutting
task. Xia et al. (2012) had enabled the operator to graphically
define a line, corresponding to the tape seam on the camera
image. However, while a line virtual fixture would seem to be
the most appropriate for cutting along a straight edge, it can
sometimes be too constraining because the virtual line must
be correctly registered to the actual tape seam and because
cutting anomalies such as bunching or tearing of the tape may
require the operator to stray from the line. Chen (2017)
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presented one solution, which was to enable the operator to
adjust the line virtual fixture during the task, using the roll
axis of the da Vinci MTM to set the line orientation, as shown
in Figure 4B.

As an alternative, Vozar et al. (2015b) developed a (software-
imposed) virtual nonholonomic constraint (VNHC), motivated
by the hypothesis that the difficulty of commanding three degrees
of freedom (on the plane) could potentially be mitigated by
reducing the number of inputs to the system, particularly
because there is no requirement to move instantaneously in a
lateral direction. By selecting a familiar nonholonomic constraint,
such as one similar to driving a car, a natural mapping from input
to output space can be achieved.

The VNHC was based on a unicycle (also referred to as a
rolling wheel), as it is simple, intuitive, and the steering angle can
be controlled independently from the planar position. The
constraints for a unicycle are given by Spong et al. (2006):

_x − r _ϕ cos θ � 0
_y − r _ϕ sin θ � 0

(2)

where x and y are the Cartesian position of the center of the wheel,
θ is the heading angle, r is the radius of the wheel, and _ϕ is the
angular rotatational velocity of the wheel. The forward speed of
the wheel can be given as v � r _ϕ. This constraint was applied
directly to the planar model of the cutting blade to impose the
unicycle constraint on the end effector. The motion of the cutter
was then controlled directly by the operator, who provided the
desired velocity, v � _xm, and steering angle, θ � θm, via an input
device.

The VNHC can be implemented without specification of a
desired line constraint. However, it is also possible to incorporate
a soft virtual fixture in the nonholonomic formulation, which
guides the operator toward the virtual fixture line, but allows
motions away from the line with increased effort. In particular,
Vozar et al. (2015b) introduced a PD controller that determined a
cutter angle (θPD) based on the lateral error (yerr � y − yVF) of the
cutter, where the virtual fixture line is in the x direction with a
lateral offset of yVF:

θPD � Kpyerr +Kd _yerr (3)

The motion of the cutter was then controlled from position
commands xm and θm as:

v � _xm

θ � θm + _xmθPD
(4)

Note that with no angular input from the operator, the cutter
follows the PD controller’s inputs to orient and align with the
virtual fixture. The operator is able to override the cutting angle
from the PD controller with the input θm, thus making this a soft
virtual fixture.

2.3.2 Interactive Planning and Supervised Execution
(IPSE)
The IPSE module, Pryor et al. (2019), shown in Figure 5, relies on
the 3D environment model described in Section 2.1.1 and is
independent from any user interface. It communicates with any

number of interfaces simultaneously and changes made in any
interface are immediately reflected in all connected interfaces. We
implemented two user interfaces, as shown in Figure 5: a 2D
mouse-and-keyboard interface composed of a custom GUI with
RViz for visualizations and a 3D interface operated with the
master console of a da Vinci surgical robot.

Related work, outside the domain of space robotics, includes
the use of mixed/augmented reality for visual programming of
robot motions. In Quintero et al. (2018), a user can plan paths as a
series of waypoints in an augmented reality (AR) environment,
preview and edit the paths, and then execute them either
autonomously or by allowing the user to control progress
through the path. In Gadre et al. (2019), the user similarly
builds a path out of primitives, visualizes the final path, and
then executes it.

Within the IPSE environment, the operator creates a motion
plan using the interactive planning capability, previews the
resulting robot motion and edits the plan if necessary, and
then executes the plan with supervised execution. These steps
are repeated until the task is complete. This is essentially an
implementation of high-level supervisory control originally
articulated by Sheridan (1992, 1993).

A motion plan consists of a series of waypoints, where each
waypoint represents an intermediate destination in the motion
plan. A motion planning engine, using the MoveIt planning
framework, Chitta et al. (2012), plans a trajectory to connect
each waypoint’s destination pose with the final configuration of
the previous waypoint’s trajectory, with the first waypoint
connected to the robot’s current configuration. The resulting
trajectories are collision-free when possible and marked as invalid
when a collision cannot be avoided.

The operator may configure each waypoint to use a straight-
line path, which causes the end effector to follow a straight line in
task space; to avoid obstacles, in which case the motion planner
may select any collision-free path; or to follow the same task-
space path that the operator followed to move the waypoint
marker. Each waypoint trajectory also has an independent set of
desired speeds, both linear and rotational.

When the operator is satisfied with the planned trajectory, they
may execute the entire trajectory on the remote robot, or choose to
“Step” through a trajectory to monitor it more closely. The step
function truncates the trajectory to the specified time and sends only
the truncated portion to the robot. During execution, the operator
may observe the robot’s progress in an Augmented Virtuality (AV)
visualization environment (Section 2.2), where the robot and
environment models are augmented with a projection of the
image from the robot tool camera. The projection improves the
operators’ situational awareness and ability to judge the completion of
the task by transforming the 2D image into 3D textured objects;
furthermore, it helps operators recognize inconsistencies between the
model and reality.

