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The passive, mechanical adaptation of slender, deformable robots to their environment,
whether the robot be made of hard materials or soft ones, makes them desirable as tools
for medical procedures. Their reduced physical compliance can provide a form of
embodied intelligence that allows the natural dynamics of interaction between the
robot and its environment to guide the evolution of the combined robot-environment
system. To design these systems, the problems of analysis, design optimization, control,
and motion planning remain of great importance because, in general, the advantages
afforded by increased mechanical compliance must be balanced against penalties such as
slower dynamics, increased difficulty in the design of control systems, and greater
kinematic uncertainty. The models that form the basis of these problems should be
reasonably accurate yet not prohibitively expensive to formulate and solve. In this article,
the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a
common language. Classical theories of mechanics are used to outline formal guidelines
for the selection of appropriate degrees of freedom in models of continuum robots, both in
terms of number and of quality, for geometrically nonlinear models built from the general
family of one-dimensional rodmodels of continuummechanics. Consideration is also given
to the variety of actuators found in existing designs, the types of interaction that occur
between continuum robots and their biomedical environments, the imposition of
constraints on degrees of freedom, and to the numerical solution of the family of
models under study. Finally, some open problems of modeling are discussed and
future challenges are identified.
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INTRODUCTION

Continuum robots use material deformation to move instead of joints. They may offer a
technological solution to some of the difficult challenges of locomotion, perception, and
manipulation found in a variety of unstructured and uncertain environments (Robinson and
Davies, 1999). Biomedical applications have been a great motivator in the development of a
wide variety of continuum and soft robots, ranging from surgery to therapy and other
applications involving physical human-robot interaction. The great recent interest in these
design paradigms stems from the observation that success in whatever form it is needed may be
achieved without having complete control over the motion of a robot or its forces of interaction with
the environment. In some cases, this is advantageous simply for reducing the complexity of
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engineered systems, and in other cases, performance may be
increased beyond what is possible with rigid machines. Several
excellent examples of this general principle come from tools of
modern medicine. A flexible endoscope can navigate the
intestines without a great degree of control over its own shape.
The same is true for an intravascular catheter. In these examples,
it is the particular combination of geometry and just the right
amount of mechanical “softness” that facilitates the completion of
the task. Beyond this snake-in-a-pipe approach to navigation,
recent research has argued that physical compliance is
advantageous in grasping, underwater swimming, robustness
to collision, and locomotion on soft terrains where low ground
pressure is required. The interested reader is referred to several
review articles for a survey of the benefits, applications,
challenges, and history of soft and continuum robots (Kim
et al., 2013; Burgner-Kahrs et al., 2015; Walker et al., 2016;
Cianchetti et al., 2018). Figure 1 shows four examples of
continuum robot architectures which range from fully hard
materials to fully soft and with composite structures in
between these extremes.

Though there is not universal agreement on definitions, the
term continuum robot is generally used to imply that motion is
generated without identifiable kinematic pairs, while the term soft
robot implies at least a greater degree of mechanical compliance,
defined as the ratio of displacement to force, exhibited in response
to environmental forces than traditional approaches to robotic
interaction. Many soft robots are made of soft materials, which
may be characterized in terms of a material parameter such as the
modulus of elasticity (Majidi, 2014). Continuum robots made of
harder materials can be designed to exhibit high or low

mechanical stiffness to external forces depending on the
design details.

Continuum robots are classified as under-actuated
mechanisms (Spong, 1998). This statement is taken to mean
that in a practical sense, and within the context of a pre-defined
scope of possible robot-environment interactions, more
information than can be collected by a finite set of actuator-
collocated sensors is needed to describe the shape and motion of
the robot to the degree of accuracy demanded by engineering
specifications or by the roboticist’s preference. The practical sense
of the definition is emphasized since even rigid robots with
revolute or prismatic pairs must deform to a small degree
when interacting with their environment via forces. All
mechanical systems are underactuated when there exist flexible
modes that are not actuated but which should be controlled
(Spong and Laurent, 1997). It is well known that the analysis of
dynamics of underactuated robots is significantly more complex
than for regular, fully actuated robots (Jain and Rodriguez, 1993).

Beyond being under-actuated, the modeler of a continuum
manipulator also frequently faces other challenges. Designs are
often difficult to separate into “components” since the structure
and the actuator may be the same physical body. Actuators based
on pneumatics, hydraulics, and composite structures may not be
as easily characterized as electric motors. Friction and hysteresis
models may be needed to explain observed mechanics, and
environments rich with expected contacts may require the
solution of contact models based on theories of nonlinear
complementarity. Additionally, the standard kinematic
descriptions based on the rigid transformations in the special
Euclidean group SE(3) are neither the most common approach to

FIGURE 1 | (A) Concentric tube robots are comprised of hard (metallic) tubes which are precurved and nested inside one another. Rotating and translating the
tubes results in motion. (B) Tendon-driven robots use one or more tendons or cables to provide internal actuation forces that bend a flexible, slender rod. (C) Pneumatic
soft continuum robots use soft air muscles, which extend or contract with internal air pressure, to create bending in a composite structure. The supports could be hard or
soft materials. (D) A fully soft pneumatic gripper uses asymmetry introduced by an inextensible fabric layer and an asymmetric air volume to create four slender
fingers which bend to wrap around objects.
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solid mechanics nor (necessarily) the most expedient approach to
the description of solid continua undergoing deformation. With
these considerations, one appreciates why the mathematical
modeling of continuum and soft robots can be challenging.

This paper first reviews the state-of-the-art in the mathematical
modeling of continuum manipulators having at least one “long”
aspect in terms of its shape, which are termed slender in agreement
with the mechanics literature. The goal of these models is to
describe the dynamics (or statics) to relate actuator variables,
other boundary conditions, and sensor measurements to the
motion of the robot. The models are generally not concerned
with other important aspects of robot design and analysis, such as
repeatability, wear, safety, and other factors. For designs made of
slender components, the motion of the robot is dominated by
bending or beam-like deformations. This classification can be
thought of as “arms,” “snakes,” or the individual “fingers” of a
multi-fingered hand. Designs composed of individual components
having this property are a natural extension, such as concentric
tube robots (Mahoney et al., 2018) or multi-backbone continuum
robots (Ding et al., 2013). For robots made of softer materials, such
as the STIFF-FLOP designs, localized deformations may be
complex, yet the dominant behavior is still beam-like
(Cianchetti et al., 2014; Fraś et al., 2014). One of the goals of
the work is to express the variety of methods encountered in the
literature with a common notation. The review motivates a
theoretical discussion rooted in the classical theories of solid
mechanics. An analysis of the mechanics is used to support
recommendations for future modeling efforts, with the
conclusion that some choices for the model structure may result
in better absolute model accuracy and efficiency (as quantified by
the relationship between accuracy and dimensionality).

REVIEW OF THE STATE OF THE ART

Table 1 presents the unified nomenclature that will be used
throughout this paper. In the discussion of other works, the

original nomenclature has been changed to match what is shown.
There are three primary considerations in any physics-based
approach to modeling of solid continua: the adoption of
kinematic hypotheses and coordinates describing the
configuration of the body, the application of the laws of
mechanics, and the selection of mathematical models that
describe the behavior of materials (Sadati et al., 2019).
Kinematic hypotheses alone allow the modeler to describe the
geometry of the robot, but this alone is insufficient for most
purposes because it does not reveal which configurations are
possible or likely. The mechanics, which are formulated naturally
as partial differential equations, provide the relationships between
the kinematic degrees of freedom that indicate which path of
configurations will be taken if particular conditions (actuation,
environments, etc.) are imposed. Finally, the material models are
needed to close the relationship between the kinematic degrees of
freedom and the kinetic quantities related by the mechanics.

Kinematic Descriptions
The forebears of continuum manipulators are the hyper-
redundant robots, defined as those having a large (or infinite
in the case of continuum robots) relative degree of redundancy
(Chirikjian and Burdick, 1994). In any robot with material
deformation which is substantial with regard to the kinematics
or dynamics, both the relative degree of redundancy and the
degree of under-actuation are theoretically infinite since the
configuration space is infinite-dimensional. Here the usual
definition of a robot configuration is used: “a complete
specification of the location of every point on the robot”
(Spong et al., 2006). There have been two primary methods to
date of describing the configuration of continuum and soft robots:
the curve-based description and the general continuum
description.

The Curve-Based Description
The state of the art curve-based description is that of the special
Cosserat rod (Antman, 2005). Figure 2 depicts the curve, its

TABLE 1 | Nomenclature used in this article.

