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Reinforcement learning simulation environments pose an important experimental test bed
and facilitate data collection for developing AI-based robot applications. Most of them,
however, focus on single-agent tasks, which limits their application to the development of
social agents. This study proposes the Chef’s Hat simulation environment, which
implements a multi-agent competitive card game that is a complete reproduction of
the homonymous board game, designed to provoke competitive strategies in humans and
emotional responses. The game was shown to be ideal for developing personalized
reinforcement learning, in an online learning closed-loop scenario, as its state
representation is extremely dynamic and directly related to each of the opponent’s
actions. To adapt current reinforcement learning agents to this scenario, we also
developed the COmPetitive Prioritized Experience Replay (COPPER) algorithm. With
the help of COPPER and the Chef’s Hat simulation environment, we evaluated the
following: (1) 12 experimental learning agents, trained via four different regimens (self-
play, play against a naive baseline, PER, or COPPER) with three algorithms based on
different state-of-the-art learning paradigms (PPO, DQN, and ACER), and two “dummy”
baseline agents that take random actions, (2) the performance difference between
COPPER and PER agents trained using the PPO algorithm and playing against
different agents (PPO, DQN, and ACER) or all DQN agents, and (3) human
performance when playing against two different collections of agents. Our experiments
demonstrate that COPPER helps agents learn to adapt to different types of opponents,
improving the performance when compared to off-line learning models. An additional
contribution of the study is the formalization of the Chef’s Hat competitive game and the
implementation of the Chef’s Hat Player Club, a collection of trained and assessed agents
as an enabler for embedding human competitive strategies in social continual and
competitive reinforcement learning.
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1 INTRODUCTION

Modeling competitive and cooperative behavior as a continual
adaptation mechanism is one of the most important and
challenging goals of human–robot interaction (Crossman
et al., 2018). The tasks that social robots are expected to
perform in the near future demand not only effective
perception of social cues but also the understanding of
intentions and contextual interactions, along with humanlike
decision-making. In particular, the development of cognitive
architectures to deal with social interactions has become of
great interest in recent years (Franklin et al., 2013; Sandini
et al., 2018; Gorbunov et al., 2019; Tanevska et al., 2020).
Social interactions are highly complex and to allow fluent and
natural cooperation with humans, artificial agents must take into
consideration the continual and dynamic aspects of human social
behavior. Providing the proper response, which sometimes needs
to be what the partner expects and sometimes needs to be novel
and interesting, is one of the most important measures to achieve
a natural engagement with an artificial agent (Hirokawa et al.,
2018).

A common problem, however, arises when developing
social agent behaviors that resemble the richness of human
interaction and decision-making. To design, evaluate, and
validate such systems in a lifelong learning scenario is an
expensive task, even in closed-loop scenarios, since many
examples from different persons behaving in different
manners and situations are needed. This usually makes
such scenarios not reproducible or challenging to evaluate
in long-term performance. Due to this limitation, most of the
current solutions for social cognitive architectures in robots
are based on interaction strategies focused on one-time simple
decision-making (Van de Perre et al., 2018) or rely upon
simple decision trees for generating somehow expected
behaviors based on a single-task observation space (Tuyen
et al., 2018).

Games are shown to be a useful tool for restricting the number
and type of interactions while still providing a richness of
interaction possibilities more similar to that encountered in
the real world. To address the problem of providing a
standard and easily reproducible online interaction scenario
for the development of artificial social agents, we developed
and validated a novel card game (Barros et al., 2021). The
game, named Chef’s Hat, was designed to be played by four
subjects and contains a complex strategy formation that is
directly affected by how the opponents play the game. The
entire game-flow was designed to be easily adapted to artificial
agents, without breaking the natural interaction observed when
humans play it.

In a recent investigation (Barros et al., 2020), we
demonstrated that learning agents can play the game and
present a good performance, measured as number of victories,
when playing against each other. We observed that each agent
learned a different gameplay style, based on the learning
algorithm each of them implements. All the evaluated agents,

however, learn in an off-line manner, which reduces their
applicability in a real-world scenario and replicates what has
been shown in most of the recently proposed simulation
environments.