At present, the IPSE framework only supports position-based
trajectories, but it would be possible to implement other types of
motion primitives, such as compliant motion. These motions,
however, are challenging to preview because they would require
environment models with accurate geometry and material
properties, as well as realistic dynamic simulation, whereas the
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current IPSE framework only requires accurate geometric models
and kinematic simulation of the robot.

2.4 Model-Based Monitoring
The availability of models enables monitoring of tasks in the remote
environment. If the monitoring can be implemented on the remote
system (within the computational constraints of available hardware),
it has the advantage of being able to immediately react to failure,
without having to wait for the operator to recognize the problem in
the delayed video feedback and provide corrective action via time-
delayed control. Alternatively, if the monitoring is implemented on
the ground-based system, it is subject to telemetry delay, but could
potentially detect and react to failures more quickly than the human
operator. This section presents two examples of task monitors that
both detect cutting anomalies, but using different sensors.

2.4.1 Force-Based Monitoring of Cutting
For compliant motion implemented by hybrid position/force
control, as described in Section 2.3.1, the system controls
position (or velocity) in certain directions of the task frame
and controls force in the others. In the directions of position/
velocity control, it is feasible to measure the force and, given an
adequate model of the task and environment, to implement a
model-based task monitor.

As an example, consider the Firm-MLI setup shown in
Figure 6A, where the cutting blade pushes against the
surface and slides along the tape seam (compression-based

strategy). Kandaswamy et al. (2014) and Xia et al. (2013)
determined that a large component of the force in the
direction of cutting is due to the friction between the cutter
and tape surface, which can accurately be modeled as kinetic
friction. The kinetic friction was estimated by sliding the cutter
along the tape (while not cutting). The force due to cutting the
tape was adequately modeled as a constant, which was
determined by measuring the force while cutting and then
subtracting the previously measured frictional force. The final
model is:

F̂t � μk Fn| | + Fc, (5)

where F̂t is the expected force in the direction of cutting, Fn is
the measured normal force, μk is the experimentally-determined
coefficient of kinetic friction (0.56 in these experiments) and Fc
is the experimentally-determined cutting force (approximately
4N). This simple model should be feasible to evaluate even with
the limited computational resources available in space. The
concept is that the on-orbit robot system would use the
model to estimate the expected force in the direction of
cutting, F̂t, and stop motion if the measured force, Ft, is
significantly higher or lower. In particular, Kandaswamy
et al. (2014) showed that many cutting anomalies could be
detected by checking whether the measured force was outside a
threshold of 30% above or below the estimated force. See also
Section 2.5.2, which introduces an adaptive estimator to update
the model parameters μk and Fc.

FIGURE 5 |Overview of Interactive Planning System, showing 3D interface (top) and 2D interface (bottom). The da Vinci Master Console includes twoMaster Tool
Manipulators (MTMs) that enable 3D interaction (for example, to move the interactive cursors) and provides a stereo display for visualization. Both 3D and 2D interfaces
are available simultaneously and visualize/update the same scene.
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2.4.2 Vision-Based Monitoring of Cutting
For the Soft-MLI setup, a rotating cutting blade is used to cut the
MLI hat, rather than the fixed cutting blade employed in the
Firm-MLI setup. In consequence, cutting forces are dramatically
reduced, and cutting the MLI hat will not produce significant
force measurements. Mahmood et al. (2020) proposed a model
that estimates the applied force on the MLI from visual feedback
from the tool-mounted camera, as shown in the 2D illustration of
Figure 6B. The surface of the hat was represented by a string of
length L attached at both ends by two springs. As the shaft of the
blade pushes on the string, it exerts a force F that pushes the string
downward. This interaction between the string and the shaft
creates two angles α1 and α2 on either side of the shaft and the
relation between the applied force and the angles is F � F1 cos (α1)
+ F2 cos (α2) where F1 and F2 are determined by the spring
coefficients and their displacements. Mahmood et al. (2020)
proposed to use visual feedback to assess this force because
cameras are available to the operators. Although the blade
applies little force to the MLI, the shaft that holds the blade
applies the bulk of the force (albeit a small one) as it pushes on the
surface to make sure that the blade cuts through all the layers of
the hat.

This force can be observed visually as theMLI passes under the
shaft, as seen in Figure 6B, and the more the shaft pushes down,
the more a “V” shape is observed on each side.

It is, however, a challenging computer vision problem to detect
the interface between the MLI and cutting blade due to the
presence of metallic reflective film (kapton or aluminum). To
compute the angle robustly, the implementation used concentric
circles with colors that offer a sharp contrast in a color space (e.g.,
the red ring visible in Figure 6B). In particular, the HSV color
space was selected and the red and cyan colors of the H (hue)

channel were used. These colors are 180° apart on the hue channel
which ranges between 0 and 360°. Canny edges are extracted from
the hue channel and the result is masked with predefined
templates of two concentric thin rings where the transition
between colors is expected. The expected result is a long edge
on each side of the red circle from which the endpoints are found.
These endpoints represent the coordinates where the MLI
occludes the blade by altering the expected hue pattern. By
fitting a line through each pair of endpoints on both sides of
the shaft, the angles described by the MLI on both sides of the
shaft are computed. The angles quantify the engagement of the
cutter and MLI, which is proportional to the applied force and is
sufficient to monitor whether the cutter is too shallow or too deep.
It could also potentially be used in a hybrid control scheme where
the operator controls motion along the cutting path and the
system automatically controls the engagement depth.
Determination of actual force values would require estimation
of parameters such as the stiffness of the MLI, which can be a
topic of future research.

