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Our group is developing a cyber-physical walking system (CPWS) for people paralyzed by
spinal cord injuries (SCI). The current CPWS consists of a functional neuromuscular
stimulation (FNS) system and a powered lower-limb exoskeleton for walking with leg
movements in the sagittal plane. We are developing neural control systems that learn to
assist the user of this CPWS to walk with stability. In a previous publication (Liu et al.,
Biomimetics, 2019, 4, 28), we showed a neural controller that stabilized a simulated biped
in the sagittal plane. We are considering adding degrees of freedom to the CPWS to allow
more natural walking movements and improved stability. Thus, in this paper, we present a
new neural network enhanced control system that stabilizes a three-dimensional simulated
biped model of a human wearing an exoskeleton. Results show that it stabilizes human/
exoskeleton models and is robust to impact disturbances. The simulated biped walks at a
steady pace in a range of typical human ambulatory speeds from 0.7 to 1.3 m/s, follows
waypoints at a precision of 0.3 m, remains stable, and continues walking forward despite
impact disturbances and adapts its speed to compensate for persistent external
disturbances. Furthermore, the neural network controller stabilizes human models of
different statures from 1.4 to 2.2 m tall without any changes to the control parameters.
Please see videos at the following link: 3D biped walking control.
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1 INTRODUCTION

Our group is developing a cyber-physical walking system (CPWS) with a hybrid neuromuscular/
motor power source to restore stable walking in individuals with paralysis caused by spinal cord
injury (SCI) (Nandor et al., 2021). The CPWS includes a human with SCI using a neuromuscular
stimulation system, a powered exoskeleton, and a sensor-based control system that activates the
otherwise paralyzed muscles and actuates joint motors. The human muscles are the primary
motivator, and the exoskeleton’s motors are activated on an as-needed basis. The goal for the
CPWS is to generate a natural gait and stable walking. Whereas most existing exoskeletons are
stabilized by the human user exerting upper body effort with a walker, canes, or crutches, our goal is
for the system to be primarily self-stabilizing and allow the user to walk upright functionally and for
more satisfying social interactions. The control problem is challenging because it involves not only

Edited by:
Hao Su,

City College of New York (CUNY),
United States

Reviewed by:
Shuzhen Luo,

North Carolina State University,
United States

Wajid Mumtaz,
National University of Sciences and

Technology (NUST), Pakistan

*Correspondence:
Chujun Liu

cxl936@case.edu

Specialty section:
This article was submitted to

Biomedical Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 17 May 2021
Accepted: 22 July 2021

Published: 06 August 2021

Citation:
Liu C, Audu ML, Triolo RJ and

Quinn RD (2021) Neural Networks
Trained via Reinforcement Learning

Stabilize Walking of a Three-
Dimensional Biped Model With

Exoskeleton Applications.
Front. Robot. AI 8:710999.

doi: 10.3389/frobt.2021.710999

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 7109991

ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/frobt.2021.710999

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.710999&domain=pdf&date_stamp=2021-08-06
https://www.frontiersin.org/articles/10.3389/frobt.2021.710999/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.710999/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.710999/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.710999/full
https://www.youtube.com/watch?v=6w5pS_hDS9U
http://creativecommons.org/licenses/by/4.0/
mailto:cxl936@case.edu
https://doi.org/10.3389/frobt.2021.710999
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.710999


bipedal walking control, but also requires careful human-
machine interaction design for safety and efficient movement.
This paper describes a part of the CPWS control system that will
assist in stabilizing the system.

The need for stabilizing exoskeletons has been addressed by
other researchers. There are many bipedal robots that
demonstrate stable walking and even acrobatic abilities
(Guizzo, 2019). In some ways, controlling an exoskeleton is
similar to controlling a bipedal robot. Thus, the concepts and
methods related to bipedal walking control can be utilized in
exoskeleton control, particularly since exoskeletons have
previously been modeled as serially linked mechanisms
(Kazerooni et al., 2005). Kazerooni et al. (2005) developed a
controller for an exoskeleton that augmented able-bodied human
performance. It increased the closed-loop system sensitivity to its
wearer’s forces and torques without any conscious intervention
from the wearer. However, the controller was not robust to
parameter variations and therefore required a good dynamic
model of the system. In this work, we achieve robustness to
parameter variations by using a learning-based algorithm. A
similar concept was used in Kong and Jeon (2006). They
proposed a new adaptive sliding mode repetitive learning
control strategy for upper-limb exoskeletons that were robust
to unknown dynamics and external disturbances. Kong and Jeon
(2006) proposed a tendon-driven exoskeletal assistive device.
However, it was for movements in the sagittal plane and
required the use of a walker. Li et al. (2020) proposed an
algorithm based on the zero moment point (ZMP) to modify
the gait generated through human walking synergy for paraplegic
patients but required the use of bilateral canes, or crutches.
Campbell et al. (2020) combined virtual constraint control
with a velocity-modulated dead-zone to ensure the stability of
a walking model. Zhang et al. (2018) presented a balance
controller based on the extrapolated center of mass concept
for maintaining walking stability.