In this study, we extend and formalize the online learning
version of the Chef’s Hat simulation environment. To validate
it, we introduce COmPetitive Prioritized Experience Replay
(COPPER) to provide reinforcement learning agents with the
ability to learn and adapt to other opponents continuously.
COPPER implements another weight on the prioritized
experience replay algorithm, relating specific experiences
with specific opponents. Moreover, COPPER is a continual
learning algorithm (Khetarpal et al.,) but can be distinguished
as a form of “personalized” learning.

Our experiments aim to demonstrate how our online
learning agents compare with the existing off-line Chef’s
Hat players (Barros et al., 2020) and in a smaller scale
with human players, by using an extension of the
environment that allows humans to play against the
trained agents. We extend three agents, based on deep
Q-learning (DQL) (Mnih et al., 2013), proximal policy
optimization (PPO) (Schulman et al., 2017), and actor-
critic with experience replay (ACER) (Wang et al., 2016),
to learn online how to play the game. We implement 12
versions of off-line and online agents in total to better explain
the contribution of COPPER to competitive reinforcement
learning. This way, we made these agents create personalized
strategies to beat their opponents.

Our entire evaluation is based on a tournament scenario
where all the developed agents play several rounds of Chef’s
Hat against each other. In our analysis, we evaluate the
behavior of the agents in terms of the number of victories
and track the performance over the number of played games.
We discuss how the online learning agents can adapt and
develop a fast-paced strategy-learning behavior when playing
against the off-line learning agents. We also analyze the role
of COPPER in adapting faster to an opponent’s strategy.
Finally, in our small-scaled human experiment, we are able to
discuss how there is a trend that demonstrates that the
performance of the online learning agents is better when
playing against humans than that of the off-line trained
agents.

As a contribution of this study, first, we introduce the
formalization of a reproducible and challenging simulation
scenario for multiple agents. Second, we provide the Chef’s
Hat Players Club as a collection of implemented, ready-to-use,
and evaluated agents for Chef’s Hat with the hope to facilitate the
future development of this environment and, moreover, to
facilitate the advancement of the research on online and
personalized competitive learning in social contexts. Third, we
propose the novel COmPetitive Prioritized Experience Replay
(COPPER) algorithm and analyze it in a competitive multiplayer
continual learning scenario, showing its advantages in
comparison to the Prioritized Experience Replay (PER)
algorithm.
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2 RELATED WORK

The limitation on designing, implementing, and evaluating
realistic interaction scenarios, in particular where multiple
people are involved and perform a lasting interaction, is
one of the problems that must be solved before the
deployment of artificial agents, such as robots, in real life.
Robots do not have universal skills yet, so most of the common
interaction scenarios provide a restricted action space. To
overcome this limitation, several human–robot– and
human–agent–based scenarios are developed as games, as they
have been proven to capture some relevant aspects of natural
group interaction. For instance, a game specially designed to favor
one player and disfavor another player in amultiplayer interactionwas
shown to provoke emotional reactions (Barakova et al., 2015), which
lasted during the repetitive games between the same players
(Gorbunov et al., 2017).

With the recent development of reinforcement learning
algorithms, the design and implementation of adaptable
simulation environments flourished (Brockman et al., 2016).
Such environments allow fast-paced simulations of different
tasks and the calculation of specific step-reward functions and
are the basis for the recent groundbreaking applications of deep
reinforcement learning. Most of these scenarios, however, are
not developed to be used in continual or online learning tasks,
nor on social interactions, as they usually focus on optimizing
one single task. Most of them simulate situations that are based
on single agents (Shi et al., 2019), classic reinforcement learning
problems (Cullen et al., 2018), robotic simulations (Zamora
et al., 2016), or, more recently, playing video games (Torrado
et al., 2018).

Although there has been a recent interest in continual and
online reinforcement learning (Lomonaco et al., 2020), most of
these applications and scenarios take into consideration single
agents or nonsocial interactions (Khetarpal et al., 2020). The
development of online reinforcement learning toward social
applications, in particular competitive environments, is yet to
be largely explored, although there exists a relevant effort on
multi-agent investigation (Nekoei et al., 2021). The focus on
generalization makes these solutions ideal for multitask
learning but hinders them from developing personalized
strategies when facing multiple opponents in a competitive
game, for example.