2.5 Model Update
While a static model may be sufficient for some tasks, it is often
necessary to update the environment or task model during
operation. This section presents two examples of model
updates. The first example updates the alignment of the task
model (a virtual plane) with the real environment (satellite
surface), in the model-mediated teleoperation approach first
presented in Section 2.3.1. This could alternatively be viewed
as updating an environment model, with the virtual plane
representing the satellite surface. The second example updates
parameters of the task model used to monitor the cutting force in
Section 2.4.1.

FIGURE 6 | Two strategies for monitoring cutting performance: (A) force-based and (B) vision-based, with 2D sketch of model on bottom.
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2.5.1 Correcting Task Frame Misalignment
Section 2.3.1 presented a model-mediated teleoperation
implementation where the remote robot used a hybrid
position/force controller to allow motion along a plane while
controlling force normal to the plane. Figure 7A shows the
configuration of the task. The cutter axis zc should be aligned
with the plane normal np, but registration error between the
virtual plane model and the physical satellite surface will cause
misalignment. A large misalignment can significantly reduce the
task quality and is likely to cause adverse events such as the cutter
digging into the access panel, potentially damaging both the robot
and the satellite. This provides the incentive to estimate
misorientation during cutting and update the task model. In
Section 2.4.1, we observed that in the directions of position/
velocity control, the measured force could be used to monitor the
task performance. Here, we consider that in directions of force
control, the measured position can be used to update the task
model, Li and Kazanzides (2016).

The goal of the technique proposed by Li and Kazanzides (2016)
is to allow the remote robot to automatically align the cutter to the
plane, during the cutting task, by estimating the two DOF rotation
between zc and np. The problem is illustrated in Figure 7B. The
yellow plane indicates the satellite access panel and the solid line is
the cutter path, with black dots representing positions along the path.
The goal is to use this position information along with
measurements from the force sensor to perform online estimates
of the plane normal np. Because the cutter normal zc is known,
alignment error can be calculated and corrected.

The use of position and/or force measurements to adjust the
task frame for hybrid position/force control is well studied; some
early studies include Merlet (1987); Kazanzides et al. (1989);
Yoshikawa and Sudou (1993). These studies focused on
estimating a local task frame for a robot in contact with an
unknown, or partially-known, object. A similar problem was
studied by Karayiannidis and Doulgeri (2006), who also
assumed compliant contact with a plane and developed an
adaptive controller to estimate the plane normal.

This implementation differed from prior work due to the
requirement to address two application-specific challenges. The
first challenge, also considered by Karayiannidis and Doulgeri
(2006), was due to the compliance of the MLI blanket covering. If

the normal force varied during the cutting process, the sampled
points would have varying offsets with respect to the underlying
plate and thus would not allow an accurate estimate of the plane
orientation. The second issue arose due to the task objective,
where the goal was to cut along the seams of the MLI patch. If this
task were performed perfectly, the cutter would follow a linear
path (for the first seam) and it would be impossible to estimate a
plane using a set of collinear (or nearly collinear) points. In that
case, the second component can only be estimated when the
operator begins to cut a side of the patch that is orthogonal (or has
a significant orthogonal component) to the first side.

The developed method first defined a sliding window for
the incoming position and force measurements. Because the
robot was teleoperated, the algorithm could not make any
assumptions about the rate of position change; thus, the
current measurement was sampled only if it was greater
than a minimum distance from the last sample. This was to
prevent the adverse effect of clustered data on the accuracy of
later registration. The next step was to estimate the stiffness k
of the MLI, based on the model Δz � kΔfz, where Δz was the
difference of adjacent position data in the direction of the
cutter axis zc and Δfz was the difference of the corresponding
measured normal forces. If the correlation between these
quantities exceeded a threshold, a least squares method was
used to estimate the stiffness value k.

Once the stiffness was determined, the Z coordinate of every
position zi in the window was shifted to a common reference
force, fnom, yielding a new set of Z coordinates ẑi:

ẑi � zi + fnom − fz

k
(6)

The implementation set fnom to the desired normal force,
which was constant (i.e., not determined by the force applied
by the operator via the master manipulator).

Finally, a principal component analysis (PCA) of the 3D cutter
positions in the sliding window, (xi, yi, ẑi), was performed to
determine the primary cutting direction, x̂c, as defined in
Figure 7A. The angle between xc and x̂c (denoted by αe in
Figure 7A) was the estimated misalignment, and the
correction velocity was performed by rotating the end-effector

FIGURE 7 |Correcting task framemisalignment. (A) definition of terms: cutter axis zc is not perfectly aligned with plane normal np, leading to misalignment between
commanded cutter direction xc and actual cutter direction x̂c resulting from hybrid position/force control; (B) representative illustration of a cutter path on the plane.
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around its local axis, yc, with the velocity profile shown in
Figure 8. In particular, this profile included a deadband, given
by αelower, and a maximum correction velocity determined by
αeupper. The correction was performed until xc was aligned within
αelower of x̂c, which aligned the cutter to the plane in the direction
of cutting. When the operator changed the direction of motion,
the method could estimate the other component of the plane
normal and perform the correction accordingly.