We chose to use artificial neural networks (ANNs) with
reinforcement learning (RL) techniques to stabilize the CPWS
because of the powerful new tools that are available and because
of previous successes in applying them to stabilize bipedal
walking. Traditional trajectory optimization-based control
suffers from computational cost and cannot resist large
disturbances. Also, the resulting gait depends on the chosen
objective function (Ackermann and Van den Bogert, 2010).
For bipedal gait control problems, the RL method must be
able to handle continuous input and output. Several RL
algorithms satisfy this requirement, such as Deep
Deterministic Policy Gradient (DDPG) (Silver et al., 2014),
Proximal Policy Optimization (PPO) (Schulman et al., 2017),
Covariance Matrix Adaptation (CMA) (Hansen and Ostermeier,
1996), and Neuro-Evolution of Augmenting Topologies (NEAT)
(Stanley andMiikkulainen, 2002). NEAT and CMA are especially
good for optimizing problems with a small set of parameters.
Song and Geyer (2015) uses CMA to optimize a biped controller
with 82 parameters. However, many more parameters are usually
needed for a densely connected neural network. DDPG and PPO
can be used to train an agent parameterized by a neural network.
We chose to use PPO because of its stability characteristics.

Artificial neural networks have many advantages, especially
when the underlying system dynamics are unclear or difficult to
model. One disadvantage, however, is that the network training
process is data thirsty. This can be mitigated by using simulation
to pre-train the network. Typically, the simulation needs to run
107 to 109 steps for the network to converge to a good result
(Nagabandi et al., 2018). Thus, it is difficult to directly implement
reinforcement learning techniques on a mechanical system.
Reference motions can be used to guide and facilitate the
training process (Peng et al., 2017; Haarnoja et al., 2018;
Abdolhosseini et al., 2019; Yin et al., 2007), but it still needs
hundreds of thousands of training steps.

In this paper, we report on a new controller that solves the
above problems and expands on our previous work. Our previous
paper Liu et al. (2019) used a deep deterministic policy gradient
(DDPG) neural network to predict the ideal foot placement for a
two dimensional biped model to maintain stable walking despite
external disturbances. We found that this approach was not
readily translated to three dimensions. Here, we report on our
new learning-based controller for stance and swing of three
dimensional bipeds; it is less model sensitive, is robust to
impulsive and persistent disturbances, and is relatively fast
to train.

2 METHOD

In this paper, we first developed a core control system based on a
simplified dynamic model. Then we used its outputs to train an
artificial neural network (ANN) controller using a reinforcement
learning algorithm. The core control system was developed using
classical control methods, and is strongly dependent on the exact
mechanical parameters of the model. The RL neural network
controller was found to be superior because it is robust to model
parameters. With the ANN controller, a different person could
use the exoskeleton without changing the controller parameters.

The core control system was based on classical control
methods and a reduction in the complexity of the system was
essential for its success. To reduce the dimensions of the problem,
Alibeji et al. (2015) used principal component analysis, whereas
Chevallereau et al. (2009) used virtual constraints for a similar
reason.We reduced the dimensions and complexity of the control
system by developing separate controllers for the swing and
stance phases. To simplify the problem, we assumed that the
swing leg’s reaction forces have little effect on the torso at the
walking speed of the CPWS (1 m/s), and our subsequent results
justify this assumption. Thus, we divided the control task into two
parts: The torso stability task for the stance leg and the optimal
foot placement task for the swing leg. The core control system
stabilized the biped and rejected impacts and persistent
disturbances, but it was not robust to changes in the model.

A neural network was developed and trained using
reinforcement learning, starting with data from the core
controller. Two ANN controllers were developed: A “local”
controller and a “global” controller. The local controller was
divided into two sub-controllers, one for swing and one for
stance. The advantage of this method is that the action space
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is small for each sub-controller, so the neural net converged
faster. But the disadvantage is that we needed to alternately freeze
the parameters of one neural net and train the other one so that
they can be better coordinated with each other. Although the
stance leg controller is minimally dependent on or entirely
independent of the swing foot placement controller based on
this assumption, the reverse is not true. The foot placement
controller takes both the motion of the swing leg and the
stance leg into consideration, and the reinforcement learning
optimization process also takes this into consideration. Thus, the
parameters for the local neural net swing leg foot placement
controller were optimized after the local stance controller was
tuned such that the neural net learned the effect of the stance
controller on the foot placement controller.

The global controller was trained for the system as a whole
rather than separating it into swing and stance controllers. We
compared the convergence rates and the performances of the local
and global controllers and found that the local controller converged
faster but did not perform as well as the globally trained controller.

3 BIPED MODEL

The bipedal model was developed in the Gazebo simulation
environment (Koenig and Howard, 2004), which can provide a
high-performance 3-D physics simulation. The default physics
engine used by GAZEBO is ODE (Open Dynamics Engine),
which was used in this work. It also supports other physics
engines, such as Bullet, Dynamic Animation and Robotics
Toolkit (DART), and Simbody. GAZEBO is popular in robotics
and was used in the DARPA Robotics Challenge. It is often used
with ROS (Robot Operating System), a popular API that provides

commonly used tools for robotic applications. The simulated robot
can be easily controlled through the GAZEBO-ROS interface, as
was done here. The model has a total of 12 joint DOF (degrees of
freedom), 6 DOF on each leg, as shown in Figure 1: Three hip joint
DOF, one knee joint, and two ankle joint DOF. Individual segment
masses and lengths are proportioned based on human studies for a
1.8 m tall male (Yu-Cheng et al., 2004). Mass and inertia are added
to realistically represent an exoskeleton and its associated
electronics as shown in Table 1. Joint limits are set to allow the
full range ofmotion (Zoss et al., 2005). Themassmoment of inertia
and the collision models are simplified as rectangular
parallelepipeds. Mass and inertia properties for a particular user
can be measured through experiments (Ghan et al., 2006). The
torso degrees of freedom are assumed fixed by the exoskeleton
corset brace, as is done on the CPWS.