Symbol Meaning

p Position vector of a point with respect to an inertial frame of reference F 0
Fa Vector a resolved in Cartesian coordinates of frame F . The basis is held fixed if a derivative is taken, i.e. if a � xid i and d i are

the unit vectors of F , then zs
Fa � (zsxi )d i

F i Frame of reference i. F 0 is an inertial frame
s Arc length coordinate
t Time coordinate (may be real time or an arbitrary parameter describing changes in configuration depending on context)
d1 , d2 , d3 Director vectors of a framed curve
gb , Rb , pb Transformation in SE(3) consisting of rotation operator Rb ∈ SO(3) and displacement pb describing the transformation

between F 0 and F (s) along a framed curve
qi A generalized coordinate for the ith degree of freedom
zα( · ) Partial derivative operator with respect to variable α

u, v Strain variables in the special Cosserat rod description
D Subset of the real line, domain of the arc-length parameter for a rod
( · )× Canonical mapping R3 → so(3) ⊂ R3×3, a×b � a × b
ukdk Summation over repeated indices implied
τ j Actuator value j
xj Task-space coordinate
_q Time derivative of q
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relationship to a solid body, and the quantities that are associated
with the curve and the boundary conditions of a mechanical
model. The elongated form of many continuum manipulators
leads naturally to the concept of the “backbone curve,” which is
typically defined to be a time-varying, piecewise differentiable
curve in the standard three-dimensional affine Euclidean space E
with associated vector space E. A parametric representation gives
the position of a point identified by a spatial parameter s ∈ D ⊂ R

at time t ∈ R as a position vector pb(s, t) ∈ E with respect to a
specific frame of reference F 0 in E. The differentiability
requirement on pb is always at least that the first derivative of
pb with respect to s exists, is piecewise continuous, and is nowhere
equal to zero. This condition guarantees that the curve is
rectifiable, or in other words has a measurable arc length
(Kreyszig, 1991). The curve changes over time, modeling the
motion of the robot, and it is presumed to describe the dominant
features of the motion of the robot. Since there is no finite set of
coordinates that describes every possible curve meeting these
requirements, the description of the shape is infinite-
dimensional.

The usual type of modeling hypothesis for slender bodies is
that other points, which are not located on the backbone, are
described by some auxiliary relationship that describes their
positions relative to the positions on the backbone. The
standard theories from beam mechanics may be adopted for
this purpose, in which case the backbone curve may be affixed to
the body at the neutral axis of bending1. One example is the Euler-
Bernoulli hypothesis, which states that sections normal to the
backbone remain normal for all deformations. Another is the
hypothesis due to Timoshenko stating that normal sections rotate
relative to the backbone but remain planar. Standard “warping”
theories can be used to couple motion of the points normal to the
sections with twisting about the backbone if the sections are not
circular. Regardless of these additional hypotheses, the curve is of
fundamental importance to the kinematic description.

Explicitly, the body of the robot is identified by the curve
through the consideration of a reference configuration c0 of the
robot. The backbone curve pb is placed on this reference
configuration. The curve is then “framed” by a set of unit
vectors d1(s, t), d2(s, t), and d3(s, t) termed the director vectors.
The first two are chosen to be orthogonal and to span the section

of the body at swhich is normal to the curve. The third is taken to
complete a right-handed, orthonormal coordinate frame as
d3(s, t) � d1(s, t) × d2(s, t). In terms of classical differential
geometry, d3 is the tangent vector, and d1 and d2 could be
selected as the normal and bi-normal vectors from Frenet’s
formulas (Kreyszig, 1991). This procedure is problematic for
general curves since torsion may be undefined, but many
other alternative framings of the curve are possible which do
not suffer this problem (Bishop, 1975). The backbone position
and unit vectors together describe a local reference frame F (s, t)
for each point along the curve. The unit vectors equivalently
define a spatiotemporal field of rotation operators Rb(s, t) ∈ SO(3).
The rotation field can be represented by matrices (Rucker and
Webster, 2011), quaternions (Boyer et al., 2020), or any other
suitable representation. Together with the position vector, a
spatiotemporal field of transformations gb(s, t) ∈ SE(3) is defined
by. gb(s, t) � {Rb(s, t), pb(s, t)}

The vectors u(s, t) � ukdk and v(s, t) � vkdk are termed the
“strain variables.” They describe deformation of the body and are
invariant under rigid transformations. The vector u has been
widely called the “curvature” vector in the robotics literature, but
this may be misleading since it is not generally the curvature of
the deformed backbone curve. The term “flexural strain” is
preferred for u1 and u2, and “torsional strain” for u3. The
variables v1 and v2 are called the shear strains, and v3 is the
dilation. The change in length or “extension” of the backbone
curve is characterized by zsp2 � v · v. The strain variables are
related to the framed curve by the following relationships.

zspb(s, t) � v(s, t), zsdk(s, t) � u(s, t) × dk(s, t) . (1)

Finally, the vectors ztpb(s, t) and ω(s, t) represent the
linear and angular velocity of the backbone curve and
director vectors. The angular velocity satisfies the equation
ztdk(s, t) � ω(s, t) × dk(s, t). The four functions u, v, ztpb, and ω
are not independent; they must satisfy zsω � ztu + u × ω. In the
reference configuration, the flexure strains have non-zero values
u0(s) if the backbone is not a straight. Generally, v0(s) � d3(s), but
other choices are possible.

The General Continuum Description
The second approach to describing the configuration of
continuum robots is to make as few prior kinematic
hypotheses on the configuration as possible. The traditional
description of a three-dimensional continuum in solid
mechanics is used in this case. In this approach a reference
configuration c0 is identified by their position vector relative
to a frame of reference F 0. Three coordinates X ∈ R3 identify the
position of each point in the body via a one-to-one, differentiable
vector-valued function P(X). If X is chosen as the Cartesian
coordinates with respect to F 0, then this function and its inverse
are trivial. The final locations of the points are described by
p(X, t). In some cases, it is useful to define a displacement field U
as follows.

p(X, t) � P(X) + U(X, t).
The amount of stretching can be quantified by the

deformation gradient, defined by

FIGURE 2 | Mathematical setup of the curve-based kinematic
description of slender continuum robots.

1There are additional considerations for this placement in the case of dynamical
models, discussed below.
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F(X, t) � zp
zP

∣∣∣∣∣∣∣X,t.
The deformation gradient straightforwardly describes the local

changes in length (amount of stretching) and therefore plays a
major role in the definition of strain measures. Note also that the
curve-based description of the configuration, together with the
classical Euler-Bernoulli hypothesis, can be placed into this more
general framework using X � (s, X2, X3) and p(X, t) � pb(s, t) +
X2d2(s, t) +X3d3(s, t) (Antman, 2005).

Perspective on Discretization and
Configuration Spaces
There are two perspectives that one might take when describing
the kinematics or mechanics of continua. In the first perspective,
the model consists of a (possibly nonlinear) PDE, a domain on
which the PDE applies, and boundary conditions in the form of
constraints or measurements. The robot’s state space consists of
the dependent variables related by the PDE. The state space is
therefore a particular Cartesian product space that might involve,
in general, both finite-dimensional spaces and infinite-
dimensional function spaces. In the process of computing a
numerical solution to a model, any part of the state that
belongs to an infinite-dimensional space must be
approximated by a finite set of coordinates in Rn, but the
choice of coordinates does not need to be of great concern to
the modeler. This perspective has been taken by numerous
authors for general continuum manipulators (Trivedi et al.,
2008; Till et al., 2019), concentric tube robots (Dupont et al.,
2010; Rucker et al., 2010; Gilbert et al., 2016), parallel continuum
robots (Black et al., 2018), and bioinspired locomotion by snakes
and worms (Boyer et al., 2012). The modeler hopes that any
approximation error is small enough to be ignored, and error-
controlled numerical methods may provide some assurances.
This first perspective is the natural one if, for example, the
modeler selects an error-controlled, automatic step-size
numerical integrator like the Dormand-Prince Runge Kutta
pair to approximate the solution to a differential equation
with a spatially distributed independent variable. The benefit
to this perspective is that questions of convergence may generally
be avoided. However, there are two main disadvantages: first,
there is a relative paucity of tools available if the problem is not
expressed with respect to a single independent spatial variable;
second, the degrees of freedom chosen by automatic numerical
methods may be unknowable in advance and may vary between
model solutions, making it difficult to apply algorithms built on
spaces like Rn or on manifolds where coordinate charts are
available.

In a second perspective, the equations of an infinite-
dimensional model are explicitly discretized through a suitable
method such as the finite element method or a finite difference
method (Renda et al., 2014; Back et al., 2015; Gilbert and Godage,
2019) or via a spectral method involving a “modal”
decomposition (Chirikjian and Burdick, 1994; Godage et al.,
2015; Chen et al., 2020). In this perspective, the modeler takes
control over the discretization and fixes the dimensionality of the

resulting model. One is free to take the perspective that a new
model has been created that is not necessarily subordinate in any
way to the infinite-dimensional model. In other words, the
infinite dimensional dependent variables, ODEs, and/or PDEs,
were only a steppingstone to the finite-dimensional model. The
dimension may be varied according to a model hyper-parameter
N, and often one wishes that as N→∞, the solutions to the
sequence of fixed-dimensional models approach the solution to a
corresponding infinite-dimensional model.

The second perspective is the standard one in generally
accepted theories of robot kinematics and dynamics, in which
the goal is to find a suitable coordinate set that describes the
displacement field u(X, t) that takes a material point located at
initial position P to its final position p � P + u. With rigid link
manipulators, the space is partitioned into non-intersecting
bodies indexed by number i ∈ Z+ and equipped with local
coordinate frames, and then the machinery of SE(3) is used to
associate each body with its own displacement field expressed in
terms of one of the coordinate transformations 0T i ∈ SE(3)
representing the transformation between the base frame 0 and
the frame of the ith body. For serial, rigid-link robots, the choice of
finite dimensional coordinates parameterizing the displacement
field is usually one of two conventions, the Denavit-Hartenberg
convention (Denavit and Hartenberg, 1955) or the twist
coordinate system and product-of-exponentials formula
(Brockett, 1984).