2.5.2 Online Estimation of Friction and Cutting Force
Section 2.4.1 described a taskmonitor that estimated the force in the
direction of cutting, based on a model (Eq. 5) with a coefficient of
kinetic (Coulomb) friction μk and a constant cutting force Fc, Xia
et al. (2013); Kandaswamy et al. (2014). During cutting, this task
monitor compared the measured force to the force predicted by the
model and could stop the task if the discrepancy was greater than a
specified threshold (indicating a failure). One limitation was that
these two parameters were based on off-line experimental
measurements and therefore did not consider variations in the
material properties of the MLI (e.g., due to long-term exposure
in space). This section describes an estimator, developed by Li and
Kazanzides (2015), that updated the model parameters during the
task, based on sensor feedback. This introduced several design
challenges. One challenge was the tradeoff between the
responsiveness of the estimator and the ability to detect
anomalies. For example, bunching of the tape would cause a
sudden increase in the measured force, but this should be
detected as an anomaly and should not allow the estimator to
adapt the parameters based on that measurement. A second
challenge was that the two model parameters were not observable
unless there was sufficient variability in the applied normal force.

The goal was to design an estimator such that for given
measurements (Ft, Fn), parameters (μk, Fc) could be
recursively estimated by (μ̂k, F̂c) and that these estimates
would adapt to small changes in the cutting environment
(material properties, cutter contact conditions, etc.). But, the
estimated force given by F̂t � μ̂kFn + F̂c should be significantly
different from the measured Ft when a cutting abnormality
occurs. This adaptive parameter update step is illustrated in
Figure 9.

The proposed approach utilized a recursive least squares (RLS)
estimator with vector-like forgetting factors, as described in
Vahidi et al. (2005), which enable individual adjustment of the
variational rates of the parameters. By incorporating forgetting
factors, the estimator can be controlled such that the coefficient of
kinetic friction (μk) is updated taking into account more historic
data and the cutting force (Fc) is updated with more emphasis on
recent data. This aligns with the expectation that if the material
properties of the cutter and MLI do not change abruptly, μk
should vary in a small range. Mild variations in the measured
tangential force are likely due to varied cutting conditions, such as
slight wrinkling of the tape, and generally do not indicate cutting
failures. To handle cases like these, a lower forgetting factor was
selected for Fc so that it can take more responsibility for adapting
to the changes. The detailed mathematical derivation of the
estimator is described in Li and Kazanzides (2015).

In addition, the method disabled the estimator when there was
insufficient variation in the input vector (Fn measurements), in
which case it would be impossible to estimate both μk and Fc. This is
more likely to occur when force control is used to maintain contact
with the surface, as proposed in Xia et al. (2013). This check was
implemented by fitting a line to the measured normal force in a
sliding window. If the slope of the line was less than a specified
threshold, the estimator was disabled and the parameter values were
not changed. During the experiments, Li and Kazanzides (2015) also
observed cases where the estimator produced negative μ̂c and/or F̂c;
since these are physically unreasonable values, they were discarded
and the previous valid estimates were used to compute the F̂t that
was used for failure detection.

3 RESULTS

This section reports the results of several multi-user experiments
to evaluate the model-based architecture, on ground-based test
platforms, for specific satellite servicing tasks. All user studies
were approved by the Johns Hopkins University Homewood
Institutional Review Board (protocol HIRB00000701). The
studies are reported in chronological order, beginning with
model-mediated teleoperation experiments from Vozar et al.

FIGURE 8 | Profile of velocity correction, vc as a function of estimated
misalignment angle αe.

FIGURE9 | Estimator flowchart: Fn and Ft aremeasured by force sensor,
μ̂k and F̂c are estimated, and F̂ t is predicted by model.
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(2015a,b), followed by augmented virtuality experiments from
Vagvolgyi et al. (2017, 2018); Pryor et al. (2019), and then IPSE
experiments from Pryor et al. (2020).We do not report test results
for individual components, such as the task monitors or model
update methods, which can be found in the relevant cited papers.

For all experiments reported below, we constructed mock MLI
blankets from representative (but not space-qualified) industrial
materials that closely resemble the physical properties of the
space-qualified MLI materials commonly employed in satellites,
as described in Vozar et al. (2015a).

3.1 Model-Mediated Teleoperation
Experiments
This section summarizes results of experiments performed by
Vozar et al. (2015a,b). Vozar et al. (2015a) first evaluated the
plane task model, which defines a virtual fixture on the master
manipulator and a hybrid position/force controller on the remote
robot, as described in Section 2.3.1. For this study, 20 volunteers
(9 male, 11 female), ranging in age from 18 to 27 years, were
recruited from a population of graduate and undergraduate
students at Johns Hopkins University. Each subject used the
crescent-shaped side of the cutting blade to cut one strip of
Kapton tape affixing two layers of MLI blanket, keeping the cut as
straight as possible, as shown in Figure 10. Four configurations
were tested, varying delay and controller type: 1) no delay, model-
mediated, 2) 4 s delay, model-mediated, 3) no delay, conventional
and 4) 4 s delay, conventional. For the conventional teleoperation
scenario, force control on the remote robot was disabled.

Subjects were given a chance to practice with the robot system
before performing the tests. For each scenario, the cutting blade
was placed inside a pre-cut incision on the Kapton tape, with the
blade oriented to the cutting plane. Then, the subject teleoperated
theWAM robot to cut a single 140 mm line, with start-points and
end-points indicated with white paint on the blanket.

Measurements included the number and type of adverse
events, such as tape bunching and cutter slipping out of the
seam, average velocity, path straightness, roughness of cut edges,
and subjective task load based on a NASA TLX survey, Hart
(2006).