4 DEVELOPMENT OF A CORE
CONTROLLER VIA CLASSICAL CONTROL
METHODS

The “core controller” was developed using classical control
methods and then used to create data to initialize the neural
network controllers to start the reinforcement learning process.

4.1 Stance Leg Controller
The stance leg controller is intended to stabilize the torso during
the single-limb support phase. It is designed such that the torso’s
pitch angle and rotational velocity are small, and its vertical
acceleration and velocity are negligible. This greatly simplifies
swing foot placement control by representing the single support
stance limb as a double inverted pendulum. For the stance leg
controller development, we assume:

1) The knee joint angle and its angular velocity are small, so the
entire leg can be treated as a single link.

2) The foot/ground friction is large enough so that there is no
slipping.

3) The reaction force resulting from the motion of the swing leg
is small.

4) The control torque in the ankle is small enough to not cause
the foot to rotate about the toe.

The equation of motion of the system can be derived from
Lagrange’s equation:

d
dt

z(T − V)
z _q

( ) − z(T − V)
zq

� Q (1)

In matrix form:

Dq
.. + C _q + G � Q (2)

q � [q1, q2, q3, q4] is the set of joint angles representing hip-x
(Abduction/Adduction), hip-y (Flexion/Extension), ankle-x
(Dorsiflexion/Plantarflexion) and ankle-y (Eversion/Inversion).
Hip-z (Lateral/Medial) is locked during stance control. Q � [Q1,
Q2,Q3,Q4] is the control torque that acts on joints 1, 2, 3, and 4. T

FIGURE 1 | GAZEBO simulation model. Each leg has six degrees of
freedom: Three at the hip, one at the knee, and two at the ankle.
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and V are the kinetic and potential energies of the system. The
goal is to find the control torque Q to drive the torso angle P and
its velocity _P to zero. The torso angle P is defined as the angle
between the torso z-axis and the global z-axis. Assume a unit
vector in the z-direction, k � [0,0,1]T, is attached to the torso.
Then the vector expression transformed into the global frame is:

k′(q) � Rankle xRankleyRhipxRhipyk (3)

Where Ranklex,Rankley,Rhipx,Rhipy are rotational transformation
matrices associated with each joint. The subscript x and
subscript y designate rotation about the x or y axis,
respectively. Then, the angle between the k′ and world z-axis
can be calculated as:

P(q) � acos [0, 0, 1] · k′(q)( ) (4)

By taking derivatives of P, we can calculate the velocity and
acceleration of the angle:

_P � zP(q)
zq

_q (5)

P
.. � z2P(q)

zq2
_q + zP(q)

zq
q
..

(6)

A constraint equation is imposed on the system so that it will
drive the torso angle P to zero:

P
.. + kpP + Kv

_P � 0 (7)

Q1 andQ2 are control torques on the ankle. These are set to 0 because
the ankle is assumed to be an un-actuated joint. One constraint
equation is not enough, and there are infinite solutions. Thus, we
instead consider the x and y components of vector k′. To minimize
the angular rotations of the torso, we desire the x and y components
of k′ to go to 0 at the same time. But in this way, wemust assume that
the torso angle P is smaller than π/2. Otherwise, when we decrease
the x and y components of the vector, the angle P will increase
instead of decrease. The case where angle P is larger than π/2 does
not happen during normal walking. The velocity and acceleration
of the x and y components of k′ can be calculated in the same way:

X � [1, 0, 0] · k′(q)
_X(q, _q) � zX(q)

zq
_q

X
..(q, _q, q..) � z2X(q)

zq2
_q + zX(q)

zq
q
..

Y � [0, 1, 0] · k′(q)
_Y(q, _q) � zY(q)

zq
_q

Ÿ(q, _q, q..) � z2Y(q)
zq2

_q + zY(q)
zq

q
..

(8)

We design the acceleration so that X and Y are stable and
converge to 0 so that the torso remains vertical. Thus,
negative position and velocity feedback is used:

X
..
d � −kpxX − Kvx

_X
Y
..
d � −kpyY − Kvy

_Y
(9)

where Kp and Kv are feedback gains for position and velocity. By
choosing different gain values, we can manipulate the behavior of
these second-order systems. Desired response time and overshoot
values can be achieved by using the pole placement method. A
large damping value is preferred because oscillation of the torso
will decrease the stability of the foot placement controller.

In summary, the following set of equations can be solved for
the joint accelerations.

Du

zX
zq

zY
zq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ q
.. +

Cu

z2X
zq2

+ kv
zX
zq

z2Y
zq2

+ kv
zY
zq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _q +

Gu

kpX
kpY

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 0 (10)

Du, Cu, Gu are the inertia, centrifugal-Coriolis, and gravity terms for
the un-actuated joints. Then the control torques can be solved using
Eq. 2. Next, a constraint on the ground reaction force is imposed so
that there is no foot/ground slip, and the foot stays on the ground for
the entire stance phase. The constraints are expressed as:

F2
x + F2

y < μ2F2
z

Fz > 0
{ (11)

A solution that satisfies these constraint was found using
optimization. The variables that need to be optimized are
control gains kp and kv in Eq. 9 for X and Y. The time
domain solution can be expressed in terms of a matrix exponent.