To evaluate online and competitive reinforcement learning in
real-world scenarios demands a strong and adaptable simulation
environment. Usually, this is achieved with game simulations,
where the decisions of an agent impact their future behavior.
These environments, however, mostly focus on single-agent tasks
or, at maximum, dyadic interactions. A simulation environment
that relies on online learning and provides a multi-agent task is
still not easily available for the general public. We envision that
with the formalization of the Chef’s Hat environment, we can fill
this gap.

The lack of such an environment, however, did not stop the
study of online reinforcement learning, and many researchers

recently proposed different solutions for it (Lillicrap et al.,
2015; Zhang et al., 2018). These range from transfer of learned
representations to constituting a lifelong learning system
(Abel et al., 2018), the development of a focused
experience replay (Schaul et al., 2015) for tuning a policy
network toward adapting to new environments (Ye et al.,
2020), or achieving scalable multitask learning with several
workers (Zhan et al., 2017). Although these solutions seem to
work well in complex tasks, most of them demand a higher
amount of training loops than off-line reinforcement
learning, which makes them not viable in a
human–artificial agent interaction scenario. Thus, in this
study, we propose a simple adaptation of a prioritized
experience replay to reduce the demand of many training
loops but still leverage the advantage of online learning
through personalization.

3 THE CHEF’S HAT SIMULATION
ENVIRONMENT

The scenario that we propose is based on a card game played
by four players. The card game scenario was chosen as the
underlying action–perception cycle development
environment as it represents a controllable situation,
where each player has its turn to take specific actions and
yet provides a ground for natural interaction between the
players. Within this scope, we needed a game that allows the
players to develop strategies while playing and that, within
the game mechanics, evoked a dynamic competitive
behavior.

In this regard, we recently developed and validated the Chef’s
Hat card game (Barros et al., 2021), illustrated in Figure 1. In this
study, we propose a 1:1 implementation of the game in an

FIGURE 1 | Illustration of the Chef’s Hat card game being played by
three humans and a robot.
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OpenAI-like gym environment (Brockman et al., 2016). Below,
we describe the game mechanics and the details of the
environment functionalities.

3.1 Embedded Chef’s Hat Mechanics
The development of the Chef’s Hat mechanics followed two
main principles: 1) to provide restricted, but natural,
competitive interaction between the four players and 2) to
provide turn-taking, that is, an organized structure, in which
an agent has a supportive infrastructure and capacity to
process incoming information and generate behavior
without breaking the fluidity of the interaction.

The game simulates a kitchen environment, and it has a role-
based hierarchy: each player can either be a Chef, a Sous-Chef, a
Waiter, or a Dishwasher. The players try to be the first to get rid of
their ingredient cards and become the Chef. This happens for
multiple rounds (or Shifts, each of them detailed in Algorithm 1)
until the first player reaches 15 points.

As exhibited in Algorithm 1, during every Shift there are
three phases: Start of the Shift, Making Pizzas, and End of the
Shift.

At the Start of the Shift, the cards are shuffled and dealt by
the players. Then, the exchange of roles starts based on the
previous Shift end positions. Whoever finished first becomes
the Chef, whoever finishes second becomes the Sous-Chef,
third the Waiter, and fourth the Dishwasher. The change of
roles is necessary to change the game balance, rewarding the
players who finished first in the last Shift and encouraging
them to win the next one. Once the roles are exchanged, the
players have the chance to do a special action. If a player has
two jokers at the start of the Shift in their hand, they can
choose to play their special action: in the case of the
Dishwasher, this is Food Fight (the hierarchy is inverted),
and in the case of the other roles, it is Dinner is served (there
will be no card exchange during the Shift). Then, unless the
action “Dinner is served” is played, the exchange of the cards
starts. The Dishwasher has to give the two cards with the
highest values to the Chef, who in return gives back two cards
of their liking. The Waiter has to give their lowest-valued
card to the Sous-Chef, who in return gives one card of their
liking.