The results indicated that the total failure rate was not affected
by either delay or controller type, although the types of failures
varied between these scenarios. The introduction of the 4 s delay
reduced the mean average speed from 2.04 mm/s to 1.76 mm/s,
which was statistically significant (p � 0.087), and decreased the
straightness of the cut (mean path error from straight line) from
0.921 to 1.44 mm, which was also statistically significant (p <
0.001). But, there was no significant effect of controller type on
either metric. The overall workload, defined as the sum of the
responses to all the questions in the TLX survey, ranged from 6
(least) to 42 (most). The mean workloads with and without delay
were 23.0 and 18.9, respectively, and the effect was significant (p <
0.001). The mean workloads with and without model-mediated
teleoperation were 19.8 and 22.1, respectively, which were also
significant (p � 0.025). Thus, the summary of the experimental
results is that time delay causes operators to move more slowly
and makes it more difficult to cut in a straight line, regardless of

whether or not model-mediated teleoperation is employed.
However, model-mediated teleoperation significantly decreases
the operator workload.

Vozar et al. (2015b) subsequently reported the results of a
four-subject pilot study that compared the baseline plane virtual
fixture described above to configurations that added the following
to the plane virtual fixture: 1) scaled axes, where motion
orthogonal to the cutting direction is scaled by 25% with
respect to motion along the cutting direction, 2) virtual non
holonomic constraint (VNHC), where the operator steers the
cutter, and 3) non holonomic virtual fixture (NHVF), which adds
a soft virtual fixture line to the previous case. These latter two
conditions are described in Section 2.3.1. The results indicated
that the additional constraints and virtual fixtures did not appear
to affect the cut speed or quality, but led to a small reduction in
the reported subjective workload. However, the sample size was
too small to show statistical significance.

3.2 Augmented Virtuality Experiments
This section briefly describes initial experiments, more fully
described in Vagvolgyi et al. (2017, 2018), followed by a user
study performed with trained robot operators, Pryor et al. (2019).

We first measured the augmented virtuality visualization
accuracy by comparing real photos to computer generated
renderings, with qualitative results shown in side-by-side
images and quantitative results presented as distances between
manually selected visual landmarks, Vagvolgyi et al. (2017). In
particular, the mean error over 94 landmark observations was
3.95 pixels, with a standard deviation of 3.22 pixels (all cameras
were approximately two megapixels). In a preliminary study, six
operators used both conventional and augmented virtuality
visualization while using the da Vinci console to teleoperate a
robot, with no added time delay, to draw a pattern on the MLI
surface of the mock satellite. The results indicated a small
improvement in operator performance, leading to speculation
that further system improvements may result in more significant
performance gains.

After improving the system, we performed another pilot study,
where seven operators used the da Vinci console to teleoperate a
robot, with 5 s of telemetry time delay, to draw on the MLI hat
using a rotary crayon, Vagvolgyi et al. (2018). A foam support was
placed inside the MLI hat to provide sufficient rigidity for the
drawing task and also to keep theMLI hat from sagging due to the
effects of gravity. Once again, the conventional visualization
(camera image) was compared to the augmented virtuality
visualization; however, because the latter configuration
included an environment model, we also provided virtual
fixtures that the operator could invoke to help stay on the
defined cutting path (green lines in Figure 4C). The results
showed that the augmented virtuality visualization and virtual
fixtures allowed operators to perform the task more quickly and
accurately, with straighter paths and minimal gaps.

Finally, we performed a user study with five trained robot
operators (100% of the target population), to cut two sides of an
MLI hat in the Soft-MLI testbed (Figure 11), with a telemetry time
delay of 5 s, Pryor et al. (2019). This testbed employs a UR-10
robot (Universal Robots, Odense, Denmark), equipped with a
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rotary cutting tool. The tool is composed of a 45 mm circular blade
(Arteza, Wilmington DE), attached to a Dynamixel MX-12W
servo motor (Robotis, Lake Forest, CA), that is mounted on a six
axis force/torque sensor (JR3 Inc., Woodland, CA). A BlackFly
(FLIR Integrated Imaging Solutions Inc. BC, Canada) 1080p color
camera is also mounted on the UR-10 end-effector to provide a
close-up view of the blade and worksite. The lens of the camera is
equipped with a LED ring light. The testbed also includes one pan-
tilt-zoom (PTZ) camera (HuddleCam Downingtown, PA) and
one BlackFly deck camera equipped with a wide angle lens
(Rochester, NY) as proxies for cameras to be mounted on the
servicer spacecraft deck.

For this study, we developed a more representative
conventional teleoperation interface that uses a keyboard and
GUI, instead of the da Vinci master console. Thus, we had two
different visualization interfaces: conventional camera view
(CAM) and augmented virtuality (AV), and two different
teleoperation interfaces: keyboard/GUI (KB) and da Vinci
(dV). The two teleoperation interfaces are visible in Figure 1.
Details about the features of each interface are described in Pryor
et al. (2019).

The setup for each experimental trial consisted of a robotic
image survey to build the environment model, as described in
Section 2.1.1. Then, the task model (desired cut path) was
defined in the same relative location on each reconstructed hat
model. Each trial began with the robot in the same position
relative to the mock satellite.