X ̄ � X
_X

[ ] � eAXtX 0̄

AX � 0 1
−kpx −kvx[ ] (12)

Y ̄ equations are similar to Eq. 12 for X ̄. The objective function J is
the integral of the square sum of the future error:

J � ∫T

0
eAXtX 0̄( )TeAXtX 0̄ + eAY tY 0̄( )TeAY tY 0̄dt (13)

This optimization problem needs to be solved at every time
step. It takes approximately 0.02–0.05 s using the MATLAB
optimization toolbox function “fmincon ()”. This was found to
consume much computational power and reduce the control
frequency. So instead of performing this optimization, the
difference between the generated joint acceleration (from Eq.
10) and zero torque joint acceleration were used to limit the
torque output of the controller. In a loop, if the constraint is not
met, then the control output is reduced:

q
..←q

.. + λ q
.. − q

..
0

( ), 0< λ< 1 (14)

q
..
is the zero-torque joint acceleration, and λ is the decay factor.

Figure 2 shows the torso angle control in single limb
support phase.
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4.2 Foot Placement Controller
After the torso angle is stabilized by the stance leg controller, if
the torso angular velocity is small, then the motion of the
biped during the swing can be approximated by a single 3-D
inverted pendulum. In Kajita et al. (2001), a 3D Linear
Inverted Pendulum Model was developed. If the mass
center motion plane is parallel with the ground, then the
pendulum’s time-invariant orbital energy can be calculated by
integrating the equations of motion along the x and y axis with
respect to time.

Ey � 1
2
_y2 − g

2z
y2

Ex � 1
2
_x2 − g

2z
x2

(15)

The phase plane of the trajectory shows that if the orbital
energy is greater than 0, then the trajectory will cross the zero
position, and if the orbital energy is less than 0, the trajectory
will not. If the orbital energy is equal to 0, then the trajectory
will come to rest at a saddle point, also known as capture point
(Pratt et al., 2006). So, for walking of a 3-D biped in the y
direction, for example, then Ey must be greater than 0, and for
stability in lateral motion, it is preferred that Ex is less than 0

so that the COM can oscillate between the two feet. From Eq.
15, the initial position can be calculated for the foot
placement.

y �
�����������
_y2

2
− Ey( ) 2z

g

√
x �

�����������
_x2

2
− Ex( ) 2z

g

√ (16)

The calculated initial conditions for foot placement from this
model can only generate several steps of stable walking before
falling down because of the disturbances from the torso. The
model has several restrictions: First, themass center must move in
a plane that is parallel to the ground. Second, the mass center is
concentrated around the tip of the pendulum. Third, there is no
control input. In practice, it is difficult to satisfy all these
constraints. Brasseur et al. (2015) bound the nonlinear term
resulting from the COM vertical motion to a region where the
linear controller still generates a dynamically feasible solution.
We added modified terms and coefficients to compensate the
difference in modeling:

x � ± d + clip( _x, 1,−1) ·
�����������( _x2

2
− Ex) 2z

g

√
p(1 + 0.1|P|)

y � clip( _y, 1,−1) ·
�����������( _y2

2
− Ey) 2z

g

√
p(1 + 0.1|P|) (17)

Where d is the horizontal distance between the hip joint and
the center of mass. The clip coefficient regulates the sensitivity
of the velocity influence. The coefficient 1 + 0.1|P|
compensates for the influence from the torso angle. Initial

FIGURE 2 | Left shows the time response of the torso angle for different initial conditions. Right graphically shows the different initial conditions and a snapshot of
the process of the torso angle stabilization with 15 degrees initial conditions for each joint. The upper rectangular block is the torso, and the lower bar is the leg. Note that
the knee is locked.

FIGURE 3 | Interaction between a reinforcement learning agent and the
environment.
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conditions for the center of mass are transformed into foot
placement by calculating the forward kinematics. The swing
leg trajectory can be generated by inverse kinematics relative
to the mass center. In our approach, the inverse kinematics
for x and y are relative to the mass center, and z is relative to
the global reference frame. In this way, the z component of
the foot displacement will not be affected by sudden
movements of the mass center and, thus, the ground
contact is more controllable. The position of the foot Xf

can be expressed as:

0
0
zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + R · Xc−h + F(q)( ) � Xf (18)

Where zc is the z component of the mass center in
global coordinates and R is the rotation matrix from global
coordinates to body-fixed coordinates. F(q) is a vector of
the Cartesian coordinates of the foot relative to the hip
expressed as a function of the joint angles q. Xf is the foot
coordinates partially relative to COM in global coordinates.
Xc−h is a vector from the mass center to the hip joint in body-
fixed coordinates:

Xc−h � XGC−hip − XGC−COM (19)

XGC−hip is a vector from the torso’s geometric center to the hip
joint in the body-fixed coordinates, and XGC−COM is a vector
from torso’s geometric center to the mass center in body-fixed
frame. XGC−COM is a function of the joint angles q. Taking the
time derivative of both sides of Eq. 18:

0
0
_zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + _R · Xc−h + F( ) + R · _Xc−h + _F( ) � _Xf (20)

_R is a function of Euler angles (α, β, c) and their time
derivatives.