Then, the Making of the Pizzas starts. The person who
possesses a “Golden 11” card may start making the first pizza of
the Shift. A pizza is prepared when ingredient cards are played
on the pizza base on the playing field. A pizza is made when no
one can (or wants to) put on any ingredients anymore. The
rarest cards have the lowest numbers. A card can be played if it
is rarer (i.e., lower face values) than the previously played
cards. The ingredients are played from the highest to the lowest
number, so from 11 to 1. Players can play multiple copies of an
ingredient at once but always have to play an equal or greater
amount of copies than the previous player did. If a player
cannot (or does not want to) play, they pass until the next pizza
starts. A joker card is also available, and when played together
with other cards, it assumes their value. When played alone,
the joker has the highest face value (12).

Algorithm 1 The playing flow of one Shift of the Chef’s Hat
card game.

At the end of the Shift, the new roles are distributed among the
players according to the order of finishing, and every player gets
the number of points related to their role. The Chef gets five
points, the Sous-Chef gets three points, theWaiter gets one point,
and the Dishwasher gets 0 points. The game continues until one
of the players reaches 15 points.

The ingredient cards, illustrated in Figure 2, needed to be
easily recognizable by all potential players, including humans and
robots, both when played on the playing field and when
exchanged among players at the start of the Shift. The pictures
in the cards are easy to recognize for human players, and to ease
the recognition by the robots, QR-codes were added. The QR-
codes allow a camera placed on the top of the playing field to
capture the overall game state and save it. This is extremely
important when creating a learning database to be used together
with the virtual environment.

The cards are to be placed on the playing field, illustrated in
Figure 3. To guarantee that the players lay down the cards without
stacking them and hindering their recognition by automatic
systems, we designed the playing field to have 11 different
marked places in which players could place their cards on the pizza.

3.2 OpenAI Gym–Based Environment
OpenAI Gym Brockman et al. (2016) is a very popular toolkit that
facilitates the development and the dissemination of simulation
environments for training reinforcement learning agents. It
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enables the creation of standardized environments that allow the
establishment of a set of specific rules for a simulation, the
calculation of varied types of rewards, and the logging and
visualization of training artificial agents. Recently, several
simulation environments were released using the OpenAI
Gym, which facilitates its reproduction and evaluation with
different reinforcement learning algorithms.

We ported the Chef’s Hat game into the OpenAI Gym and
implemented all the complex game rules and mechanics. The
environment is freely available,1 and we envision that this
environment will help to standardize the learning of game

FIGURE 3 | Playing field where the cards are placed, representing a pizza board.

FIGURE 2 | Ingredient cards and the joker, with their corresponding face numbers. The lower the number, the rarer the card.

1https://github.com/pablovin/ChefsHatGYM
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FIGURE 4 | Example of possible actions given a certain game state. The columns represent the card face values, and the rows represent the number of cards to be
discarded. The letter “j” represents the presence of a joker. The lookup table is created on the fly, and it marks all the actions which are allowed based on the game
mechanics (blue regions) and the ones which are not allowed (gray regions). For this given game state, the player would be allowed to only perform the actions marked
with the green dots.
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strategies within our card game but also to collect and share data
for different reinforcement learning–based players.

The environment calculates the game state by aggregating the
current player’s hand and the current cards on the board. Using
this standard state representation, we can give the learning agents
the possibility to learn specific strategies purely based on the cards
they hold and the cards which were displayed. Of course, as the
environment is fully customizable, the current game state can be
composed of any other variable which might help the agent to
succeed in their task.

Each action taken by an agent is validated based on a lookup
table, created on the fly, based on the player’s hand and the cards
in the current playing field, to guarantee that a taken action is
allowed given the game context. The lookup table is extremely
important for games when humans are involved as it guarantees
that the game rules are maintained.

The actions are calculated based on the number of possibilities
of the lookup table. The standard game, with a deck of 121 cards,
has a total of 200 possible actions, which capture all the possible
moves a player can make: to discard one card of face value 1
represents one move and to discard 3 cards of face value 1 and a
joker is another move, while passing is considered as yet another
move. Figure 4 illustrates an example of calculated possible
actions given a game state. The blue areas mark all the
possible action states, while the gray areas mark actions that
are not allowed due to the game’s mechanics. We observed that
given this particular game state, a player would only be allowed to
perform one of three actions (marked in green), while any other

action (marked in red) would be considered as invalid and not
carried out.

