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We present O2A, a novel method for learning to perform robotic manipulation tasks from a
single (one-shot) third-person demonstration video. To our knowledge, it is the first time
this has been done for a single demonstration. The key novelty lies in pre-training a feature
extractor for creating a perceptual representation for actions that we call “action vectors”.
The action vectors are extracted using a 3D-CNN model pre-trained as an action classifier
on a generic action dataset. The distance between the action vectors from the observed
third-person demonstration and trial robot executions is used as a reward for
reinforcement learning of the demonstrated task. We report on experiments in
simulation and on a real robot, with changes in viewpoint of observation, properties of
the objects involved, scene background and morphology of the manipulator between the
demonstration and the learning domains. O2A outperforms baseline approaches under
different domain shifts and has comparable performance with an Oracle (that uses an ideal
reward function). Videos of the results, including demonstrations, can be found in our:
project-website.
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1 INTRODUCTION

Learning new manipulation tasks has always been challenging for robotic systems, whether it is a
simple mobile manipulator or a complex humanoid robot. Programming manually step by step
(Finkel et al., 1975) is one of the earlier solutions to this problem. But this is labour intensive, requires
specialist expertise and lacks autonomy. It is therefore not suitable for consumer robots and fully
autonomous systems. Learning fromDemonstrations (LfD) (Atkeson and Schaal, 1997) is a potential
solution to this problem. It requires only demonstrations of the task for the robot to learn from. Even
though LfD has been studied widely, most previous works have stayed within the “Imitation
Learning” (Duan et al., 2017; Pathak et al., 2018; Peng et al., 2018; Argall et al., 2009) paradigm, where
demonstrations are made from an egocentric perspective, either visually or kinesthetically. This
requires the inconvenience of kinaesthetic guidance or teleoperation and also the rich source of third-
person demonstrations available on the internet cannot be used. Therefore, in this paper we study the
problem of LfD under the “Observational Learning” (Bandura 1986; Pauly, 2018; Torabi et al., 2019;
Borsa et al., 2019) paradigm, where the demonstrations are observed as a third-person. This
introduces the key challenge in observational learning, the shift between the demonstration and the
learning domains. The domain shift can arise due to changes in viewpoints of observation, properties
of objects used, scene background or morphology of the manipulator performing the task.

In this paper we present O2A (One-shotObservational learning withAction vectors), for one-shot
observational learning of robotic manipulation tasks under different domain shifts. One-shot
learning here means that only a single demonstration of the new task is required for learning.
(Note that, it does not refer to the number of trial and error executions by the robot during learning
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from that single demonstration). We use an abstract perceptual
representation: the “action vector”, which is the task-
discriminative and domain-invariant representation of the
action in a video. The action vector is extracted using a 3D-
CNN (Tran et al., 2015), pre-trained on a generic action dataset as
an action classifier (we use UCF101 (Soomro et al., 2012) as the
pre-training dataset for our experiments). Through our
evaluation on a new “Leeds Manipulation Dataset” (LMD), we
show that the pre-trained action vector extractor can generalise to
unseen manipulation tasks. The action vectors from the
demonstration and trial robot execution video clips are then
compared to generate a reward for the reinforcement learning
algorithm. The algorithm learns an optimal control policy that
performs the demonstrated task. Our experiments in simulation
(with reaching, pushing tasks) and on a real robot (with pushing,
hammering, sweeping, striking tasks) show that O2A can perform
well under different domain shifts. Our contributions can be
summarised as follows:

• Implementing for the first time, to the best of our
knowledge, a method for observational learning of
robotic manipulation tasks from a single demonstration.

• O2A can handle shifts between the demonstration and the
learning domains, caused by changes in viewpoint of
observation, object properties, morphology of the
manipulator and scene background.

• And finally, we pre-train the action vector extractor on a
generic action dataset instead of task-specific manipulation
videos. The extractor generalises to unseen manipulation
tasks by learning the shared underlying visual dynamics.

Upcoming sections are arranged as follows: Section 2
discusses related works, Section 3 formulates the problem and
describes the proposed method, Sections 4 and 5 report on
experiments conducted and finally Section 6 presents the
conclusions.