During trials, operators sat out of visual range of the robot,
relying only on the time-delayed camera feedback for
visualization. In addition, all operators wore noise-canceling
headphones to prevent them from hearing real-time
(i.e., undelayed) audio feedback, such as changes in the cutting
motor sound. The order of trials was fixed to introduce no more
than one new feature at a time. Each operator first performed the
conventional (KB + CAM) trial, which emulated their familiar
teleoperation interface, though with different hardware and
software. Next, the augmented virtuality (AV) visualization
was introduced, while keeping the familiar keyboard

teleoperation interface (KB + AV). Note, however, that the
keyboard interface was enhanced to take advantage of the
constructed models. For example, operators could use the
keyboard to command robot motion in a task frame aligned
with the cutting path, so that a single degree of freedom
controlled progress along that path. Finally, the AV
visualization was kept and the da Vinci teleoperation interface
was introduced (dV + AV). In this interface, operators could
enable virtual fixtures to provide haptic guidance and/or set
anisotropic gains, both of which were defined with respect to
the cutting path task frame. Operators were allowed to practice
with each configuration prior to beginning each trial.

As a measure of the success of each cutting trial, Figure 12
shows the number of layers cut compared to the number of layers
present, with a quantitative summary in Table 1. Note that the
geometry of the hat construction causes a significant increase in
the number of layers that must be cut at a corner. We assumed
that the cut is likely to be successful if all layers are cut, or if only
the innermost MLI layer is not cut in a short segment. The exact
degree of success depends on the location of the cutting failure,
the condition of MLI materials, and other factors; thus, they are
determined on a case-by-case basis. The results indicate that
the KB + AV configuration led to the highest percentage of
complete and acceptable cuts. In addition, despite the increased
number of layers, the corners typically saw more success than the
straight sides. We attribute this to the additional structural
integrity of the hat at the corners, which restricts the layers
from spreading apart.

Table 2 presents the results of the post-experiment survey,
where operators rated the difficulty of each system configuration
on a scale from 1 (very easy) to 5 (very hard). All five operators
selected the KB + AV configuration as the easiest or as one of the
easiest and four operators rated the dV + AV configuration as the
hardest. This is consistent with the NASA TLX results reported in
Pryor et al. (2019). In addition, Table 2 shows the total time to cut
the two sides of the hat. For four out of the five subjects, the
conventional keyboard/GUI interface with the augmented
virtuality visualization (KB + AV) took less time than with the

FIGURE 10 | Model-mediated teleoperation experiment from Vozar et al. (2015a). (A) MLI taping pattern, showing six test strips. One was used for practice (far
left), four were used for the trials (middle four), and one (far right) was not used unless a spare was necessary. A schematic section view shows the structure of the
blanket layers. (B) Closeup view of the blade apparatus cutting through Kapton tape on the satellite mock-up panel.
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conventional visualization (KB + CAM). However, all five
subjects completed the task in the shortest time using the da
Vinci interface (dV + AV). This is likely because the da Vinci’s
direct teleoperation does not allow the chance to preview the
result of a command, eliminating the time spent confirming that
the correct command will be issued. For this reason, the lower
time does not indicate an improvement.

In summary, the trained robot operators preferred the
augmented virtuality visualization over the conventional
visualization, but they preferred a conventional keyboard/GUI
control interface over the da Vinci master console. This choice

also aligns with their primary goal, which is to successfully
complete the task.

3.3 Interactive Planning and Supervised
Execution (IPSE) Experiments
The IPSEmodule was evaluated in the Soft-MLI setup, with themock
servicing robot and satellite shown in Figure 13A, Pryor et al. (2020).
Each experiment began with the environment model already created,
as described in Section 2.1.1. The operator first performed the tool
pickup task by commanding the robot to the refueling tool station and
lowering it onto the tool (a section of tube with outer diameter
0.500″) to engage themagnetic attachment. Once at least onemagnet
attached, an experimenter recorded whether the tool was aligned
correctly and manually aligned the tool if necessary. The operator
then performed the refueling task by commanding the robot to move
from the refueling tool station to a tube, with inner diameter 0.584”,
on the mock satellite, which represents the fuel port, and then
inserting the tool at least 3 cm into the tube. Each operator
performed the experimental task three times, in each of the
following planning configurations: 1) Conventional teleoperation
console (Figure 13B), with ability to preview robot position goal
entered into GUI as a yellow ring on the 3D monitor (better seen in
Figure 4C), 2) Conventional teleoperation console, with IPSE 2D

FIGURE 11 | Soft-MLI setup for cutting MLI hat. (A) remote robot with satellite; (B) Closeup of cutting assembly on UR10 robot.

FIGURE 12 | Visualization of the number of layers successfully cut in all MLI cutting trials. Horizontal axis represents cutting progress (cm), starting at the top of the
hat then continuing on the right side. The thin black lines indicate the number of layers that need to be cut, and the thick colored lines show the number of successfully cut
layers for each trial. A single sheet of MLI consists of 23 layers, but there are as many as 95 layers at the corners where the MLI is folded and taped multiple times. The
colored horizontal bands (one for each operator) under the charts show the number of layers cut for each trial. Colors: dark green indicates all layers cut; light green
indicates one layer uncut; yellow indicates two to three layers uncut; orange indicates 4–10 layers uncut; red indicates more than 10 layers uncut.

TABLE 1 |Results of MLI hat cutting experiments with five trained robot operators,
using conventional input and visualization (KB + CAM), conventional input and
augmented virtuality visualization (KB + AV), and da Vinci master console for input
and augmented virtuality visualization (dV + AV). Success rate is quantified by
percentage of cut path with given number of uncut layers. Goal was to cut all
layers, so the ideal result would be 100% for 0 “not cut” layers.