For continuum and soft robots, neither the perspective (finite
vs. infinite-dimensional) nor the approach to discretization
(choice of coordinates) appears to be standardized. In some
cases, restrictive assumptions do allow a set of finite
coordinates that uniquely specify the configuration of a
continuum robot. For example, Bretl and McCarthy showed
that for the Kirchhoff rod with no external loading, a
configuration space isomorphic to R6 can be selected,
corresponding physically to a known internal force and
moment at the same location in space as the known
orientation of the rod (Bretl and McCarthy, 2014). A similar
result is known for coordinates of the configuration space of
concentric tube robots without any external loads (Gilbert et al.,
2016). The general principle is a basic result on initial value
problems. If the mechanics of the system can be modeled by a
system of n first-order initial value problems,

zsy � F(s, y), y(s0, t) � y0(t),
with F uniformly Lipschitz in y and continuous in s, then the
solutions are uniquely determined by y0 (Schaeffer and Cain,
2016). Therefore, if all state information of the robot is contained
in the functions yi(s, t), then it is clear that y0 is a suitable set of
coordinates for the configuration space of the robot. For curve-
based models y0 usually belongs to a space of the form SE(3)r ×
Rn.

However, with less restrictive assumptions, low-dimensional
configuration spaces are not generally found. Such is the case for
parallel continuum robots (Black et al., 2018), for growing robots
(Greer et al., 2019), or soft robotic hands (Schlagenhauf et al.,
2018). It is in general impossible to find a “minimal” set of
coordinates for the C-space of any continuum manipulator when
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the locations and nature of external loads or contacts are a-priori
unknown and when these loads cause substantial changes in the
robot shape. The subsections that follow describe a variety of
methods that have been used to mathematically represent the
configurations of continuum robots.

Spectral Methods
Spectral methods were some of the earliest described methods for
the kinematic modeling of backbone curves. In this method, the
configuration is represented by a finite number of coordinates
q(t) ∈ RN by assuming that some kinematic quantity is described
by a truncated sum of “modal” shape functions ϕi(s) in a manner
analogous to a Fourier series. The general form is to have a scalar
quantity Sj represented as

Sj(s, t) � ∑N
i�1

aij(q(t))ϕi(s).

The function aij may be simply an index into the vector q
pulling out one of the components, or it may be a more
complicated relationship. The mode shapes are generally
selected among one of the standard families such as
trigonometric functions sin(kiπs) and cos(kiπs) for a series of
values ki ∈ R (directly analogous to a truncated Fourier series),
the standard monomials {1, s, s2, . . .}, the Legendre polynomials,
Chebyshev polynomials, etc. (Chirikjian and Burdick, 1994;
Zhang and Simaan, 2013; Chen et al., 2020). In general, to be
classified as a spectral method, the mode functions should have
global support rather than local support, which leads to the
element-based methods described below.

There is a great deal of freedom within this approach. For
example, the tangent vector d3 can be expressed in spherical
angles θ(s, t) and ϕ(s, t), and then S1 � θ and S2 � ϕ, and v �
(0, 0, 1) completes the kinematic description (Chirikjian and
Burdick, 1994). Sj could also be chosen directly as a
component of the displacement field of the backbone curve
(Godage et al., 2015). These methods are extrinsic because
they seek to approximate kinematic quantities as measured by
the observer in the inertial frame F 0. Parameterizations also
possible which represent the strain variables u(s, t) and v(s, t)
measured by an observer in the local frame F (s, t) (Boyer et al.,
2020). When coupled with a collocation method used to
determine u, it was shown that the Magnus expansion can be
used to efficiently recover the position and orientation field
(Orekhov and Simaan, 2020).

In the context of continuum robots, to the best of the author’s
knowledge, the spectral methods have only been applied in
conjunction with the curve-based descriptions discussed in
The Curve-Based Description and not for more general
continuum descriptions.

Element-Based Methods: PCC
The element-based methods, in contrast to the spectral methods,
break up the problem spatially into adjacent sub-domains and
attempt to model the kinematics on each sub-domain using a
simpler hypothesis. This procedure can be carried out for both the
curve-based description and the general continuum description.

Many authors have adopted the kinematic hypothesis that the
backbone curve is a sequence of circular arcs which are
concatenated by imposing tangency conditions. There is a
natural extension of this idea to piecewise helical curves. This
approximation is termed the “piecewise constant curvature”
(PCC) method, and many continuum robots have even been
designed to exhibit deformation of this kind, at least in the
absence of external loads (Webster and Jones, 2010). For
example, multi-backbone robots and tendon-driven robots will
adopt, with actuation, shapes very close to circular arcs with
appropriate design decisions (Camarillo et al., 2008; Xu and
Simaan 2008). On the other hand, even gravitational loading
may cause more flexible robots to adopt shapes more complex
than a single circular arc (Trivedi et al., 2008).

Within the curve-based framework described above, the
“standard” PCC hypothesis including inextensibility and shear-
lessness is equivalent to a partitioning of the domain into m
elements Γe � [se−1, se] with D � ∪ m

e�1 Γe and an approximation
of the flexural-torsional strain as the following sum:

u(s, t) � ∑m
e�1

ue(t) χΓe(s) , χΓe(s) � { 1 s ∈ Γe
0 s ∉ Γe

v(s, t) � d3(s).

A similar approach is called the piecewise constant strain (PCS)
method and extends the definition to include an approximating
sum representing v (Renda et al., 2016). The vectors are resolved
in Cartesian coordinates of the frame F (s, t) and it is these body-
frame coordinates that are presumed constant over the element.

The major advantage of the PCC method is that the extrinsic
variables pb and dk (equivalently Rb) are easily computed using an
explicit recursion presuming that a single boundary condition on
the pose of the curve, g(s0, t) � g0(t), is known. On element Γi, the
transformation from F 0 to F (s, t) is given by

g(s, t) � g(se−1, t) exp((s − se−1)ξe(t)),

ξe(t) �
F s,t( )[ ue(t)× ve(t)

0 0
].

Themapping exp: se(3)→ SE(3) is continuous and differentiable,
including at the element 0 ∈ se(3), and it may be computed in
closed form, below in vector form but originally discovered by
Euler and Rodrigues (Rodrigues, 1840; Cheng and Gupta, 1989).

exp([ω× v
0 0

]) � [R(ω) p(ω, v)
0 1

]
R(ω) � I + C(ω)ω× + A(ω)ω2

×
p(ω, v) � C(ω)v + A(ω)(ω × v) + B(ω)(ω · v)ω.

The coefficient functions are as follows, with sinc(x) the un-
normalized sinc function, which is available in the standard
libraries of many programming languages.

A(ω) � 1
2
sinc2(‖ω‖

2
), B(ω) � ‖ω‖− sin(‖ω‖)

‖ω‖3 , C(ω) � sinc(‖ω‖).

In IEEE-754 double-precision arithmetic, the author has found
that B(ω) may be accurately computed by a truncated Taylor
series B(ω) ≈ 1/6 − ‖ω‖2/120 + ‖ω‖4/5040 if ‖ω‖< 1 × 10−4.
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The PCC and/or PCS methods are the simplest explicit and
consistent discretization methods for a framed curve which
interpolate the intrinsic (strain) variables rather than the
extrinsic (position and orientation) variables. In other
words, given a curve with bounded flexural, torsional, shear,
and extensional strains, the error between the curve and its
PCC or PCS approximation (both in terms of dk and in terms
of pb) shrinks as the number of elements increases. This
property is important because it means that the PCC/PCS
framework can describe robots with practically any backbone
curve if the domain is broken into enough elements. Figure 3
depicts a single isotropic rod under a combined twisting
and bending moment, resulting in a helical shape. The
results of a PCC approximation under a linear elastic
material law and subject to the virtual work principle
discussed in Projection via D’Alembert’s Principle below are
shown in Figure 4. The flexural strain variables of the PCC
model approach those of the exact solution as the number of
elements increases. The example also demonstrates an
important distinction between material flexural strain and

the usual notion of curvature of a shape. The exact solution
under the end load depicted in Figure 3 is indeed a helix, which
is a “constant curvature” shape, yet the flexural strain
variables, when resolved in components of the material
frame F (s, t) or any fixed frame of reference, are not
constant functions of the arc length. For this reason and
others discussed in Considerations for Kinematic Hypotheses,
the simplicity of the PCC approach relative to others may not
outweigh the drawbacks.

Element-Based Methods: Higher-Order
One-Dimensional
The discretization of the curve into elements can also be
accomplished with higher-order schemes than the piecewise
constant strain approach. In general, as with the PCC
approach if a boundary condition g(s0, t) is provided at a
single location along the backbone curve, then the C-space can
be defined by approximating the strain variables on each element
with an expansion having more terms than the PCS approach
(Boyer et al., 2020).