_Xc−h � _XGC−hip − _XGC−COM � − _XGC−COM � −JGC−COM _q (21)

JGC−COM is the system Jacobean:

JGC−COM � zXGC−COM
zq

(22)

JGC−COM can be expressed as [JGC−COM−l, JGC−COM−r], and _q can be

written as
_ql
_qr

[ ]. The subscript ”l” and”r” represent the left and
right leg, respectively. Then:

_Xc−h � −JGC−COM _q � −JGC−COM−l _ql − JGC−COM−r _qr (23)

And

_F � Jk _ql or _F � Jk _qr (24)

Depending on which leg is the swing leg. Jk is the foot position
Jacobian for leg kinematics. For example, if the left leg is the swing
leg, then substituting equations:

0
0
_zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + _R · XGC−hip−l − XGC−COM + Fl( ) + R

· −JGC−COM−r _qr + Jk − JGC−COM−l( ) _ql( )
� _Xf (25)

And using inverse kinematics, the left leg joint velocity can be
calculated:

_ql � RJk − RJGC−COM−l( )−1⎛⎜⎝ _Xf −
0
0
_zc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ − _R

· XGC−hip−l − XGC−COM + Fl( ) + RJGC−COM−r _qr⎞⎟⎠ (26)

This equation is then integrated to find the desired joint angles.

5 DEVELOPING AN ARTIFICIAL NEURAL
NETWORK CONTROLLER AND TRAINING
IT WITH REINFORCEMENT LEARNING

As shown in the results below, the core controller derived in
Section 4 stabilized the biped for which it was designed. However,
it was found to be brittle. It became unstable with even a small
change in biped parameters. Thus, to create a more robust
controller, an ANN was designed and trained using
reinforcement learning starting with data from the core
controller.

The neural networks for enhancing the core controller need to
be able to work with continuous inputs and outputs. There are
many reinforcement learning (RL) techniques that can be used to
optimize a neural net in such a case. Many are gradient-based and
require large samples of trajectories. The training algorithm used
in this work is called Proximal Policy Optimization (PPO)
(Schulman et al., 2017). It is a popular off-policy gradient-
based optimization method. PPO is the default learning
algorithm for Open-AI because it is efficient compared to
many on-policy stochastic policy gradient methods, and it is
straightforward to implement compared to its full version: Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015). For
a policy gradient method, an agent interacts with its environment,
observes its state s, and then outputs action a according to policy
πθ, and then the agent will move to the next state according to
action a and so on as shown in Figure 3. A trajectory τ(s1, a1, s2,
a2, s3, a3. . .) of state and action can be recorded. The probability
for τ is

p(τ) � p s1( )pθ a1 | s1( )p s2 | a1, s1( )pθ a2 | s2( )p s3 | a2, s2( ) . . .
(27)

pθ represents the possibility for the agent to output a certain
action given the state. This possibility is controlled by the policy
parameter θ. The goal is to train this agent so that it will have a
high possibility to output the action that can lead to a larger
reward. The policy gradient method is an on-policy method,
meaning that the data used to calculate the gradient must be
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gathered by the current policy. Otherwise, a different policy will
give a different distribution, and the sampled gradient will not
approximate the true gradient. Thus, every time the policy
parameter is updated, all the data collected previously will be
outdated and cannot be used in the future. This results in the
policy gradient method spending most of its computational time
collecting data rather than training.

PPO uses importance sampling to mitigate this problem
(Schulman et al., 2017). Importance sampling allows one to
calculate the expectation of a distribution p from a different
distribution q. However, this expression becomes more difficult
to approximate when the difference between the two distributions
is large. So, in the PPO algorithm, a KL divergence is added to the
objective function to measure the difference between distributions
(Goldberger et al., 2003). This KL divergence is used to penalize
large differences between distributions. By using this approach, the
data can be used to update the parameters several times. PPO can
also use amodified surrogate objective LCLIP(θ) to limit the step size
during a trust-region optimization update.

As mentioned previously, the goal is to develop a neural
network trained using reinforcement learning initialized with
data from the core control system. But the structure of the core
control system separates the full biped action control into two
parts: swing leg control and stance leg control. On the one hand,
this reduces the difficulty of the design of each controller. On the
other hand, it increases the training difficulty for the
reinforcement learning algorithm. Two different methods of
implementing the learning algorithm are used in this work
and the results are compared.

5.1 Local Reinforcement Learning
In the first method, called the “local” method, there are separate
neural networks for each action control task: A foot placement
controller neural network and a stance leg controller neural
network. Because the control task was divided into two parts,
the optimization task was eased as compared to trying to optimize a
single more complex control system for the entire interconnected
dynamic system. Thus, we could find sufficient RL policies for each
of these two control problems with fewer iterations.

For the purpose of control, the gait cycle was divided into swing,
double-support, stance, and toe-off (we treat the toe-off as a gait
phase). Except for the double-support phase, the timing of the
phase switching was controlled by feedback from contact sensors at
the foot and the output of the controllers. The duration of the
double support phase was linearly related to the torso velocity.
Simulated experiments showed that this intuitively derived linear
relationship was sufficient to represent the system. However, in
future work, it could also be optimized using a neural net.