The environment allows the customization of the game itself. We
can easily choose how many players will be playing the game, how
many cards a deck can have, and howmany of the playing agents are
to be trained. The agents are also customized and follow a standard
implementation protocol. This allows the implementation and
deployment of a large variety of agents, from complex learning
agents that might take external factors to learn the game strategy
(e.g., from an external camera reading a real game) to naive agents
that do specific actions following simple rules.

For each action that an agent performs, the game environment
calculates a specific reward. Again, as the environment is fully
customizable, the reward calculation can be updated according to
the needs of the training agents. For example, giving the highest
reward for an agent that performs a valid action, that is, an action
that follows the game rules, can be used to train an agent to learn
the rules of the game. Later on, this reward can be updated to
make the agent learn how to win the game.

Another aspect of our environment is the logging of actions
and states. It allows us to create snapshots of each played game,
which can be used to create playing datasets which are extremely
helpful for further training intelligent agents. Each step of the
gameplay is recorded in a different set of files and can be retrieved
later on with ease.

The stored games can be used by the environment as a
modulation for specific agents to behave in a particular
manner. That allows information obtained from real-world

FIGURE 5 | Chef’s Hat Online interface allows humans to play against trained agents. This solution allows the collection and exporting of the entire gameplay in a
format compatible with the Chef’s Hat Gym environment.
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games, collected while real persons are playing them, to be easily
inserted into the environment as primitives for the training of the
agents. The game status of the real games can be obtained via a
single camera facing the playing field and when saved in the same
format as the one used by the environment, can be imported and
used during the game.

3.3 The Chef’s Hat Online
In order to facilitate the integration and evaluation of the
developed agents in a real-world scenario, we depict the Chef’s
Hat environment in the Chef’s Hat Online game2, illustrated in
Figure 5.

Chef’s Hat Online is a web-based interface that allows
experimenters to set up a game where a human can play
against three different agents. The game follows the same rules
as the physical game and has an interface completely adapted for
web-based interaction. It collects all the information the Gym-
based environment does and saves it in the same format, allowing
the use of all the logging and plotting to generate tools already
present in the Gym-based environment.

4 THE CHEF’S HAT COMPETITIVE
LEARNING AGENTS

The general Q-learning algorithm learns to maximize the
probability of choosing an action that leads to maximum
reward. For that, it calculates a Q-value (quality value) for
each action given a state and updates the policy, in our case
represented by a neural network, to maximize the expected
reward. Using a temporal difference calculation, it can take
into consideration a sequence of steps that leads to the final
state. In our simulation environment, the final state is achieved
when the player has no cards left in their hand. The maximal
reward is gained once the player is the first one to reach the
final state.

4.1 Defining Chef’s Hat Q-Learning
The typical Q-learning algorithm represents a function Q as
follows:

Q : SxA→R, (1)

where S is the state, in our case represented by the 28 values
composed by the cards at hand and the cards at the board. The
actions, A, are expressed using the 200 discrete values for all the
possible actions.

To update the Q-values, the algorithm uses the following
update function:

Q′(st , at) � Q(s, a) + α × (TD), (2)

where t is the current step, α is a predefined learning rate, and TD
is the temporal difference function, calculated as follows:

TD � rt × c ×maxQ(st+1,at) −maxQ(st+1,at), (3)

where rt is the obtained reward for the state (st) and action (at)
association, γ represents the discount factor, a modulator that
estimates the importance of the future rewards, andmaxQ(st+1,at)
is the estimate of the Q-value for the next state.

To improve the capability of Q-learning algorithms,
experience replay is used to store the agent’s own experience
and use it to improve learning. It saves important steps taken by
the agents to increase the available data for learning state/action
pairs through batch-learning.

4.2 Competitive Prioritized Experience
Replay
When applied to online learning problems, Q-learning–based
reinforcement learning usually presents suboptimal results. The
problem is even more critical when applied to multi-agent
competitive scenarios, where an agent has to counter the
opponent’s actions. To achieve an optimal generalized
behavior, the agent must acquire a large enough experience,
which usually takes time and a high number of experiences. In
the proposed scenario, the use of stored experiences biases the
agents to understand that all the adversaries play the game
similarly to each other. In a competitive scenario, this is
usually not the case.