FIGURE 3 | Simulation of a cantilevered rod under a combined bending and twisting concentrated moment, forming a helix.

FIGURE 4 | Convergence of the PCC discretization to the exact flexural strains of the helical rod shape depicted in Figure 3. Note that the exact flexural strain
components are not constant functions of arc length.
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F s,t( )[ u(s, t)
v(s, t) ] � ∪m

e�1
∑Ne

j�1
ϕj(ze)qej(t), ze � s − se

se − se−1
.

The union operator is abused to mean here that the element-
local terms contained within each argument of the union are
“assigned” to provide the evaluation on that element. The
coordinate ze is a normalized element-local length coordinate
identifying the cross section within the element. If the model is to
contain flexure, torsion, shear, and extension, then a polynomial
expansion of order p in each component entails Ne � 6(p + 1)
degrees of freedom within each element. Continuity conditions at
the element boundaries may and/or boundary conditions may
reduce the number of total degrees of freedom from mNe as
implied by the formula.

Other representations for the C-space based on segmentation
into elements are possible but have not been widely pursued
within the robotics community. Certainly, the more widely
adopted approach within the finite element and computational
mechanics communities has been to make the primary kinematic
hypothesis at the level of p and/or dk (Simo and Vu-Quoc, 1986),
and this has also been studied in the context of continuum robots
(Sadati et al., 2019). This is the approach taken, for example, by
the ANSYS simulation software in handling nonlinear beam
elements via the BEAM188 and BEAM189 elements. These
methods require interpolation on the rotation group SO(3),
and some care is required to ensure that the formulation is
invariant to rigid-body transformations (Crisfield and Jelenić,
1999). One major advantage of strain interpolation is that it is
frame-invariant directly by construction; the major disadvantage
is that the calculation of inertial forces is greatly complicated by
the spatial coupling of the degrees of freedom.

Element-Based Methods: General Continuum
More general finite-element descriptions have also been used to
model soft and continuum robots. In this case, the degrees of
freedom q(t) directly interpolate the position field p(X, t) over the
three-dimensional domain of the body. Using typical first-order
(linear) interpolants, the degrees of freedom are the Cartesian
coordinates of the nodes of the mesh that breaks the body into
discrete volumes. Direct nodal position discretization using finite
elements can be used for closed-loop control using a
dimensionality reduction scheme based on projection (Bieze
et al., 2018). It has also been shown that high-order FEM
models with an order reduction method involving fitting to
PCC kinematics is effective (Runge et al., 2017). Finally, it has
been demonstrated that general 3D FEM with model order
reduction based on the Proper Orthogonal Decomposition can
produce models amenable to dynamic closed-loop control
(Katzschmann et al., 2019b).

Direct Nodal Discretization
Closely related to the element-based methods are those based on
direct discretization of the variables. Differential operators in the
mechanics can be replaced by their equivalent finite-difference
operators to form algebraic equations directly, operating on the
values of field variables specified at discrete spatial locations si for

the curve-based approach. A finite difference scheme applied
directly to the geometrically exact Cosserat equations has been
demonstrated for both the planar case and the spatial case
(Hasanzadeh and Janabi-Sharifi, 2014; Gilbert and Godage,
2019; Wang et al., 2021) and described for concentric tube
robots (Webster and Rucker, 2009). Finite-difference methods
were also used with direct spatial discretization to model a soft
underwater arm driven by cables (Renda et al., 2014).

Pseudo-Rigid Body Methods
The pseudo-rigid body methods replace the continuum with an
approximating rigid linkage. If the curve is broken into a
sequence of chords with rotational joints at the nodes joining
the chords, then this is equivalent to a spatial “lumping” of the
flexural strains into a discrete point via the use of the Dirac delta
distribution (Chirikjian and Burdick, 1991; Greigarn et al., 2019).

F s,t( )u(s, t) � ∑m
i�1

qi(t)δ(s − si)ni.

A universal joint is the result if two orthogonal axes ni and ni+1
are placed with si � si+1 with both axes normal to the backbone
curve. Three orthogonal axes create a spherical joint.

It has been shown that the kinematics of tip-loaded cantilever
beams can be modeled adequately by a serial 3R mechanism (Su,
2009). Other PRB models have been created for modeling of
catheters (Ganji and Janabi-Sharifi, 2009), tendon-driven
continuum manipulators for minimally invasive surgery
(Penning and Zinn, 2014), and MRI-actuated catheters
(Greigarn et al., 2017). A 6-DOF PRB segment model has also
been proposed (Venkiteswaran et al., 2019). An equivalence has
also been shown between the coordinates of a PCC model and a
suitably defined pseudo-rigid body model, indicating that PRB
model segments with RPPR kinematics can be used to describe
the same configuration space as PCCmodels (Katzschmann et al.,
2019a).

Initial Value Problem Concepts
There are additionally a variety of other methods of analysis and
computation which do not explicitly select the degrees of freedom
in the kinematic description. In these methods, the unknowns are
conceptually left as unknown functions, and numerical methods
are used which automatically select the degrees of freedom used
to represent the unknown functions, usually via an error
estimation and control algorithm.

These methods have been used when the problem is re-cast as
a one-dimensional boundary value problem with split boundary
conditions.

zsy � f(s, y), Ga(y(0, t), tj) � 0, Gb(y(L, t), tj) � 0.

Solutions can then be provided by numerical codes which
automatically determine the degrees of freedom used to
approximate the function y(s, tj) for each discrete value of tj.
For continuum robots these methods have been demonstrated via
collocation (Webster and Rucker, 2009) and shooting methods
(Till et al., 2015; Mauzé et al., 2020) using numerical tools that
approximate y(s, tj) via piecewise polynomials. It has also been
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shown recently that the dynamics problem for a wide variety of
architectures based on single or multiple Cosserat rod sub-models
can be cast as a shooting problem on an ODE once the time
derivatives have been discretized using finite differences (Till
et al., 2019).

Differential Kinematics for Strain-Variable Hypotheses
It is often necessary to calculate a manipulator “Jacobian field”
based on the curve parametrization, and if the generalized
coordinates are defined to interpolate the strain variables, this
field is not trivial to calculate.

[ ztp
ω

](s, t) � Jq(s, t)ztq(t) � [ Jp
Jω

]ztq(t) . (2)

Letting J i be the columnmultiplied by ztqi(t), then the column
can be calculated from the following differential relationships:

zsJpi � zqiv
zsJωi � zqiu + u × Jωi.

One must take care when the interpolation is carried out on
the strain variables in coordinates of the local frame F (s, t). If
desired, the coordinates in the body frame representations
F s,t( )Jpi and F s,t( )Jωi may be calculated from the appropriate
representation of these equations in the moving frame (Rucker
and Webster, 2011).

zs (F s,t( )Jpi) � −F s,t( )u × F s,t( )Jpi + zqi(F s,t( )v) + F s,t( )Jωi × F s,t( )v

zs (F s,t( )Jωi) � −F s,t( )u × F s,t( )Jωi + zqi(F s,t( )u).
From a known boundary condition where Jpi(0, t) � 0 and

Jωi(0, t) � 0, the solution to these equations can be expressed in
closed form as the solution to a linear time varying system.

[ Jpi
Jωi

](s) � ∫s

0
exp⎛⎜⎜⎝ − ∫r

0
adξ(τ)dτ⎞⎟⎟⎠ zq[ F s,t( )v

F s,t( )u]dr,
adξ(τ) � F s,t( )[ u× v×

0 u×
].

Mechanics
Regardless of how the shape of a robot is described, the principles
of classical mechanics are frequently used to describe the
relationships between the model’s degrees of freedom, the
internal stresses, and any imposed boundary conditions which
may include external forces, imposed positions or orientations of
parts of the robot, contact conditions. The robot’s actuators may
generally be modeled in one of two ways: either they are described
as constraints (a form of boundary condition) or as sources of
internal stress.

The Equations of Motion for the Special Theory of
Cosserat Rods
In the curve-based description, the equations of motion of the
special theory of Cosserat rods serve as the strong form
differential equations governing the mechanics (Antman, 2005).

zsn + f � ρAzttp + ρIkzttdk (3)

zsm + zsp × n + ℓ � ρIkdk × zttp + zt(ρJ · ω) . (4)

The sum from k � 1 to 3 is implied over the terms involving
Ik and dk. The variables n(s, t) and m(s, t) are the internal force
and the internal moment, which are interpreted as the resultant
force and resultant moment of the stress acting on section s. In
the case of a slowly accelerating body, which is typical in many
biomedical applications, a quasistatic approximation may be
used, in which all terms on the right-hand side are neglected
(Burgner-Kahrs et al., 2015). f and ℓ are externally applied
forces and moments. Applied concentrated forces and
moments require the Dirac δ distribution to express in this
formulation.

In the case of a model which allows freedom in all the strain
variables, m and n are algebraically related to the kinematic
variables through a suitable material constitutive law. On the
other hand, in the shear-less and extension-less model, n is a basic
unknown and is equivalent to a Lagrange multiplier which
enforces the constraint v(s, t) � v0(s).