Toe-off can be achieved in two ways. One is to generate a
trajectory for the foot using inverse kinematics for the target joint
angle controller to lift the foot. The other method is to disable the
knee target joint angle controller and apply a direct reflexive torque
to flex the knee. This is necessary because the disturbance caused by
toe-off often causes the swing foot to hit the ground when the foot
does not follow the designed trajectory, and a target angle
controller will make the knee joint stiff. It is inefficient and may
destabilize the system. Flexing the knee allows the swing foot to

move forward freely without the knee pushing the foot against the
ground. In normal walking, when there are no disturbances, the
trajectory following method is used. But, when a premature foot
contact is detected, the controller switches to the reflexive method.

The simulations proceeded as follows. The foot placement
controller neural network was active once every footstep. The
input vector included torso linear and angular velocities in the x
and y directions, torso angle, torso height, and which leg (swing
leg) it should control at that instant. The outputs were the target
hip joint angle in the x-axis, which controlled how far the biped
should step, and the duration of the step, which determined how
fast the joint should rotate, and the timing of the knee extension.
The stance leg controller neural network was active at 50 hz
during stance. The input vector to the controller was the same as
the foot placement controller plus additional stance leg joint angle
and joint velocity information. The output was the hip joint
velocity of the stance leg. The reason to use target joint velocity
control is that it can improve policy performance and learning
speed (Peng and van de Panne, 2017). The environmental reward
function used for the foot placement controller neural network
training was simply the forward travel distance of the biped, and
the reward for the stance leg control controller neural network
was the norm of the torso angle and angular velocity vector. Each
episode ended when the mass center height was below the
threshold or the travel distance reached a preset maximum value.

After the foot placement controller neural network was
optimized, its parameters were frozen, and we then optimized
the stance leg controller neural network. The optimization of the
two neural networks changed the dynamics of both the stance leg
controller and the foot placement controller. Thus, it was found
useful to iterate this process so the neural network in each
controller could adapt to changes and synergize better with
the other. We have found that this training loop was prone to
converge because, while the foot placement controller is strongly
influenced by the stance controller, the stance leg controller
depends little on the foot placement controller. Also, if the
simulation displayed some unrealistic behavior due to the
numerical solver in Gazebo, then the entire trajectory collected
in that episode was not used in training.

5.2 Global Reinforcement Learning
In the second method, called the “global” method, only one
neural network is trained, and it controlled both the swing leg and
the stance leg. The action space was much larger compared to the
local method. This neural network was run at 50 hz. The state
input was a series of state vectors consisting of torso position and
velocity, mass center relative position and velocity, joint angle and
velocity, left and right contact sensors, and the output from the
core controller. The state also included a target coordinate and
the target speed. The input state series allowed the neural net to
perceive some events that are hard for a single timestamp state
input to represent, such as the ground contact and foot slipping.
The length of the input series was set to 5 so that a total of 0.1 s of
motion was recorded in the state series in a 50 hz control loop.
This is similar to a human’s 0.15 s reaction time for a touch
stimulus. The environmental reward was the error norm of
current torso position to the target coordinate and current
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speed to target speed. The output of the neural network was
stance leg joint velocity (hip-x, hip-y, knee) and x, y and z
coordinates of the predicted foot placement for the swing leg.
The final output of the control system was the summation of the
output from the neural net and the core controller. At the
beginning of the training, the neural net was initialized to
output zero means and small variances so that the total output
was similar to the output of the core controller. Thus, the agent
started its exploration near an optimal point. After the first
parameter update of the neural net, the agent departed from
the initialized parameters, and the stable gait provided by the core
controller was no longer imposed. After some iterations, the agent
optimized the policy and generated a stable gait. The RL-trained
neural network controllers were much more robust to changes in
the model’s mechanical parameters than the core controller, as
can be seen in the examples in the results section.

Figure 4 shows the relationship between the core controller
and the ANN. Figure 5 summarizes the control flow of the two
different methods. The core controller for both methods and the
policy in the local reinforcement learning method use only the
current state of the biped. The global reinforcement learning
method policy uses the current and a series of past states of the
biped as input. In the global reinforcement learning method, the
neural net output modifies both foot placement control and
stance leg control. While in the local reinforcement learning
method, one neural net is trained to modify the foot placement
control output, and another is trained to modify the stance leg
control output. The switching between left-swing-right-stance
and right-swing-left-stance is triggered by signals from the
contact sensors. All the measured signals are sampled from
the simulated environment. The foot placement controller
converged relatively quickly in Method 1, the local
reinforcement learning method, as shown in Figure 6. It
needed about 15,000 walking steps and 150 iterations for a
good policy to emerge, while other tasks have been reported to
need 105 to 107 steps. Method 2, the global reinforcement
learning method, needed longer trajectories in each iteration

for training, and the overall convergent speed was slower than
the local reinforcement learning method. Both networks were
trained with a PC with a core i9 CPU. The simulation ran in real-
time, and only one biped model was simulated.

6 RESULTS

The robustness of the control system was tested by adding a
gradually increasing short-duration (impact) force on the center
of the torso during walking until the biped fell. There was a time
delay between two consecutive forces to allow the biped model to
return to its normal walking before the next impact. The duration
of the impact force was 0.1 s. The test was performed with force
applied to the torso in different directions and repeated six times
for each direction. The direction of the impact force was varied
from − π/2 rad (rearward) to π/2 rad (forward) for every 0.1 rad.
The results for a model based on the proportions of a 1.8-m tall
male human are shown in Figure 7. The result is comparable with
human test by Rosenblum et al. (2020).