Prioritized experience replay (PER) (Schaul et al., 2015) can
help us handle the online update aspect of competitive
learning. Originally, experience replay adds a weighted
probability [P(i)] on the recorded experience pool, so that
each experience has a different meaning when it is used to
update the Q-values. P(i) is calculated based on the network’s
loss after calculating TD in a forward pass of the network
(using an input i) as follows:

P(i) � pia
∑kpka

, (4)

where a indicates how much we want to rely on the priority, p
is the priority, and k is the total number of saved experiences. It
lacks, however, the ability to individualize the learning toward
a specific opponent. So every time an agent learns using PER, it
pulls from the most successful previous experiences and
iterates over them, updating its knowledge. This creates a
generally good agent, but it is unable to adapt to specific

TABLE 1 | Structure of the Chef’s Hat Players Club containing a total of 14
different agents: two dummy agents and 12 learning agents, each of them
implementing the listed learning strategies with DQL, PPO, and ACER.

Name Type Training Strategy

Dr Dummy – Random
Do Dummy – Discard one card
offs Learning Off-line Self-play
offn Learning Off-line Versus naive
onc Learning Online COPPER
one Learning Online PER

2https://github.com/pablovin/ChefsHatOnline
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opponents quickly. To deal with that, we update PER by
adding an individualized term.

As Chef’s Hat is a multiplayer competitive game, our
experience replay adds another piece of information to be
weighted, which is the relevance of this experience when
playing against that specific opponent (o), as shown below:

P(i) � o
pia

∑kpka
. (5)

We update o based on the relative performance of the agent in
comparison with those of the opponents at the end of each game,
so if the agent was better than the opponent, these experiences
have a higher impact.

5 EVALUATING ONLINE LEARNING
AGENTS ON CHEF’S HAT

To best evaluate our COPPER-based agents, we first establish a
set of opponents, the Chef’s Hat Players Club, and the
tournament scenario. Each of our experiments uses agents
from the Players Club and investigates different aspects of
COPPER-based agents.

5.1 Chef’s Hat Players Club
To provide a general understanding of the impact of our proposed
competitive continual learning agents on the Chef’s Hat
environment, we introduce here the Chef’s Hat Players Club3—a
collection of implemented and optimized agents for Chef’s Hat.

First, we implement two dummy agents: one that performs
randommovements (Dr) and one that only discards one card at a
time (Do). Then, we developed versions of agents based on deep
Q-learning (DQL) (Mnih et al., 2013), proximal policy
optimization (PPO) (Schulman et al., 2017), and actor-critic
with experience replay (ACER) (Wang et al., 2016). These are
the most popular, and effective, reinforcement learning
algorithms for game scenarios.

In our previous study (Barros et al., 2020), we proposed two
different manners to train these agents off-line on Chef’s Hat:
make them play against the naive agents (offn) or against different
generations of themselves in a self-play strategy (offs). In the
experiments reported in this article, we will use both variations.

For online learning, we will implement our competitive
prioritized experience replay for the three agents (onc). Also, we
implement versions of them with the traditional experience replay
(one), to better understand the impact of the proposed solution.

In total, the Chef’s Hat Players Club is composed of 14
different agents, summarized in Table 1.

The Supplementary Material to this article contains a detailed
explanation of how each of the agents was trained and optimized
to play the game. It also contains a detailed description of the final
architecture of each agent.

5.2 Tournament Scenario
To provide an experimental setup that helps us to better
understand the contributions of the proposed COPPER-based
agents without requiring an enormous set of combinatorial
experiments, our main evaluation happens in the form of a
tournament among all the agents on the Chef’s Hat Players Club.

Each tournament is composed of two brackets of hierarchical
playing phases. In each phase, the agents will face each other, and
the two victorious ones will advance to the next phase and play
against themselves. The best agents of each bracket play against
each other, and the victorious agent is crowned the winner of the
tournament.

To properly assess each of the types of learning agents, we
implement one instance of each of them. To complement the
agents in order to allow the tournament to happen, we implement
an equal number of dummy agents until we have a total of 32
agents. In our experiments, we have 3 phases per bracket and a
final game to crown the champion.