The parameter ρA is the mass density (expressed per unit
length) of the cross-section. ρJ is the mass moment of inertia (per
unit length) of the section, which makes ρJ · ω the angular
momentum (per unit length) calculated about the mass center
of the section. The three parameters ρIk account for linear
momentum density of the cross section caused by angular
velocity of the curve. The author is not aware of any works in
the robotics literature for which this term has been nonzero; if the
backbone curve is chosen to pass through the mass centers of the
cross sections, then ρIk � 0 and the equations simplify
considerably. However, it is noteworthy that this may in
general result in the curve failing to pass through the cross-
section centroids (if multiple materials are used) or it may be
impossible to satisfy this requirement exactly if a single curve is
used to model a body with complex geometric features.

The Equations of Motion for Pseudo-Rigid Body
Models
With the PRB-type models, the equations of motion are exactly
those of a classical multibody dynamical system with
scleronomous, holonomic constraints. These equations are
commonly given as follows (Murray et al., 2017).

M(q)€q + C(q, _q) _q + N(q, _q) � B(τ).
The right-hand side contains the non-conservative

generalized forces associated with actuation and any other
forces; since the robots are underactuated there are generally
many more rows in this equation than actuator variables τi.
Also, it is noteworthy that the inertial forces are not trivial to
calculate since the motion of the continuum body is not the
same as the motion of the rigid-link approximation. Some
assumptions about how the continuum “tracks” the rigid-link
approximation as it moves is needed. One approach is to match
the centers of mass of chords along the curves of a PCC model
with centers of mass of the links in the rigid link model (Della
Santina et al., 2018).
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The Equations of Motion for General Deformable
Bodies
The dynamic equilibrium conditions of classical continuum
mechanics serve as the defining relationship for general three-
dimensional finite element models of soft and continuum robots.
Rarely are these equations encountered explicitly in the literature
on continuum robots, with most authors preferring to state the
result after the strong form equations have been converted to the
weak form and integrated. The resulting equations, incorporating
constraint forces, are of the following form (Goury et al., 2021).

M(q)€q + F(q, _q) + G(q) � HTλ

The form of this equation is directly analogous to the classical
form of the dynamical equations for rigid multibody systems.
M(q)€q accounts for the inertial forces, F(q, _q) accounts for the
internal forces produced by deformation of the material, andG(q)
accounts for gravitational forces. The matrix H is associated with
the constraints and boundary conditions and encodes the effect of
the boundary and actuation forces contained in the vector λ. The
details of the construction procedure for this equation are out of
the scope of this paper.

Projection via D’Alembert’s Principle
In the case of the curve-based models using either the PCS or
higher-order models, the equations can be projected onto the
degrees of freedom of the model using Galerkin’s principle,
probably better known among mechanical engineers as the
principle of virtual work (Greenwood, 1988). The method is
also equivalent in results to Kane’s method of virtual power (Kane
and Levinson, 1983; Rone and Ben-Tzvi, 2014). Because the
backbone curve descriptions for the PCC, PCS, and higher
order strain variable interpolants are described by independent
degrees of freedom q ∈ RN, a direct projection of the equilibrium
equations is possible via D’Alembert’s principle, which amounts
to an integration over the equations of motion.

∫L
0

[(F(s, t)+F*(s, t)) ·γj(s, t)+(M(s, t)+M*(s, t)) ·βj(s, t)] ds�Qj,nc

j� 1, . . . ,N

F(s, t) � −zsn(s, t), F*(s, t) � ρAzttp(s, t)+ρIkzttdk(s, t)
M(s, t) � −zsm+zsp×n, M*(s, t) � ρIkdk ×zttp+zt(ρJ ·ω)
Qj,nc �∫L

0

f (s, t) ·γj(s, t)+ ℓ(s, t) ·βj(s, t) dτ.
(5)

The velocity coefficient function and angular velocity
coefficient function are defined as

γj(s, t) � zqjp(s, t) � z _qjztp, βj(s, t) � z _qjω.

The velocity coefficients are the “Jacobian field” satisfying the
relation Eq. 2.

Since the time derivatives of the momentum density and
angular momentum density, zttp and zt(ρJ · ω), can be written
as linear functions of the zttq, the equations of motion are linear
in the accelerations of the generalized coordinates, as expected. In
the case of the PCC/PCS kinematic description, the derivatives

zsn and zsm, if resolved in F (s, t), are zero except at the element
boundaries. The equations may be integrated by parts into a form
which shows the conjugacy of n and v and the conjugacy of m
and u.

∫L
0

zsn · γj ds � [n · γj]L0 − ∫L
0

n · zqjv ds

∫L
0

zsm · βjds � [m · βj]L0 − ∫L
0

m · (zqju + u × βj)ds.
In the local frame, the equations take the following forms.

∫L
0

zsn · γj ds � [F s,t( )n · F s,t( )γj]L0 − ∫L
0

F s,t( )n · (zqj(F s,t( )v)

+ F s,t( )βj × F s,t( )v)ds
∫L
0

zsm · βjds � [F s,t( )m · F s,t( )βj]L0 − ∫L
0

F s,t( )m · zqj(F s,t( )u) ds.

Note also that if n(s, t) is constant over s, the first integral is
trivially zero.

Finally, note that if more than one rod-like body is present,
then a sum over the bodies takes place in Eq. 5. Explicit
constraints between the bodies may be handled via the
method of Lagrange multipliers.

Learning-Based Approaches
Learning-based approaches, which are also sometimes referred to
as “model-free” approaches, may be able to describe the
relationships between the actuator inputs and observable
outputs such as the end-effector motion without recourse to
physical parameters and the laws of mechanics. These models
usually serve a complementary purpose to those based on
physical first principles. Since they require training data from
a real robot or from another simulation model, they may be used
for on-line control, inverse and forward kinematics, or for off-line
analysis and testing of other algorithms such as for navigation
and control. The a-priori prediction of behaviors from only
design data is generally not possible to date using only
learning-based methods.

A variety of purely kinematic approaches have been proposed.
One learning approach uses an on-line estimation of the Jacobian
matrix relating the time derivatives of the actuation variables ztτ
to the time derivatives ztp(L, t) and ztdk(L, t), and it has been
shown that this approach works for both position control and
hybrid position/force control when appropriate sensing is
available in hardware (Yip and Camarillo, 2014; Yip and
Camarillo, 2016). Since the method requires no information
about the robot or the environment a-priori, it enables control
in complex scenarios, where highly complex physics-based
models may have poorly observable parameters or states. It
has also been shown that inverse kinematics for continuum
robots may be approximated by a multilayer perceptron
network (George et al., 2017; Grassmann et al., 2018; Lai
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et al., 2019), with multi-agent reinforcement learning (Ansari
et al., 2016), with K-nearest neighbors and Gaussian mixture
regression (Chen and Lau, 2016), and with deep reinforcement
learning (Satheeshbabu et al., 2019). For reconfigurable robots
subject to varying loads, it has been shown that classification of
the load state using long short-term memory networks can
substantially improve open-loop kinematic control (Nicolai
et al., 2020). For flexible catheters, a combination of a support
vector machine classifier and a fully connect neural network
regressor were demonstrated achieving sub-millimeter trajectory
tracking errors (Jolaei et al., 2020). Learning may also play an
important role in proprioception for continuum robots with
distributed sensing, where additional sensors beyond actuator-
collocated ones are available for measuring the robot shape
(Truby et al.,2020).

It has also been shown that dynamic models may be learned.
Under a state observation of the form x � F(q) provided by
sensors, where it is presumed that the dimension of x and q
are the same and that F is invertible, the dynamics of the system
can be posed as a one-to-one mapping (τ, x, ztx)→ zttx. On a real
or simulated robot, this map representing the dynamics of the
observables of the system can be approximated in discrete time
via recurrent neural network (Thuruthel et al., 2017). Note that
the kinematic relationships under static conditions are obviously
also contained in this trained map for all points satisfying
(τ, x, 0)→ 0. A similar approach using deep neural networks
has also been demonstrated (Gillespie et al., 2016). Data-
driven system identification based on the Koopman operator
theory has led to control-oriented dynamic models amenable to
model-predictive control (Bruder et al., 2020). Autoregressive
with exogenous input (ARX) and nonlinear autoregressive with
exogenous input (NARX) models have been studied for a single-
section tendon-driven continuum robot, with the conclusion that
NARX provides advantages in modeled end-effector position
accuracy (Parvaresh and Moosavian, 2019). For closed-loop
dynamic control, the direct reinforcement learning of a control
policy which learns the mapping from current robot states,
previous robot states, and desired end-effector position to the
appropriate control action is possible (Thuruthel et al., 2019).

There are also learning-based approaches to control which do
not explicitly construct kinematic or dynamic models. One such
approach is based on direct learning from demonstration in the
actuator space, which was successfully demonstrated on a
tendon-driven continuum manipulator (Xu et al., 2016).
Learning can form a part of a.

Actuator Models
Actuators in continuum and soft robots have been classified as
either extrinsic, in which case the actuators are not a part of the
deformable body, or intrinsic, in which case the actuators are an
integral part of the deformable body. Examples of the former
include tendons, the boundary conditions placed on concentric
tube robots. Examples of the latter include soft pneumatic
muscles (Walker et al., 2016).