As can be seen in Figure 7, all four controllers (core-clipped,
raw-core, global reinforcement learning method, local
reinforcement learning method) generated stable gaits.
However, the stable gaits generated by the neural network
controllers were less robust to impact disturbances compared
to the core-clipped controller.

The global neural network controller was found to be most
robust to biomechanical changes in the model biped. The trained
network successfully stabilized walking of biped models ranging
from 1.4 to 2.2 m tall, with mass and lengths proportioned
according to human data statistics (Yu-Cheng et al., 2004).
Nothing in the control system was re-tuned for these very
different models. The controller was trained for a 1.8-m

FIGURE 4 | The relationship between the core controller and the ANN.
The output from the core controller is both input to the ANN controller and
combined with the ANN output and then input as control commands to the
biped simulation in GAZEBO.

FIGURE 5 | Two different reinforcement learning frameworks. In global
reinforcement learning method (upper), outputs from two core controllers
(stance leg controller and foot placement controller) are checked andmodified
by the same neural network. The inputs to the neural net are a series of
biped states and the raw output from the core controller. The local
reinforcement learning method has separate neural networks for the stance
leg and the foot placement controllers. The switching of the stance leg and the
swing leg is controlled by the contact sensor.
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model. The impact test was repeated for different sized models, as
shown in Figure 8. Force was applied in three different directions:
forward, rearward and lateral. The impact force was increased
until the biped fell.

The impact robustness increased as the total mass of the biped
model increased, as shown in Figure 8. This shows a low
correlation between control robustness and model size within

this range. On the other hand, the core controller, although more
robust when the biped is in the default size, fails if the model is
changed by just 0.1 m in height.

Next, the performance of the system was tested when a
constant force was added for a long period of time. This tested
the system’s robustness against persistent disturbances such
as wind. The force was added on the center of the torso link
for 20 s. The global neural net controller can stabilize much
larger persistent forces in the forward and lateral directions
compared to the rearward direction. The velocity of the biped
was decreased by the rearward force. The forward force
caused a short time of increasing speed, but the controller
adapted to slow the pace. After the force was cleared, the
biped took about 5 s to recover to normal walking. The lateral
force caused little change of the lateral speed because the
neural net was trained to walk forward. So, the lateral error
caused by the disturbance force was compensated by the
controller. This result is shown in Figure 9.

The simulated biped can turn volitionally and follow
waypoints. This is achieved by adding a target coordinate
error term in the environmental reward function during
training. Figure 10 shows plots of the path of waypoints (blue
circles) and the actual path of the torso center (red) in the x-y
plane. The goal of this exercise was for the biped to walk in the x-y
plane and follow the blue path. The static path error was less than
0.3 m, and the lag in low-frequency turn following was small, but
this lag increased with higher frequency turns.

The neural network for the PPO policy and critic networks
each have three densely connected layers with 400 units per layer.
The activation function is Leaky-ReLu. Other parameters are
listed in Table 2. (We use the clipped surrogate objective version
in this work.) The reward function used in the waypoint-
following task is as follows:

r � min ztorso , 1.2( ) − xtorso − xtarget( )2 + ytorso − ytarget( )2
y2target + x2target

− 0.05
������
v2x + v2y

√
− vtarget( ) (28)

FIGURE 6 | The average episode reward during training. A stable gait emerged at approximately 150 iterations or 15,000 walking steps for the local reinforcement
learning method and about 100 iterations or approximately 500,000 steps for the global local reinforcement learning method.

FIGURE 7 | Impact load scan from − π/2 rad (force on the front of the
torso directed rearward) to π/2 rad (force on the rear of the torso pushing
forward) for every 0.1 rad. Each angle is tested six times. The lines indicate the
mean, and the shaded regions depict the variability. The core-clipped
controller has the best overall performance because it is built for the exact
inertia and proportions of the model. The global local reinforcement learning
method is second best and better than the raw core controller and the local
local reinforcement learningmethod. The performance of the neural nets could
be further improved if they were trained with more data. But, that would go
against the concept of this work for designing a controller that can be
implemented in a real-world exoskeleton with less training effort.
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FIGURE 8 | Impact disturbances test on different model sizes controlled by the same controller. In each plot (above), from left to right are the forces added in the
rearward, lateral and forward direction. The different size models are shown below. Gaps between thigh and shank are because the visual mesh does not scale with the
model. The moment of inertia, the mass, the link lengths, and collision models were all scaled properly.

FIGURE 9 | Persistent disturbance test. Speed of the biped vs. time. From left to right, the force is added rearward (pushed from the front toward the rear), forward
(pushed from the rear toward the front), and laterally. In the left and middle, the speed is shown in the forward direction. In the right plot, the speed is the lateral speed in
the direction of the applied force. This speed is ideally zero. As one would expect, a rearward force slows the biped, while a forward force causes it to walk faster. The
controller adapts to stabilize the speed.
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A random target coordinate is generated at the beginning of
each walking trial. The trial is reset when the height of the torso is
lower than 0.6 m, or the y position of the torso is larger than the

maximum y (+y is the forward direction). When the torso y
position is larger than the current target y position, a new random
target coordinate is generated.

7 DISCUSSION

The results show that the core-clipped controller, developed using
classical control methods, is more robust to external
perturbations than the reinforcement learning policy.
However, the core-clipped controller is brittle to even small
changes in the plant. For example, if the user picks up a bag
of groceries or if a different user dons the exoskeleton, the core-
clipped controller will have to be re-tuned. This is unacceptable
for an exoskeleton.