2 RELATED WORK

Observational learning: Origins of observational learning of
robotic manipulation tasks can be traced back to works from
the 1990s (Suehiro, 1994; Kuniyoshi et al., 1994; Bakker and
Kuniyoshi, 1996). Most of the early methods required assistance
in observing the demonstrations. This assistance was provided by
motion capture systems (Ijspeert et al., 2001; Ijspeert et al., 2002;
Field et al., 2009), visual detectors (Ramirez-Amaro et al., 2017;
Sieb et al., 2020; Zhang and Nikolaidis, 2019), skeleton tracking
(Cabrera and Wachs, 2017), trackers/markers (Dillmann, 2004;
Dragan and Srinivasa, 2012; Gupta et al., 2016) or a combination
of the above (Kuniyoshi et al., 1994). However, the entities to be
tracked or detected must be known beforehand and only
demonstrations using these entities can be learned.

With the advent of deep learning (LeCun et al., 2015;
Goodfellow et al., 2016), it was possible to learn visual features
characterising the task directly from raw RGB videos. The
features are extracted from raw videos using a variety of

methods: deep metric learning (Sermanet et al., 2018),
generative adversarial learning (Stadie et al., 2017), domain
translation (Liu et al., 2018; Smith et al., 2019; Sharma et al.,
2019), transfer learning (Sharma et al., 2018; Sermanet et al.,
2017), action primitives (Jia et al., 2020), predictive modelling
(Tow et al., 2017), video to text translation (Yang et al., 2019),
meta-learning and (Yu et al., 2018a; Yu et al., 2018b). A
comparison of these methods is given in the Table 1 and a
detailed study can be found in (Pauly, 2021).

A limitation of these methods is the requirement of a large
number of demonstrations for learning new tasks: the feature
extractor is trained separately for each of the new task to be
learned. Hence demonstration videos are to be collected in
substantial numbers for each task. In contrast, our method
requires only a single demonstration (hence one-shot) to learn
a new task, since pre-trained feature extractors are used. A second
limitation is the constrained domain shifts: In existing
approaches, assumptions are made regarding shift between
learning and demonstration domains. For example viewpoint
of observation is fixed (Sermanet et al., 2017) or manipulators
with similar morphologies (Liu et al., 2018) are used. Our method
O2A, does not make any such assumptions and can learn under
unconstrained domain shifts.

Pre-training with large generic datasets: Pre-training on
large generic datasets has become common in the fields of
computer vision and natural language processing. Models are
first pre-trained on a large generic dataset(s) in a supervised or
unsupervised manner. After pre-training, the models are used to
solve downstream tasks with minimum/no fine-tuning. Generic
language models such as ELMo (Peters et al., 2018), GPT
(Radford et al., 2018; Radford et al., 2019; Brown et al., 2020),
BERT (Devlin et al., 2018) have shown success in solving several
downstream language processing tasks. Similarly, ImageNet
models (Xie and Richmond, 2018), Image-GPT (Chen et al.,
2020), BiT models (Kolesnikov et al., 2019) have demonstrated
that this approach can be applied for computer vision problems as
well. We introduce a similar concept into visual robotic
manipulation. The action vector extractor is pre-trained using
a large generic action dataset and then generalised to
manipulation tasks for observational learning.

3 PROPOSED METHOD

3.1 Action Vectors
Action vectors are the core of the O2A method. An action vector
is the abstract task-discriminative and domain-invariant
perceptual representation of the action being carried out in a
video. In O2A, the action vector extraction is based on the
following two assumptions, which we validate in Section 4.

1) The spatio-temporal features generated by the final layers of
an action classifier pre-trained on a generic action dataset, are
task-discriminative domain-invariant. The features from the
videos depicting similar actions should be identical
irrespective of the domain in which they are recorded. The
assumption is reasonable since the action classifier makes use
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of the same layer outputs to identify actions, independently of
different camera angles, varying scene backgrounds,
illumination conditions, actors/manipulators, object
appearances, interactions, pose and scale.

2) The action vector extraction model pre-trained on a generic
dataset can generalise to unseen manipulation tasks used in
robotic observational learning. The intuition is that the
underlying visual dynamics between generic action datasets
and manipulation tasks are the same. For example, it is the
same physical laws of dynamics governing object interactions,
both for a cricket shot as well as a robot striking cubes.

3.1.1 Network Architecture and Dataset
Our 3D-CNN model consists of eight 3D convolutional layers,
five 3D maxpooling layers and three fully connected layers. The
ReLU (Nair and Hinton, 2010) activation function is used for all
the convolutional and fully connected layers except the final layer,
where we use a Softmax function. The layer wise network
architecture along with the kernel sizes, input and output
dimensions are given in the Supplementary Section S1. We
use the UCF101 action dataset as the generic dataset for our
experiments. It consists of 13320 real world action videos from
YouTube each lasting around 7 s on average, classified into 101

action categories. The dataset has a large diversity both in terms of
variety of actions and domain settings within the same class
videos. A dropout of 0.5 is used for the fully connected layers
during training to avoid overfitting. We also use a zero-padding
layer between the last convolution and pooling layers to control
the shrinkage of dimensions.