The actuators may be modeled (very generally) as
relationships between the actuation variables, generalized
forces, and the dynamic state of the robot consisting of q and ztq.

Gi(τi, q, ztq, Qnc) � 0.

However, the nature of the model may change depending on
the exact form of Gi. If Gi involves only τi and q, then it is exactly
in the form of a holonomic constraint. In general, it may not be
simple to find a reduced set of independent coordinates satisfying
the constraint, and a Lagrange multiplier technique may be
required to enforce it. On the other hand, if Gi can be
inverted to find Qnc � Ĝi(τi, q, ztq), then the actuation can be
directly coupled to the equations of motion. Which of these two
views of actuation is the more natural one depends on the
characteristics of the particular actuator(s) and sensor(s) chosen.

A first example is the model of a fiber-reinforced elastic
actuator, in which V is the enclosed fluid volume of the
actuator, τ � P is the fluid pressure, and JV is the Jacobian
matrix relating the changes in the generalized coordinates to
the change in volume of the fluid (Sedal et al., 2021). Then, the
principle of virtual work indicates that

δW � τ δV � τ Jv(q)δq � Qi,ncδqi

Qnc � JTV(q)τ, JV(q) � zqV.

Another explicit example is found in the case of a tendon-
driven robot. If enough support for the tendon is provided, a
reasonable model for the points occupied by the tendon is a
continuous curve described by pt(s, t) � p(s, t) + a(s) with a(s) �
a1(s)d1(s, t) + a2(s)d2(s, t) (Rucker and Webster, 2011). For the
sake of simplicity, restrict the tendon to a planar path with
a2(s) � 0. The tendon length can then be calculated as an
integral functional involving the deformation gradient
evaluated along the tendon path using the curve-based
kinematic hypotheses:

ℓt(q) � ∫L
0

dℓ, dℓ2 � ds2(d3 + zsa)FT
t Ft(d3 + zsa), Ft � zpt

zPt
.

(6)

If the tendons are not fully constrained, other models for ℓt(q)
may be more appropriate (Rao et al., 2021). What is noteworthy
about either length formulation is that the nonconservative
generalized forces do not naturally appear. If the tendon
lengths are a known quantity, the actuator model is a
holonomic constraint on the generalized coordinates. The
problem can be treated via the method of Lagrange
multipliers. The Lagrange multiplier will be exactly the tendon
tension, and the principle of virtual work can be used to reveal the
exact form of the terms in Qnc corresponding to the Lagrange
multiplier.

δW � τδℓt � τ Jℓ(q) δq � Qj,ncδqj, Jℓ(q) � zqℓt(q).
Therefore, the effect of the tendon alone (not considering any

frictional forces) must be

Qnc � JT
ℓ
(q)τ.

Note that the causal form in which the tendon tensions are
known is “easier” to handle since no additional equations must be
added. The causal form involving known tendon lengths requires
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the addition of the nonlinear length constraints Eq. 6 to the
equation set and the tension becomes an algebraic unknown
along with the accelerations, forming a nonlinear differential-
algebraic system in the dynamic case or a nonlinear algebraic
system in the quasistatic case. The need to solve a DAE system
disappears if the tendon is considered a spring element, since then
the force is determined as a function of the difference between
ℓt(q) and the tendon displacement input d.

The resulting model form as a set of ordinary differential
equations or differential algebraic equations is shown for a variety
of common continuum robot actuators in Table 2.

Materials
The kinematic hypotheses and mechanics models must be
augmented by constitutive laws (material models) to complete
the model of a continuum robot. For quasistatic models, the
choice is usually between linear elasticity and other hyperelastic
material models. For dynamic models, an additional choice of
damping or friction laws is generally required to produce realistic
responses.

Linear Elasticity
In the case of quasistatic models, a common assumption in the
literature has been to assume a Hookean (linear) material
response. In this case, if one assumes that the backbone curve
passes through the neutral axis of bending, the following
constitutive laws apply:

F s,t( )m � F s,t( )Kbt(F s,t( )u − F s,t( )u0)
F s,t( )n � F s,t( )Kse(F s,t( )v − F s,t( )v0).

The matrices Kbt and K se may be calculated from the classical
Euler-Bernoulli or Timoshenko beam theories and the entries are
the flexural and torsional rigidities and shear and extension
rigidities, respectively. The explicit relationships follow below
(Antman, 2005).

mα(s, t) � (EJαβ)(s)[uβ(s, t) − uβ0(s)], m3 � D(s)u3(t).
Note that bending about d1 and d2 are characterized by the

second moments of area and the Young’s modulus E, while the
torsional moment is related to the torsional strain variable by a
coefficient D solving the St. Venant torsion problem. Only in
the case of isotropic rods with circular cross section is this equal
to the usual shear modulus G times the polar moment of area
J33. Formulas for a wide variety of cross sections that are
uniform over s have been tabulated (Roark et al., 2002). The

Timoshenko model for shear and elongation adds the following
relationships.

nα � (GA)(s) vα, n3 � (EA)(s) [v3 − 1].

Hyperelastic Material Models
Many other hyperelastic models are possible choices, such as
Yeoh, neo-Hookian, Gent, Ogden, and Mooney-Rivlin (He et al.,
2018; Shiva et al., 2019; Zhang et al., 2019; Antonelli et al., 2020;
Bacciocchi and Tarantino, 2021; Zhao et al., 2021). Although in
general one may expect that these more complex material models
should offer improved model accuracy, it has been shown
recently that, at least for some robot designs, a linear stress-
strain response may be more than adequate (Shiva et al., 2019).
Any hyperelastic law can be represented within the Cosserat rod
framework as a strain energy density function W.

W � W(F s,t( )u, F s,t( )v)
F s,t( )m � zuW, F s,t( )n � zvW.

The details of these calculations for each of the respective
hyperelastic models is omitted for the sake of brevity and can be
found in the cited references.

Damping and Friction
The introduction of dissipative mechanisms is generally
necessary to encourage numerical stability in dynamic models
and to produce realistic dynamic responses. Additionally, in some
cases static friction plays a significant role in determining the
quasistatic solutions, such as in tendon-driven catheters (Jung
et al., 2014). Viscous damping may be introduced via the Kelvin-
Voigt material model, which extends the linear elastic models to
include rate-dependence in the stress-strain relationship (Gilbert
and Godage, 2019; Mustaza et al., 2019).

In the curve-based framework, the Kelvin-Voigt law takes the
following form (Linn et al., 2013):

F s,t( )m � F s,t( )Kbt(F s,t( )u − F s,t( )u0) + F s,t( )Bbt zt(F s,t( )u)
F s,t( )n � F s,t( )Kse(F s,t( )v − F s,t( )v0) + F s,t( )Bse zt(F s,t( )v).

ThematricesKbt and Bbt are related by time constants referred
to as the extensional retardation time constant, τe � ηE/E, and the
shear retardation time constant, τs � η/G, with ηE the
“extensional viscosity” and η the shear viscosity.

F s,t( )Bbt � F s,t( )Kbt · diag(τe, τe, τs)
F s,t( )Bse � F s,t( )Kse · diag(τs, τs, τe).

Static friction models have also been considered for concentric
tube robots (Lock and Dupont, 2011), tendon-driven continuum
robots (Li et al., 2020), and continuum robots having sheathed
tendons or multiple actuated backbones (Roy et al., 2017).

DISCUSSION

The wide variety of modeling choices that have been described
offer the modeler an almost paralyzing array of choices. In the

TABLE 2 | Model form as an ODE or DAE system based on actuator type,
assuming a single rod model architecture for the model.

Actuator input Model form

Inextensible tendon length DAE
Extensible tendon length ODE
Tendon force ODE
Pneumatic pressure ODE
Hydraulic pressure (incompressible fluid) ODE
Hydraulic volume (incompressible fluid) DAE
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subsections that follow, several questions are posed. The available
evidence from the literature as well as analyses guided by classical
theories of mechanics are used to discuss these questions and to
provide guidance during the initial stages of selecting modeling
approaches.

Considerations for Kinematic Hypotheses
The literature on modeling of continuum and soft robots suggests
that errors in kinematic models, quantified by the absolute tip
positioning error as a percentage of the overall root length, are
typically on the order of a few percent. Therefore, there may be
little benefit to increasing the order of a spectral method or to
further subdividing the domain in an element-basedmethod once
the absolute accuracy with respect to the true solution reaches this
point. In the sections that follow, analysis and recommendations
for kinematic hypotheses which are derived from consideration of
the mechanics of bending are offered. Table 3 provides a
summary of the recommendations in terms of increasing
either the number of elements or the order of the
interpolation (assuming that u is the interpolated variable).
Figure 5 depicts the decisions leading to the various types of
models that have been discussed.

Considerations for Cantilevered Concentrated
Loadings
For continuum robots which are soft enough to exhibit
substantial compliance to environmental loads (for example
those that may be presented by contact with human anatomy),
one of the first considerations for modeling should be consistency
with the requirements for accurately modeling cantilevered,
concentrated loads.