Not cut KB + CAM KB + AV dV + AV

0 95.29% 99.71% 91.18%
1 0.00% 0.00% 0.59%
2–3 0.59% 0.29% 1.76%
4–10 2.35% 0.00% 3.24%
>10 1.76% 0.00% 3.24%
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interface (on RViz), and 3) da Vinci teleoperation console, with
IPSE 3D interface. In all configurations, the execution phase was
performed on the conventional teleoperation console, with the
augmented virtuality visualization on a 3D monitor with shutter
glasses. For the first configuration, it was also possible to use a 3D
mouse to move the robot.

Although IPSE was designed to enable the operator to switch
between the 2D and 3D interfaces at will, we decided to evaluate
them separately for two reasons: 1) to compare their effectiveness
in performing the task, and 2) to ensure that each interface was
actually used. Note that because the 3D interface did not fully
support all functionality, operators were allowed to use the 2D
interface in cases where the 3D interface did not provide the
necessary functionality (e.g., to modify the motion speed). In
addition, the 2D interface was used to initiate execution because
the augmented virtuality visualization had not yet been
implemented on the da Vinci console.

Six operators were recruited from a population familiar with
teleoperation, including use of the da Vinci surgical system, to
reflect the fact that this task would be performed by trained
operators. We categorized the results for the two tasks, tool pickup
and refueling, into three categories: full success, partial success,
and failure. Partial success was defined as an attached but
improperly aligned tool in the tool pickup task, and as a tool
inserted less than the desired 3 cm in the refueling task. For both

tasks, failure was indicated when the operator believed it was no
longer possible to complete the task.

Table 3 summarizes the key results from the experiments. The
tool pickup task had no failures under any of the three conditions,
which we believe reflects the fact that the magnetic mount is
sufficiently strong to attach even across a fairly large distance.
However, attaching at a distance increases the probability of a
misaligned tool, which was evident in the partial success rate.
Using conventional teleoperation, two of the operators
misaligned the tool. Success rates for the refueling task were
much lower, demonstrating the significantly higher requirement
for precision in this task due to the clearance of 2.13 mm (0.084”)
between the tool and tube. Of the five failures across all
conditions, four were due to the operator knocking the tool
off the mount by contacting an obstacle in the environment.
Of these, three were caused by contacting the refueling tool
holder, which was visible when the operators were introduced
to the task but was not modeled in the virtual environment. In
addition, this task affords the opportunity to dislodge the
magnetically attached tool without knocking it off entirely,
and the number of such misalignments (of the fully or
partially successful tasks) is also reported in Table 3. Two of
these misalignments were also due to contacting the refueling tool
holder. It appears that the promise of the virtual environment
and/or collision detection may have been detrimental to overall

TABLE 2 | MLI hat cutting experiment: Post-experiment survey results (1 � very easy, 5 � very hard) and total times (seconds) required by each robot operator for each
interface.

Survey rating Total time (sec)

Operator KB + CAM KB + AV dV + AV KB + CAM KB + AV dV + AV

1 4 3 3 2,358.5 3,139.4 1,067.2
2 3 2 2 1,088.1 983.0 776.5
3 3 2 5 2,088.5 1,639.0 1,008.7
4 3 2 4 3,154.8 1,912.8 1,162.5
5 3 3 4 4,620.2 2,846.6 1,298.0
Mean 3.2 2.4 4.0 2,662.0 2,104.2 1,062.6

FIGURE13 | IPSE test setup. (A) Space-side setupwithmock satellite, mock servicing robot, and refueling tool station; (B)Conventional teleoperation console with
3D monitor for augmented virtuality visualization (note that operator is wearing shutter glasses).
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performance because operators expected that every collision
would be visible in the virtual environment or detected by the
IPSE system.

The combined success rate for the IPSE-3D interface (50%)
was the lowest of the three conditions, followed by the
conventional interface (67%). Only the IPSE-2D interface
had no failures, and it also had the highest full success rate
of the three. While the IPSE-2D interface improved task
performance, the IPSE-3D interface led to worse results than
the conventional interface. We also asked the participants to
rate the difficulty on a scale of 1–5, where higher numbers
indicate greater difficulty. The results correlate with the
performance measures: The conventional interface had a
mean rating of 3.5 (standard deviation 0.6), the IPSE 2D
interface was rated 1.7 (0.8), and the IPSE 3D interface was
rated 4.5 (0.6).

Although execution time is significantly less important than
success rate, Table 3 also reports the time to successful
completion of each task. The results for the conventional and
IPSE-2D cases show that the IPSE-2D interface allowed
operators to complete the task faster, which we attribute to
the lower difficulty and the operators’ increased confidence in
their ability to safely execute longer motions. The results for the
IPSE-3D interface, however, indicate that in the less-
constrained tool pickup it was comparable to the
conventional interface, but in the severely constrained
refueling task it required much longer execution times than
the other interfaces.

4 DISCUSSION

In a conventional teleoperation system, the operator views
images from one or more remote cameras and uses input
devices to send motion commands to the remote system.
When the remote system is in space, telemetry delays can
increase the level of difficulty and cause operators to adopt
strategies such as “move and wait”. While increased telemetry
delay is perhaps the most obvious challenge, limited situation
awareness, due to sparse or suboptimal camera views, may be an
even bigger concern, especially given payload constraints that
limit the number and placement of cameras. We described a
model-based architecture to enable semi-autonomous
teleoperation with improved visualization, control and
monitoring and we summarized key components that we
developed over the last 10 years.