3.1.2 Pre-training Action Vector Extractors
For pre-training, we first uniformly downsample UCF101 videos
in time into 16 frames for providing a fixed-length
representation for each video clip. We also resize videos
into 112 × 112 pixels to standardize the size. We apply the
same pre-processing steps to videos of demonstrations and
robot trial executions for action vector extraction during
observational learning. These downsampled and resized
videos are then used for pre-training the model for action
classification from scratch. The pre-training objective is the
cross-entropy loss function given as:

L(y, -y) � − ∑
NC−1

i�0
yilog(-yi) (1)

where, -yi is the ith value in the predicted output and yi is the
corresponding one-hot encoded ground truth value, both of

TABLE 1 |Observational learningmethods in existing literature are compared. O2A requires only a single demonstration to learn new tasks. It does not use any robot data for
training the action vector extractor and also works well under different domain shifts.

References No: of video demonstrations
required per task (including

to train the feature extractor/s)

Is robot data
required for
training the

feature
extractor/s ?

Viewpoint
invariant ?

Invariant to
changes of

object
properties ?

Invariant to
changes in

scene
background ?

Invariant to
changes of

morphology of the
manipulator ?

Sermanet et al.
(2018)

∼40 min of human demonstrations + ∼20 min
random robot manipulation data

✓ ✓ ✓ ✓ ✓

Stadie et al.
(2017)

An expert policy is used instead of direct
demonstrations

✓ ✓ ✓ ✓ ✓

Liu et al. (2018) ∼60–3,000 human demonstrations using
additional tools

7 ✓ ✓ ✓ 7

Smith et al.
(2019)

∼20–30 human demonstrations + ∼300–500
random human and robot images

✓ 7 NA NA ✓

Sharma et al.
(2019)

∼230 human demonstrations + corresponding
robotic joint angle data

✓ ✓ ✓ NA ✓

Sharma et al.
(2018)

∼200–400 human demonstrations +
corresponding robotic joint angle data

✓ ✓ ✓ NA ✓

Sermanet et al.
(2017)

∼12 human demonstrations 7 7 ✓ NA ✓

Jia et al. (2020) ∼50–100 human demonstrations 7 ✓ ✓ ✓ ✓
Tow et al.
(2017)

Uses both human and robot task demonstrations
(exact numbers unknown)

✓ ✓ NA NA ✓

Yang et al.
(2019)

∼2,990 human demonstrations 7 ✓ ✓ ✓ ✓

Yu et al.
(2018b)

1 (but uses closely related supplementary task
demonstrations. Requires ∼600–1,200 robot and
∼600–1,200 human demonstrations per task)

✓ ✓ ✓ ✓ ✓

Yu et al. (2018a) 1 (but requires large number of action primitive
demonstrations. ∼600–1,200 robot and
∼600–1,200 human demonstrations per action
primitive)

✓ NA ✓ ✓ ✓

O2A Only 1 demonstration (human demonstration with
or without using additional tools)

7 ✓ ✓ ✓ ✓
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which are expressed as probabilities. NC is the number of classes
and for UCF101 dataset NC � 101. The training details are given
in the Supplementary Section S1. The pre-trained model will be
referred to as “NN:UCF101” hereafter.

After training, we use features from one of the final layers of
NN:UCF101 as the action vector. Our experiment (reported in
Section 4.1) shows that the features from layers pool5 (size:
8,192) and fc6 (size: 4,096) are best suited to be used as the action
vector. We report results, both when the features from pool5 and
fc6 layers are used as the action vector in this paper.

3.2 One-Shot Observational Learning
The overview of O2A is shown in Figure 1. The robot views both
the demonstration and its own trial executions from a camera
mounted in a fixed position above the manipulator. With
reference to Figure 1, let D be the single demonstration video
clip of a task to be learned. We extract the n-dimensional
action vectors ⃗XD and ⃗XR from the demonstration video D and
the video clip of a trial robot execution respectively. The
reward (r) for the reinforcement learning is then calculated as
the negative of the euclidean distance between action vectors
⃗XD and ⃗XR as given below:

r � −‖⃗XD − ⃗XR‖2 (2)

Thus the reward directly measures the closeness of the actions
in the demonstration and of the robot trial execution. The
reinforcement learning will then maximize this reward
function to learn an optimal control policy. This optimal
control policy will enable the robotic manipulator to perform
the demonstrated task.