Instead of using the core controller alone, we used the core
controller’s outputs and the states of the biped as the inputs to a
neural network and then trained the network using reinforcement
learning. The trained neural network was then shown to control
stable walking of the biped. We found this method has three
advantages. First, because the core controller provided a good
initial solution, the network converged relatively rapidly
compared to results reported in the literature. Second, the NN
controller produced stable walking of the three-dimensional
biped that was robust to external perturbations and drastic
changes in the biomechanical model. Third, additional goals
(target coordinate tracking, target speed tracking, etc.) for the

FIGURE 10 | Steering tests. P lots of the path of the waypoints (blue circle) and the actual path of the torso center (red) in the x-y plane. (A): step waypoint path. (B):
low-frequency waypoint path. (C): medium-frequency waypoint path. (D): high-frequency waypoint path. The static error of the waypoint following was less than 0.3 m
and the lag in low-frequency turn following was small. The lag increased with higher frequency turns.

TABLE 1 | model specification.

Link name Mass (kg) Dimension (m̂3) Offset (m)

Torso 50.85 0.36*0.18*0.72 (0,0,0)
Thigh 7.5 0.1*0.1*0.441 (0,0,0)
Shank 4.4875 0.1*0.1*0.414 (0,0,0)
Foot 1.5 0.11*0.17*0.03 (0,0,0)
Backpack 5 0.36*0.1*0.18 (0,−0.1,0)
Exoskeleton thigh 2 0.1*0.1*0.441 (0,0.05,0)
Exoskeleton shank 2 0.1*0.1*0.414 (0,0.05,0)

TABLE 2 | neural network parameters.

Parameter Value

Actor learning rate 1e-5
Critic learning rate 1e-4
Critic loss type L1
Batch size 512
Num of batches 100
Max episode steps 32,000
Gamma 0.995
GAE-lambda 0.95
PPO-epsilon 0.2
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controller were able to be realized because of the flexible choice of
different reward functions for the RL training process.

The global reinforcement learning policy shows superior
performance to the local reinforcement learning policy. In the
global reinforcement learning policy, stance and swing are
learned in parallel, whereas in the local reinforcement learning
policy, stance and swing are learned separately. Thus, the local
reinforcement learning policy is the sum of two smaller problems
and converges much more rapidly.

This method is attractive for use in exoskeleton control
because it does not require a detailed dynamic model of the
particular user. In future work, the joint control signal can be
transformed into muscle/motor activation for muscle-first driven
hybrid exoskeletons (Nandor et al., 2021).

We can use this method to evaluate the efficacy of additional
joint degrees of freedom to an existing exoskeleton. Adding
degrees of freedom to an exoskeleton is done with care
because of the added weight, complexity, and cost. Most
exoskeleton’s confine the user to leg movements in the sagittal
plane, which has drawbacks in terms of normal joint movements,
walking speed, and stability. Additional joints can be easily added
to or subtracted from a dynamic model and this method can be
used to learn a controller. The performance of the system with the
additional joints in terms of speed, stability, and robustness to
perturbations and changes to the mechanical model (different
users and carrying objects) can be evaluated. Thus, the method
described in this paper can be an important tool for design as well
as system control.

Shafiee-Ashtiani et al. (2017) presented improved results relative
to previous walking pattern generators. In their work the controller
resisted an impact force of 260 N frontal and 220 N sagittal (340 N
in total) for 0.1 s in the simulation. The model weight is 98 kg. Our
method canwithstand 300–1000 N impact force for 0.1 s for a 1.8 m
tall, 75 kgmodel. The training needed to achieve this performance is
approximately 100 iterations or 3,200,000 steps with our setup. The
results in Castillo et al. (2020) showed 800 iterations are needed.
Peng et al. (2017) performed more tasks, but it required 10e5 to
10e6 iterations to train.

8 CONCLUSION

In this work, we first used classical control methods to design a
core control system consisting of a stance-leg torso stabilization
controller and a swing-leg foot placement controller. The stance-
leg controller was based on a double pendulum model. The
acceleration of the torso angle was designed to mimic a stable
second-order system. Then the required torque was calculated by
using double pendulum dynamics. The output was then modified
to further stabilize the system. After that, the swing leg foot
placement prediction controller was designed using the modified
orbital energy method. The resulting “core” controller generated
stable walking and was robust to impact disturbances. But it

cannot stabilize a biped with different biomechanics (or if the user
picks up heavy objects) because the controller was designed on
precise model data. Thus, we used reinforcement learning to train
a neural network for biped walking using the outputs of the core
controller and the states of the biped as its inputs. Two different
ways of training the policy were tested. The local reinforcement
learning method used separate neural nets for swing leg control
and stance leg control so that each of these neural nets only
controls a portion of the action and can be trained with less
computational cost. The global reinforcement learning method
used just one neural net for the entire action control of the system.
Results show that the local reinforcement learningmethod indeed
trained faster than the global one, but it is less robust than the
global reinforcement learning method. As the global method
allows us to train the biped motion all at once, we can add
additional objectives for the learning algorithms such as
waypoints following. The result shows that the global neural
network learns a generalized control policy that can control
different sized biped models without changing any parameters.
Thus, it can be used for different people with different body mass
and proportions and/or for a person who dons a backpack or
carries a heavy bag without the need for re-tuning. This controller
also can adapt its speed to overcome persistent forces and steers
to track waypoints.
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