Let the Cosserat rod equations be recast in terms of the angle
of the tangent vector and the load and deformation fixed to the
plane defined by d3(0, t) and d1(0, t), let the boundary condition
g(0, t) be fixed, and let the load be concentrated at s � L and
modeled by F � Pδ(s − L)d1(0, t) for the scalar force magnitude
P. Furthermore, assume the material response is linear and that
the robot is inextensible. These restrictions simplify the problem
and result in the following dimensionless boundary value problem
governing the angle θ, which represents the tangent vector:

d3(s, t) � cos(θ)d3(0, t) + sin(θ)d1(0, t)
zξξθ + λ cos(θ) � 0, ξ � x

L
, λ � PL2

EI
θ(0, t) � 0, zξθ(1, t) � 0.

The boundary value problem has a known solution:

θ(ξ, t) � 2 sin−1(k sn(K(k) − (1 − ξ) �
λ

√
; k2)) − π

2
.

The quantity k is a scalar that may be found by Newton-
Raphson iteration on the following equation, which is implied by
the boundary condition θ(0) � 0

k sn(K(k) − �
λ

√
; k2) � �

2
√

/2.

The PRB models have the attractive property that they map
the problem back into the domain of traditional robotic
manipulators, with the obvious advantage that all the tools
and knowledge that have been developed in that context (in
general, restricted to underactuated mechanisms) now apply to
the continuum robot. In the traditional PRB models, the inertia
properties are lumped into the links formed by the model, and the
stiffness and damping properties are lumped into the joints
between links. This lumping introduces error, but it has been
shown that optimization of the parameters of the rigid body
model can lead to accurate mechanical responses for both
cantilevered transverse loads and for applied or internal
moments (Chen et al., 2011). Given that the optimal 3R
planar PRB model has three degrees of freedom, it is a fair
comparison to place the model in competition with other
three-DOF models. Here we consider the following three sets
of potential kinematic hypotheses and matching constitutive laws
and compare them with each other and with the exact solution.
Without loss of generality, let L � 1 and EI � 1.

Piecewise constant curvature:

uPCC � ∑3
e�1

ue χΓe(s) d2, χΓe(s) � { 1 s ∈ Γe
0 s ∉ Γe

,

D � [0, 1
3
] ∪ [1

3
,
2
3
] ∪ [2

3
, 1]m(s) � EI u(s).

PRB:

uPRB � ∑3
i�1

qiδ(s − si) d2, s1 � 0.125, s2 � 0.475, s3 � 0.863,

D � [0, 1] m(s1)
q1

� 3.25,
m(s2)
q2

� 2.84,
m(s3)
q3

� 2.95.

Spectral:

uS � ∑3
i�1

qis
i−1 d2, D � [0, 1].

m(s) � EI u(s)
How well does each of the strategies perform when given 3-

DOF to capture the deformation? The answer is depicted in

TABLE 3 | Summary of recommendations to increase either the number of elements or the order of interpolants based on model assumptions and robot-environment
conditions.

Condition/Recommendation Number of elements Element order (curvature
interpolant)

Concentrated forces − ≥1
Non-uniform flexural rigidity ↑ −
Uniformly distributed loads − ≥2
Elastic contact ↑ ↑
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Figure 6, showing tip position error in percent of robot length
versus the dimensionless cantilevered load index λ. For
cantilevered loads, a single spectral element which is quadratic

in u is a far better choice than either a 3-element PCC model or a
3R PRB model. If nonzero shear forces are expected, the PCC
model seems to have little in its favor; the Jacobian for the PRB

FIGURE 5 | Flowchart depicting the modeling decisions to be made when selecting a model type for a biomedical continuum robot.
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model is simpler to calculate, meaning that the statics equations
in Eq. 5 are easier to formulate, and the tip position is predicted
more accurately, which also implies that the overall structural
stiffness is more accurate for the PRB model than for the PCC
model. The Jacobian for the spectral model, unlike the other two,
cannot be obtained in an exact closed form.

The results imply that the typical piecewise constant-curvature
assumption used in the development of geometrically nonlinear
models for robots is a poor choice from the perspective of
mechanics whenever a concentrated external load is present
and is expected to produce internal shear forces which are
transverse to v. In summary, if point loads are present on the
robot, a linear interpolant of internal moment (equivalently
curvature) is necessary to accurately capture the static
equilibrium configurations for unrefined elements even in the
small deflection case, and degrees of freedom are better spent on
increasing the order of the interpolants than on increasing the
number of elements.

Considerations for Non-Uniform Flexural Rigidity
In the case of non-uniform flexural rigidity, element refinement is
more effective at reducing approximation error than increases in
order. This conclusion is easily justified by the observation that if
K(s) is a linear function, say for example 1 + as, then in the
simplest planar case with a constant internal moment one would
be tasked to find another polynomial function κ(s) such that
κ(s)K(s) � C for some constant C. But this is obviously
impossible, because κ � C/K is a rational function, not a
polynomial, and the Maclaurin series at s � 0 has a finite
region of convergence. In the example case, the expansion is
C · ∑ (−1)iaisi. The series does not converge unless |s|< |1/a| and
as s approaches this upper bound, the number of terms in the
series required to obtain convergence to a fixed tolerance
increases without bound. Element refinement, on the other

hand, has exactly the effect of reducing |s|, ensuring
convergence. For this reason, single-element, spectral-type
methods are not recommended as a first choice if non-
uniform flexural rigidity is present.

Considerations for Uniformly Distributed Loads
Distributed loads may act on biomedical continuum robots. The
most obvious of these loads is a gravitational force distributed
along the length of the robot. Other common forces may include
buoyancy forces, electric forces, magnetic forces, and
aerodynamic and hydrodynamic forces. The simplest possible
model of a distributed load is a uniform one that is applied
normal to the body of a robot which is initially in a straight
configuration. In this case, the solution to the linearized Euler-
Bernoulli equation is in general a fourth-order polynomial in
position. The shear force is a linear function of arc length and the
internal moment (and hence curvature in the linear elastic case) is
quadratic. If the shape is discretized at the level of angle, the
discretization should be cubic to accommodate a uniform load.

Considerations for Elastic Environmental Contact
For continuum robots in contact with soft bodies such as the soft
tissues of the human anatomy, the contact might be well-described,
at least in the region of contact, by a model like the linear elastic
foundation model. For small deflections, the linearized Euler-
Bernoulli model with a linear elastic foundation is modeled by
the following differential equation (see Figure 7A).(EIy,ss),ss � −ky.

The homogeneous solution to this equation has the following
form.

yh(s) � exp(−βs)[C1 sin(βs) + C2 cos(βs)]
+ exp(βs)[C3 sin(βs) + C4 cos(βs)].

The constant β depends only on the properties of the beam
and the foundation.

β2 �
����
k

4EI

√
.

To what degree of accuracy does a polynomial shape function
(assuming the small-deflection case) approximate yh?

To answer this question, one should find the best
approximation of yh under a particular norm on L2[0, ℓ]. Here
we select the 2-norm and study the approximation error for 3rd,
4th, and 5th order polynomials. Since β is related to the ratio of
stiffnesses k and EI, and has dimension Length−1, we restrict the
range of the dimensionless group ℓβ to (0.1, 10). This range is
consistent with the idea of compliance matching as a form of
embodied intelligence in biomedical continuum robots. Note that
as ℓβ→ 0, the solution xh approaches a constant, which is easy to
interpolate. As ℓβ→∞, the elastic foundation is becoming
infinitely stiff relative to the body of the robot, modeling a
hard contact. In this case, the internal forces and moments
and the resulting deformations become strongly localized, and
a point load may be a more appropriate model for the contact
than an elastic foundation.

FIGURE 6 | Error in reproducing the correct behavior under cantilevered
loading conditions for three-DOF kinematic hypotheses of the PCC, PRB, and
spectral types.
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The physical solutions to the equation decay away from the
application of a point load. Therefore, we restrict the
approximation problem to the consideration of the two
functional forms that follow on a domain [0, 1] for β ∈ (0.1, 10).

x1 � exp(−βs) sin(βs) x2 � exp(−βs) cos(βs).
See Figure 7B for examples with β � 3. Errors for polynomials

p1 and p2 approximating x1 and x2, respectively, are shown in
Figure 4 as the maximum absolute errors.

ei �
max

s

∣∣∣∣pi(s) − xi(s)
∣∣∣∣

max
s
|xi(s)|

For a single 5th order polynomial in shape, the maximum
absolute error in approximating either x1 or x2 remains below 1%
if ℓβ< 4.3 (Figure 8). As ℓβ increases beyond this value, the
polynomial approximations to x1 and x2 begin to oscillate with
increasing maximum error.