3.2.1 Reinforcement Learning of the Task
Any reinforcement learning algorithm can be used with our
method. In the simulation experiment, we use the Deep

Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015)
to estimate the optimal control policy. The states used by the
control policy are instantaneous visual observations of the
environment (as observed by the robotic system). We make
use of a VGGNet pre-trained on ImageNet (Simonyan and
Zisserman, 2015) for converting raw RGB images into visual
state features. The 4,608 long feature obtained from the last
convolutional layer of the VGG-16 network is used as the
instantaneous state representation.

Reinforcement learning in real robots is an active area of
research and remains a challenging problem. So we use a
manipulation planning algorithm, the Stochastic Trajectory
Optimisation (STO) (Agboh and Dogar, 2018; Kalakrishnan
et al., 2011), for the real robot experiment. Using a different
manipulation algorithm does not undermine the effectiveness
of our method. The objective behind the experiment is to
show that O2A reward can successfully guide a robotic
manipulation algorithm to learn the demonstrated tasks.
STO generates an optimal control sequence by iteratively
improving on the previous sequence guided by our reward
function. The cost function C, to be minimized is
calculated as:

C � r2 (3)

Additionally, this shows that our method is agnostic to the
robotic manipulation algorithms and can directly be used with
more advanced algorithms when available in future.

4 ACTION VECTOR ANALYSIS

In this section, we aim to validate our assumptions for the
proposed action vector extraction method explained in Section
3.1. First we collect a manipulation dataset, the “Leeds

FIGURE 1 | Overview of O2A method. A 3D-CNN action vector extractor is used to extract action vectors ⃗XD and ⃗XR from the video clips of the demonstration and
robot trial execution respectively. A reward function is used to compare ⃗XD and ⃗XR in the action vector space, generating a reward signal (r) based on their closeness. The
reinforcement learning algorithm then iteratively learns an optimal control policy by maximizing this reward signal, thus enabling observational learning.
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Manipulation Dataset (LMD)”. Note that this dataset is only used
for evaluation and not used during training of the action vector
extractor. LMD consists of videos of three different manipulation
tasks: reach, push and reach-push, examples of which are shown
in Figure 2. The task videos are collected directly with a human
hand and by using tools resembling robotic manipulators/end
effectors. Each class consists of 17 videos with variations in
viewpoint, object properties, scene background and
morphology of manipulator within each class. Note that,
identical looking task classes were carefully selected and same
set of objects and manipulators were used across tasks for
collecting videos. These choices are deliberate to make the task
differentiation more challenging. Under these circumstances,
only an efficient action vector extractor can produce task-
discriminative and domain-invariant action vectors for
different task classes in LMD.

4.1 Clustering Analysis
We conduct the experiment to identify which one of the final
layers of NN:UCF101 provides the best action vector for
manipulation tasks. We use the quality of the clusters in the
action vector space, as a measure to understand how task-
discriminative and domain-invariant are the action vectors
from different layers of NN:UCF101 model. The more the
action vectors are task-discriminative and domain-invariant,
the better the clustering of the action vectors from the same
class will be. To analyse the quality of the clusters, we use a
standard clustering evaluation measure, the ARI (Hubert and
Arabie, 1985) score. The ARI score measures the extent to which
the predicted clustering corresponds to the and ground truth
clusters by counting pairs that are assigned in the same or
different clusters. ARI values are bounded by [−1, 1], where
−1 is the lowest score, 0 indicates random clustering and 1 shows
that the predicted clustering corresponds to the ground truth
clusters perfectly.

For the experiment, we extract the action vector from the
pool5, fc6, fc7 and fc8 layers of the NN:UCF101 model, for all the
17 videos in LMD. The Baseline-R is obtained using features from
the pool5 layer of the same NN:UCF101 model but initialised
with random weights. The features extracted from each layer are
then clustered using the K-means clustering algorithm. The value
of K � 3 is used, corresponding to the number of task classes.
After clustering, the predicted cluster labels are evaluated against
ground truth labels and ARI scores are calculated. The results of
the experiment are tabulated in Table. 2.