We performed several user studies to evaluate teleoperation
systems composed from different components of the overall
model-based architecture. We found that the most significant
improvement was obtained by enhancing the operators’ situation
awareness, via the augmented virtuality visualization described in
Section 2.2.2, as well as by improving their ability to precisely
specify intended motion, which were both evaluated by trained
robot operators in Section 3.2. In contrast, we found it more
challenging to significantly improve the control interface,
whether through model-mediated teleoperation or through an
immersive 3D console such as the da Vinci master console. The
model-mediated teleoperation, using virtual planes and lines in
the Firm-MLI setup, generally reduced the task load when
performing the experiments reported in Section 3.1, but did
not significantly improve task performance. In some cases,
operators appeared to be working against the virtual fixture,
Vozar et al. (2015b), so it is possible that a different
implementation (for example, different gains for the NHVF
controller) would have produced better results. However, the
study with the trained robot operators provided evidence that
small changes to the familiar control interface, such as allowing
the keyboard to command motion with respect to the task frame,
could improve task performance. One limitation of this study is
that it did not evaluate the relative benefits of the augmented
virtuality visualization and the ability to command in the task
frame, though the important point is that both rely on the
creation of the environment and task models described in
Section 2.1.

While the trained robot operators preferred the augmented
virtuality visualization over conventional visualization, they
were willing to sacrifice this feature to keep their conventional
keyboard/GUI control interface, rather than have to use the da
Vinci console. These operators have trained for years using
the conventional interface and thus it is not surprising that
they would find it more challenging to use the significantly
different da Vinci interface. On the other hand, our
experiments with the interactive planning environment,
described in Section 3.3, also found that the da Vinci
interface was more difficult to use, even though the
subjects in those experiments were more familiar with that
interface. We believe this outcome was due to several factors.
First, some tasks, such as cutting MLI in a straight line, do not
benefit from the ability to command motion in 6 DOF; in fact,
this flexibility could be detrimental to task performance and
we therefore incorporated virtual fixtures to restrict motion
along some degrees of freedom. Another limitation was that

TABLE 3 | IPSE experimental results for tool pickup and refueling tasks, indicating number of trials (of 6 for each test configuration) with full success (S), partial success (P),
and failure (F); number of successful trials with tool misalignment (Mis.) in refueling task; task times (min:sec) and user ratings (1-5, in order of increasing difficulty), in
format mean (standard deviation).

Test Tool pickup Refueling User

Config S P F Time S P F Mis Time Rating

Conv 4 2 0 11:31 (4:17) 3 1 2 2 17:35 (7:44) 3.5 (0.6)
IPSE 2D 6 0 0 6:34 (4:01) 5 1 0 1 12:18 (5:27) 1.7 (0.8)
IPSE 3D 6 0 0 10:59 (4:38) 3 0 3 1 30:22 (4:01) 4.5 (0.6)
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the da Vinci interface did not support specification of precise
motions with respect to identified features (task frames) in the
environment model. For example, in the interactive planning
experiments presented in Section 3.3, operators were able to
use the keyboard to move the refueling tool with respect to a
task frame affixed to the tube emulating the fuel port. Similarly,
in the MLI cutting experiments, the operators could use the
keyboard to move the cutter with respect to the desired cutting
path. Anecdotally, in the interactive planning study, several
operators found the 3D interface well suited for planning
larger motions, such as first moving to the refueling tool
station and then moving from there to the vicinity of the
fuel port. Our conclusion, therefore, is that it is best to offer
multiple interfaces so that operators can choose the best
interface for a particular task step.

The model-based framework also enables the system to
more effectively incorporate sensor feedback that is not used
for robot control, either to update the models or to monitor
task performance (including error detection). We presented
several examples, including task monitors based on measuring
force (Section 2.4.1) or estimating force from vision (Section
2.4.2), both in position-controlled directions, and model
updates based on measured position in the direction of
force control (Section 2.5.1). But, it is important to note
that different system configurations are possible. For example,
the estimated cutting blade engagement force (Section 2.4.2)
could be used for feedback control, instead of as a task
monitor, in which case the measured position in that
direction could be used either to monitor the task or
update the model. In addition, in some cases it is possible
to use combinations of sensor feedback to satisfy multiple
goals, such as when using the measured normal force to
control sliding along a surface, the measured tangential
force as a task monitor, and both force components to
update the cutting force model (Section 2.5.2).

Finally, it is important to acknowledge that this work
assumed communication latencies on the order of seconds
and that it was feasible, and therefore preferable, for human
operators to perform the considered satellite servicing tasks.
In addition, mission considerations placed a premium on
avoiding failure, rather than on other factors such as
optimizing time. This may also explain the preference for a
keyboard interface, where operators can specify precise
intended motions, rather than a 3D joystick or mouse,
where it is possible to obtain imprecise or unintended
motions. These considerations may not apply in other
scenarios. For example, 3D (joystick) control may be
preferable for tasks that require higher dexterity and/or
faster completion times, and have some tolerance for
imprecise motion. Alternatively, scenarios with larger time
delays or tasks that require response times that are faster than
the communication delay, may require a higher level of
autonomy. Nevertheless, within the continuum between
direct teleoperation and full autonomy, we believe that our
model-based architecture can provide benefits in
visualization, control and error detection for robotic
manufacturing, assembly, and servicing of in-space assets.
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