To put this in a practical perspective, a typical colonoscope has
a linearized flexural rigidity of EI ≈ 0.02Nm2 (Wehrmeyer et al.,
1998). Soft tissues may have an elastic foundation stiffness of
approximately 4 kN/m2 (Asadian et al., 2011). This results in β �
15 and therefore a hypothesis which is 5th order in position (3rd

order in strain variables) should not have elements longer than
approximately 0.28 m. Note that for a hypothesis that is linear in s
for the strain variables, the length requirement would drop to
approximately 96 mm, and for PCC elements, the length would
drop to only 38 mm. For a spatial robot model that is inextensible
and un-shearable and is 1 m long, this would result in a PCC
model with approximately 81 degrees of freedom (27 elements at
3 DOF/element), a linear strain variable model with
approximately 66 degrees of freedom (11 elements at 6 DOF/
element), or a cubic strain model with approximately 48 degrees
of freedom (4 elements at 12 DOF/element). Therefore, if
environmental contacts are soft and distributed over a long
length, there is a strong incentive to develop models with
higher-order strain variable hypotheses.

Considerations for Numerical Methods
Solution Multiplicity
In general, the problem defined by Eq. 5 together with any
constraints is a nonlinear algebraic problem, even if linear

material models are used. This is either a consequence of the
nonlinear geometry, which shows up in any finite-strain
relationship between the strain variables and the position and
orientation of the body, or a consequence of nonlinear material
behavior, or both. In special cases, the problem may become
linear; for example, if the actuators and generalized forces are
related linearly, linear constitutive laws are used, and no external
loads are present. For nonlinear static problems, the Newton-
Raphson method and trust-region methods like the Levenberg-
Marquardt method generally work well, but the modeler must be
cautious of the possibility of solution multiplicity.

In other words, a function q � f(τ) does not always exist
because there may be two or more values of q which satisfy the
equilibrium conditions given τ. This solution multiplicity is
accompanied by a singular tangent stiffness matrix for some
value of q and possibly a tangent stiffness matrix with negative
eigenvalues, as is the case for so-called “negative-stiffness
mechanisms” (Platus, 1999). The coupling between kinematics
and mechanics means that it is not always safe to assume the
existence of a “forward kinematic mapping” which computes the

FIGURE 7 | (A) Schematic diagram for the beam on an elastic foundation as a model for a continuum robot interacting with soft tissue. (B) Example with β � 3,
showing the shape of the displacement that must be approximated.

FIGURE 8 | Approximation errors for best polynomial fits in the L2 norm
to the solution for the linear beam on an elastic foundation problem. Higher-
order polynomials permit greater elastic foundation stiffnesses.
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C-space coordinates from the actuator variables and then the
task-space variables from the C-space coordinates. Consider the
case in which Eq. 5 is of the form F(q, τ,Qp

nc) � 0 where Qp
nc

includes only those generalized forces which are not algebraically
related with q and τ. Then a perturbation analysis yields the
C-space Jacobians with respect to τ and Qp

nc

δF � zqF δq + zτF δτ + zQnc
F δQp

nc � 0.

δq � −(zqF)−1(zτF δτ + zQnc
F δQp

nc).
It is evidently at configurations with singular zqF where

multiple solutions may arise. This is one reason that
quasistatic “resolved-rate” or continuation-type methods may
fail to converge; dynamic models do not suffer this problem
since the accelerations are resolved.

Time Stepping
For time stepping, explicit ode integrators can become prohibitively
computationally expensive. This is a consequence of the fact that
unresolved vibrational modes (as defined for linear test problems)
become unstable using explicit methods. Implicit integrators and
those designed for solving stiff ODEs and DAEs, such as the
trapezoidal method or the backwards difference formulae, are
preferable. Energy-preserving integrators have the benefit that the
damping behavior is caused entirely by the material model, ensuring
repeatable dynamic behavior with different time steps.

Current and Future Challenges in Modeling
Generalizability and Re-Usability
Despite the growing body of evidence that models built on the
foundation of the Cosserat rod equations are an adequate
description of many continuum robots, one challenge that still
faces practitioners is a lack of standardized tools to build new
model simulation codes. For rigid robots, a wide variety of
domain-specific modeling languages are available and permit
concise descriptions within an easy-to-use interface to build
new models. One example of this is the Universal Robot
Description Format and Gazebo simulator within the Robot
Operating System, but there are many others presently
available including Simulink/Simscape, Dymola, and other
Modelica-language based toolsets such as OpenModelica
(Brück et al., 2002; Fritzson et al., 2006; Miller and
Wendlandt, 2011; Sucan and Kay, 2019). To enable the
widespread re-use of validated modeling components, a library
of reusable “model building blocks” for continuum robots should
be designed. Some important capabilities of such a library would
be the following:

• Coupling of curve-based models to rigid multibody models.
• Coupling of curve-based models and general finite element
models.

• Incorporation of common actuator models.
• Incorporation of common constraints (length,
concentricity, no-penetration, selective inextensibility/
strong anisotropy, revolute and prismatic joints, etc.)

• User-selected switching between dynamic and quasi-static
model generation.

For biomedical continuum robots in particular, models which
couple to mechanical models of human anatomy are needed.
Coupling of state-of-the-art models for continuum robots or their
direct incorporation with real-time finite element codes using
GPU acceleration is a promising approach (Allard et al., 2007;
Duriez and Bieze, 2017).

Novel Kinematic Hypotheses
There is a great deal of freedom in element-based kinematic
hypotheses which has yet to be explored. One interesting avenue
is the use of a shared or constrained DOF between elements. The
motivation for this idea is that for dynamic models, time stepping
is sometimes restricted or difficult for “stiff” problems having
many eigenvalues. The equations of motion for solid continua are
wave equations, which means that if many elements are stacked
end-to-end, acoustic waves (axial compression and tension) and
twist waves (torsional waves) through the structure may be
resolved by the model. For most robotics applications, these
modes are likely to be irrelevant, and constraining the
problem so that they do not exist in the model may improve
computational performance. The elimination of twist waves in
elastic rod models was previously considered by an energy
minimization argument (Bergou et al., 2008).

Furthermore, adaptive kinematic hypotheses based on pre-
defined, switchable degrees of freedom that permit local,
automatic refinement of the model may allow greatly
improved computational efficiency in problems involving
a-priori unknown environmental interactions or constraints.
This will permit, for example, a single high-order element to
describe the deformation in free-space, while local refinement can
take place where a catheter contacts a vessel wall, a robotic
endoscopic system contacts the colon, or where multi-fingered
hands contact an object to manipulate it.

Learning
Within the context of continuum and soft robotics, data-driven
methods have begun to demonstrate strong utility. For example,
Long Short Term Memory networks can capture hysteresis in
pneumatically actuated catheters (Wu et al., 2021), and offline
simulation of first-principles models can be used to learn
reduced-order models using the snapshot-based proper
orthogonal decomposition, resulting in new models suitable
for real-time control and other applications requiring fast
computation (Goury and Duriez, 2018; Katzschmann et al.,
2019b). The continued development of learning methods
enabling low-DoF representations will be an important future
area of research.

There are also interesting opportunities for learning that
amalgamate first-principles models with data-driven model
“correctors,” or which use constrained learning techniques to
identify models which are topologically like a curve-based model.
One possibility is to use a low-DOF curve-based model capturing
some of the behavior and to introduce a nonconservative
generalized force Qnc which is learned from observed data to
close the gap between simulation and reality. Learning-based
methods which are constrained to obey fundamental principles
are another emerging area of research, such as learning the
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Lagrangian or Hamiltonian function of systems directly from
data (Ahmadi et al., 2018; Lutter et al., 2018).

Dynamic Model Validation
Although many dynamic models have been proposed, the validation
of these models is currently lacking. There are many opportunities for
rigorous evaluation and comparison of models with experimentally
obtained data. The best and strongest form of model validation would
be to instrument real robots with enough sensors to measure all the
quantities appearing in Eq. 5 or the equivalent formulations for PRB
and general continuum models, and to calculate the model residuals
over conditions ranging over static, low-acceleration, and high-
acceleration (e.g. sudden contact) regimes. This is clearly a
challenging experimental task that may require state reconstruction
and many sensors just to measure the configuration trajectory q(t).
Other options for validation may include comparison of standard test
signal response characteristics (e.g. rise time, percent overshoot,
settling time, steady-state error, and oscillation period) in response
to both actuator inputs and environmental perturbations.

There are also many other interesting questions that can be asked
and answered which are quantitative in a different sense, but which
may be even more aligned with the spirit of soft and continuum
robotics theory. For example, amodel and simulated controller could
be used to predict the success or failure of the navigation of a robotic
catheter through tortuous vasculature parameterized by some
measure of “tortuosity,” and then the classification error could be
assessed via experiment matching the simulations.

CONCLUSION

Continuum robots offer solutions to problems in biomedical
applications which may not be solvable by traditional robotics
technologies. With these new robots came the need for new
models. A wide variety of physics-based and learning-based

approaches to the modeling of continuum manipulators—both
those made of hard materials and soft materials—are now
available to the roboticist who needs them. This can lead to a
dizzying array of choices for the uninitiated. This manuscript has
reviewed the state-of-the-art approaches using a common
language, discussed considerations which can guide the
modeler when selecting which methods to use and some
numerical difficulties to be aware of, and offered a view of the
current and future challenges in the modeling of continuum
robots. As modeling techniques continue to improve in terms of
predictive power, as techniques begin to standardize, and as
system identification techniques for soft and continuum robots
mature, there is every reason to expect that the field will continue
to expand, find new applications, and ultimately lead to
transformative robotic solutions for human problems.
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