The ARI value for Baseline-R is close to zero as expected and
gives us the baseline to compare with. The ARI score increases
when features from pool5 to fc6 layers are used as the action

vector, but drops for the final fc7 and fc8 layers. The results
indicate that the features from pool5 and fc6 layers of the NN:
UCF101 model are the most suitable to be used as the action
vector. These results are in agreement with the previous
works (Azizpour et al., 2015; Athiwaratkun and Kang,
2015) that study transferability of features from different
layers of a pre-trained CNN to new downstream problems.
Specifically, Azizpour et al. (2015) have shown that the first
fully connected layer after the convolutional layers of a pre-
trained (for classification) network produced the most
generic features for a range of 15 downstream problems.
An experiment (reported in Supplementary Section S3)
using optimal K values for each layer also shows that the
features from pool5 and fc6 layers are best suited to be used as
the action vector. The optimal K value is obtained by
performing clustering analysis and calculating ARI scores
for each value of K from 1 to 51 (the total number of samples
in LMD). Furthermore, we also performed clustering analysis
(while not reported here) when features from different layers
are concatenated and used as the action vector.
Concatenating features did not produce any significant
improvements in the performance.

4.2 Class Similarity Scores
Here we calculate the interclass and intraclass similarity scores for
different classes of LMD in the action vector space. For that, we
extract action vectors from pool5 and fc6 layers of the NN:
UCF101 model, for all the 51 videos in LMD. The Baseline-R
is obtained using features from pool5 layer of the same NN:
UCF101 model but initialised with random weights. The
similarity score between a pair of action vectors, is shown as
the cosine of the angle between them. The similarity scores are
bounded by [−1, 1] with −1 indicating diametrically opposite
vectors and 1 indicating coinciding vectors.

The results are tabulated in Table 3. For each chosen feature
layer, the diagonal values represent the average of similarity scores
between pairs of action vectors from the same class. And the non-

FIGURE 2 | Snapshots of sample videos from LMD. Identical looking task classes are used to make the task differentiation more challenging.

TABLE 2 | ARI scores. Results show that the features from layer pool5 and fc6 of
the NN:UCF101 model are best suited to be used as action vectors.

Layer ARI score

Baseline-R (random weights) 0.07
pool5 0.26
fc6 0.34
fc7 0.19
fc8 0.14

Best results presented in bold.
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diagonal values are the average of similarity scores between pairs of
action vectors from different classes. The diagonal values are greater
than the rest of the values indicating adequate task-discrimination
and domain-invariance for the action vectors extracted. The only
exception is for layer fc6 where a greater inter-class similarity score is
observed between reach and push classes than the intraclass
similarity score for reach class. Provided that both tasks are
extremely similar, these results are promising.

We also visualize these action vectors from LMD, projected
into 2D using PCA, which are shown in Figure 3. The clustering
of action vectors from the same classes, when compared to the
Baseline-R is evident. This further indicates the task-
discrimination and domain-invariance of our action vectors. It
must be noted that this visualisation collapses the vectors, of
much greater dimensions, into a 2D space, which might be
causing some of the “artificial” overlaps.

The class similarity scores and visualization shows that our
pre-trained action vector extractor can generalise to unseen
manipulation tasks. In the next section we show how the
action vector is used for observational learning and how well
O2A performs under different domain shifts.

5 ROBOTIC EXPERIMENTS

To explore the resilience of our method to shifts between the
demonstrator and learner domains, we conducted the
experiments with six different domain shifts, as defined in
Table 4. The tasks used are reaching and pushing in
simulation and pushing, hammering, sweeping and striking for
the real robot experiment. The task definitions and completion
measures are given in Table 5. Note that the task completion
measures are only used for evaluating the performance of O2A
and not used during learning.

5.1 Simulation Experiment
We set up the simulation learning domain with a 3DOF robotic
manipulator for reaching and pushing using OpenAI Gym
(Brockman et al., 2016) and the MuJuCo physics engine
(Todorov et al., 2012). In each setup (characterising a
domain shift), we collect a single demonstration in the real
world and run DDPG algorithm 10 times. Each run has 20
episodes per run and the number of steps per episode are 60 and
160 for reaching and pushing respectively. We use architectures
similar to Lillicrap et al. (2015) for the actor and critic networks.
The hyper-parameters used are given in the Supplementary
Section S2. For each run, the DDPG returns a control policy
that corresponds to the maximum reward obtained. After
training, we pick the top-2 (Henderson et al., 2018) control
policies with the highest rewards, and the task completion
measures are calculated. The top control policies were
selected to avoid policies from poorly performing runs
affecting the overall performance. The output of the control
policy are the robotic controls with a size of three corresponding
to each of the joints. The robotic controls could be torques, joint
angles or velocities of the manipulator. In our experiment we
have used joint angles. We perform the experiment with action
vectors extracted from both pool5 and fc6 layers of NN:UCF101
model. Figure 4 shows snapshots of the demonstration and
execution of the corresponding learned policy for selected
setups. Videos of the simulation experiment results, including
demonstrations are available in the project-page.

We compare our method with an oracle and two baseline
approaches. The oracle is trained by using the corresponding task

TABLE 3 | Class similarity scores. The intraclass similarity (diagonal values) are
greater than the rest of the values, indicating adequate task-discrimination and
domain-invariance.

Reach Push Reach-push

Baseline-R (random weights)

Reach 0.9873 0.9870 0.9870
Push 0.9870 0.9874 0.9868
Reach-push 0.9870 0.9868 0.9889

NN:UCF101 (pool5)

Reach 0.7391 0.7371 0.6897
Push 0.7371 0.7547 0.6852
Reach-push 0.6897 0.6852 0.7578

NN:UCF101 (fc6)

Reach 0.4994 0.5001 0.4052
Push 0.5001 0.5352 0.4022
Reach-push 0.4052 0.4022 0.4978

Best results presented in bold.

FIGURE 3 | Visualising LMD for (A) Baseline-R and using action vectors from (B) pool5 and (C) fc6 layers of NN:UCF101 model. We can see the clustering of the
action vectors into different task classes.
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completion measure specified in Table 5 as the reward, in place of
a reward derived from action vectors. It represents the upper
bound on performance. The two baselines represent a video clip
by averaging a “static” representation for each frame, in contrast
to the spatio-temporal representation used in O2A. Rewards are
then generated using these representations. In Baseline-1,
features from the output of the last convolutional layer of the
ImageNet (Simonyan and Zisserman, 2015) pre-trained VGG-16
network are used and in Baseline-2, HOG (Dalal and Triggs,
2005) features are used. The average of the task completion
measures for the top two control policies for oracle, O2A and
the baseline approaches are plotted in Figure 5. The learned
policies from O2A were successful in performing the
demonstrated task under different domain shifts with good
task completion measures. It also significantly outperforms
both baseline approaches and has a comparable performance
to the oracle.

We further analysed the quality of the rewards generated in
O2A, the baseline approaches and the Oracle. To compare, we
calculate the Pearson correlation coefficient (Benesty et al., 2009)
between the episodic perceptual rewards (O2A, baselines) and the
Oracle rewards for the top two runs. A high positive correlation
[typically >0.5 (Tipping and Bishop, 1999)] indicates that the
perceptual rewards are as good as the Oracle rewards. All the
results are tabulated in Table 6. From the results, the correlation
coefficients are greater than 0.5 in all the cases for O2A, indicating
that our rewards are as accurate as the Oracle rewards. Also, the
correlation is higher and positive compared to the baselines for a
range of domain shifts showing the superior performance of our
method.

5.1.1 Trajectory Maps
Here we plot the trajectories followed by the robotic manipulator
in each episode during reinforcement learning of the task. This

TABLE 4 | Domain shifts used in our experiments.

Domain shift

I Observation viewpoint, object properties, morphology of the manipulator and scene background remain the same in the
demonstration and learning domain

V Observation viewpoint is different between the demonstration and the learning domain; other factors remain unchanged
Obj Objects with different colour (for pushing, reaching and hammering tasks) or shape (hammering task) used in the learning

domain
Obj+V Both the viewpoint of observation and object properties vary between the demonstration and the learning domains
BG Background clutter is introduced to the scene in learning domain, which was not present during the demonstration
M Manipulators with different morphologies used in the demonstration and the learning domain. Demonstrations with a human

hand (reaching and pushing tasks) and with a manipulator with a different morphology (hammering task) used

TABLE 5 | Task definitions and completion measures.

Task Description Task completion measure

Reaching (simulation) Reach a target zone 1-(final distance/initial distance between the center of the manipulator and the center of the
target zone)

Pushing (simulation and real
robot)

Push an object into the target zone 1-(final distance/initial distance between the centers of the target zone and the pushed
object)

Hammering (real robot) Hammer the target object 1-(minimum distance/initial distance between the hammer and the object during the
execution)

Sweeping (real robot) Sweep crumpled cardboard pieces to the
dustbin

The number of cardboard pieces in the dustbin after execution/total number of the
cardboard pieces

Striking (real robot) Strike down a block of cubes 1-(minimum distance/initial distance between the blocks and manipulator during execution)

FIGURE 4 | Snapshots of the demonstration and the execution of corresponding learned policies in the simulation experiment for selected domain shifts. (Results
shown for action vectors extracted from pool5 layer of NN:UCF101 model).

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 6863687

Pauly et al. One-Shot Observational Learning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


visualisation will help to understand, if high rewards are obtained
for desired trajectories while learning the demonstrated task. The
top-5 trajectories with the highest reward values obtained during
task learning are coloured with red and the rest of the trajectories
are in blue.

We also show the results when O2A action vector extractors
are pre-trained with a manipulation task dataset, the Multiple
Interactions Made Easy (MIME) dataset (Sharma et al., 2018).
MIME dataset consists of 8260 videos of 20 commonly seen
robotic manipulation tasks, executed by a human as well a
Baxter robot. This model is referred to as ‘NN:MIME’. The aim
is to study how well O2A performs when pre-trained on a task
specific manipulation dataset compared to a generic dataset.
The results are shown in Figure 6 (for reaching task) and in
Supplementary Section S4 (for pushing task). The reward
values for desired trajectories in Baseline-R are low in all the
cases as expected. The results indicate that, when NN:UCF101
is used, high rewards are generated for desired trajectories for
all domain shifts. However NN:MIME performs poorly for
changes in viewpoint and manipulator used. An insight into
this is that, even though the MIME dataset consists of large

number of manipulation task examples, the variations in terms
of viewpoints and manipulators used are limited. In contrast
UCF101 contains examples with extensive range of variations
in domain settings like viewpoint and manipulator
morphology.

Further, we plotted trajectory maps for O2A (with NN:
UCF101 model) for the task of reaching when a 4DOF
manipulator is used. The results are given in Figure 7 for
three different domain shifts: I, V and M, along with the
manipulators used in the simulation experiment. The results
show that O2A can work with manipulators of different
degrees of freedom. We also plotted trajectory maps when
domain shifts are characterised by changes in background
colour. The results (reported in Supplementary Section S5)
show that O2A provides high rewards for desired trajectories,
even when background colour changes.

Additionally, we experimented with the reach-push task using
a set of manually collected video samples showing different
degrees of task completion. The results reported in
Supplementary Section S6 show that O2A reward function
can successfully model the more complex task of reach-push.

FIGURE 5 | Task completion measures for the task of (A) reaching and (B) pushing in the simulation experiment. O2A outperforms both the baselines and has
performance comparable to theOracle under all domain shifts. The Oracle score is shown only once since it is unaffected by the domain shifts (refer to Table 4 for domain
shift definitions).

TABLE 6 | Pearson correlation coefficients between the rewards from the Oracle, and fromO2A and two baselines. The coefficients are generally highest and positive for O2A
rewards compared to baseline approaches.

I V Obj Obj+V BG M

Task 1: Reaching

O2A [NN:UCF101 (pool5)] 0.8567 ± 0.0079 0.7807 ± 0.0531 0.8209 ± 0.0157 0.6448 ± 0.2146 0.7736 ± 0.0007 0.9605 ± 0.0048
O2A [NN:UCF101 (fc6)] 0.8318 ± 0.0600 0.7911 ± 0.0588 0.8199 ± 0.0718 0.8620 ± 0.0713 0.8108 ± 0.1126 0.8761 ± 0.0032
Baseline-1 0.5872 ± 0.1744 0.4069 ± 2,361 0.6112 ± 0.2612 0.6099 ± 0901 0.5289 ± 0.0189 0.0487 ± 0.0448
Baseline-2 0.7387 ± 0.0681 −0.8106 ± 0.0086 0.7115 ± 0.1272 −0.8189 ± 0.0501 −0.5738 ± 0.0337 0.1256 ± 0.0629

Task 2: Pushing

O2A [NN:UCF101 (pool5)] 0.9345 ± 0.0034 0.9413 ± 0.0362 0.6943 ± 0.1419 0.8650 ± 0.0847 0.8552 ± 0.0677 0.6594 ± 0.1834
O2A [NN:UCF101 (fc6)] 0.8037 ± 0.1125 0.8826 ± 0.0239 0.6898 ± 0.1927 0.8179 ± 0.0702 0.9147 ± 0.0099 0.8489 ± 0.0987
Baseline-1 0.9372 ± 0.0270 0.8908 ± 0.0615 0.5817 ± 0.3124 0.7488 ± 0.0631 0.8978 ± 0.0704 0.5797 ± 0.1141
Baseline-2 0.0173 ± 0.4550 −0.1346 ± 0.3410 0.5900 ± 0.1625 −0.4352 ± 0.1292 −0.5386 ± 0.1243 0.3700 ± 0.5195
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5.2 Real Robot Experiment
For the real robot experiment, we use a 6DOF UR5 robotic arm
attached with different end-effectors suitable for each task. All six
domain shifts (see Table 4) are used for the pushing and hammering
tasks. Whereas, only three domain shifts (I, V andM) are used for the
sweeping and striking tasks, since others did not have meaning for

these tasks. We only used features from pool5 layer of NN:UCF101
model as the action vector, due to the high cost of running the real
robot experiment. Implementation details of the STO algorithm used
to generate the optimal sequence of controls are explained below.

Briefly, we begin with an initial candidate control sequence.
We execute this sequence using the manipulator to generate an

FIGURE 6 | Trajectory maps obtained during reinforcement learning of the task of reaching, when O2A action vector extractors are pre-trained with UCF101
dataset [NN:UCF101 (pool5, fc6)] and with MIME dataset [NN:MIME (pool5, fc6)]. NN:UCF101 provides high rewards for desired trajectories for all the domain shifts (I, V,
Obj, Obj+V, BG, M). However, NN:MIME performs poorly when viewpoint of observation (V, Obj+V) and morphology of the manipulator (M) changes.

FIGURE 7 | (Left side) Trajectory maps for O2A (with NN:UCF101 model) obtained for the task of reaching with domain shifts: I,V and M when a manipulator with
4DOF is used. High rewards are obtained for desired trajectories for all the cases indicating that our method can work with manipulators of different DOF. (Right side)
Manipulators used in the simulation experiment with (A) 3DOF and (B) 4DOF.
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initial cost. Thereafter, at each iteration we create eight random
control sequences by adding Gaussian noise to the candidate
sequence from the previous iteration and execute them using
the real robot. At the end of each iteration, we pick the control
sequence with the minimum cost calculated using Eq. 3. Then
we set it as the new candidate sequence thereby iteratively
reducing the cost. Each control sequence has a length of 16
steps and observed image frames are collected after each step.
The action vector is then extracted from these frames at the
end of the sequence execution to calculate the cost. The initial
control sequence is initialised by providing a near solution
path, following common practices in literature (Sermanet
et al., 2017). The near path solution is obtained by manually
setting the sequence start and end points, and interpolating
between them. The Gaussian noise added has a mean zero and
the standard deviation is set as hyper-parameter for each task.
The detailed step by step STO algorithm is given in the
Supplementary Section S7.

Each experiment is run two times with 10 iterations each. In
Figure 8 the snapshots of executions of optimal control sequences
obtained for the selected setups are given. The average task

completion measures for the optimal control sequences are
shown in Figure 9. Our method achieves good task
completion measures for different domain shifts. This shows
the effectiveness of O2A in learning tasks on a real robot. Videos
of all the results of the real robot experiments, including
demonstrations are available in our project-page.

6 CONCLUSION

We have presented O2A, a method for observational learning of
robotic manipulation tasks from a single (one-shot)
demonstration. The method works by extracting a perceptual
representation (the action vector) from videos using a pre-trained
action vector extractor. Our analysis shows that the pre-trained
action vector extractor can generalise to unseen robotic
manipulation tasks. Also experiments in simulation and with a
real robot show that O2A can perform well under different
domain shifts and outperforms baseline approaches.

A limitation in our work is the number of trial executions
required to learn a task. It would be interesting to see if we can
map the action vector from the demonstration directly to a initial
near optimal solution. Sim-to-real (Jeong et al., 2020) approches
could also be used to speed up the real robot experiments. Also, O2A is
currently evaluated with 2D manipulation tasks. Using 3D tasks such
as stacking or grasping would help to further understand the strengths
and limitations of the proposed method. Another future direction will
be to use additional sensing modalities like touch or audio for
situations where the demonstrations are not visually observable
(e.g. due to occlusion). Also, it would be interesting to study pre-
training on generic action datasets for other robotic manipulation
problems. Such pre-training could potentially address the lack of large
ImageNet (Simonyan and Zisserman, 2015) like datasets of robotic
manipulation task videos. Finally it would be exciting to extendO2A to
multi-stepmanipulation tasks. One approach to tackle this could be to
decompose these tasks into single-step tasks learnt using the current
method, within a curriculum learning framework.
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FIGURE 8 | Snapshot of the demonstration and execution of the corresponding optimal control sequences obtained for selected domain shifts from the real robot
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FIGURE 9 | Task completion measures for the task of pushing,
hammering, sweeping and striking in the real robot experiment. The result
shows that O2A performs well under different domain shifts on a real robot.
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