5.3 Experimental Setup
Our experimental scenario serves as our ablation study and
baseline and is the basis for our discussion and analyses. On
it, we run 10 tournaments in a row, which allow the online
learning agents to learn competitive interaction. We repeat this
experiment 1,000 times.

In our analysis, first, we compute and analyze the average
number of victories per agent and per tournament run. This
informs us of the performance of each agent, giving us the
differences between off-line and online agents and between the
PER- and COPPER-based agents.

Our second experiment focuses on examining the differences
between COPPER and PER when playing against different types
of agents. We create two game setups: one where the online
learning agent plays 10 games in a row against three types of
different agents (PPOoffs, DQLoffs, and ACERoffs) and the second
one where the online learning agent plays 10 games in a row
against the same types of agents (three instances of DQLoffs). To
simplify our analysis and to focus on explaining the differences
between COPPER and PER, the online learning agents will be
implemented using only one type of learning algorithm, PPOone
and PPOonc.

In the third experiment, humans play against the agents using
the Chef’s Hat Online variant of the game. As playing with
humans is a costly task (in terms of time and effort required
to organize and collect participants) and since our goal is to
investigate the differences between off-line and online learning
and between PER-based and COPPER-based agents, we simplify
this experimental setup in terms of evaluated agents. We asked 10
human players to play 10 games against two sets of agents: the
first composed of PPOoffs, PPOoffn, and Dr and the second
composed of PPOonc, PPOone, and PPOoffs. The PPO
implementations were chosen because they are the ones with
the best performance in general when compared to the other two
reinforcement learning algorithms. We calculate the average
number of victories in each scenario. The first set of
experiments will help us to establish the off-line benchmark,
while the second one will illustrate the differences between online3https://github.com/pablovin/ChefsHatPlayersClub
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and off-line agents, in terms of performance, and between
COPPER-based and PER-based online learning.

6 RESULTS

6.1 Tournament Results
Our first experimental results, the average number of victories
per tournament, are displayed in Figure 6, together with their
standard deviation. By plotting these results per agent type, we
can visualize the impact of online learning in each of the

reinforcement learning algorithms. For all three learning
agent types, the DQLoffs variation starts with the highest
average number of victories in the first games, as was
expected based on our previous results (Barros et al., 2020).
However, after just a couple of games, the online learning agents
start to increase their number of victories and in all three types
of reinforcement learning algorithms, overcome the off-line
learning strategies.

When compared with each other, we see that the COPPER-
based agents exhibit a more steep learning curve, which shows
that the proposed competitive version of the prioritized

FIGURE 6 | Average number of victories (Y-axis) for 1,000 runs of 10 tournaments (X-axis) in a row per agent type.

FIGURE 7 | Average number of victories (Y-axis), in 1,000 runs of 10 tournaments (X-axis), per experiment type: online learning agents vs. the same types of agents
and online learning agents vs. different types of agents.
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experience replay enhances the learning of specific strategy
winning patterns when playing against different agents. Also,
we see that the COPPER-based agents reach a higher average
number of victories, without any error overlap, showing that
besides a stable learning curve, they also learned more effective
strategies at the end of the 10 tournaments.

6.2 COPPER vs. PER
Analyzing the results of our second experiment in Figure 7,
where we create games that have PPOone and PPOonc playing
against a group of the same type of and different agents, we
observe the advantage of the online learning methods. In all
scenarios, the online learning agents present the best
performance, in terms of average victories, by the end of the
10 games’ run.

We can also observe that COPPER achieves a higher number
of victories in fewer games than the PER agents. As COPPER has
specific weights on the experience replay per type of opponent, it
learns how to adapt to these specific opponents’ strategies, while
PER relies on a general experience pool, and thus, tries to create a
general, and in this case more ineffective, strategy.

When playing against the same type of agents, the behavior of
COPPER and PER is similar, which is expected as there is no
specific weight attribution to the replay pool. Thus, the agents
learn using the same algorithm.

6.3 Human on the Loop
When playing against a human, we observe (plotted in Figure 8)
that none of the agents is particularly effective. We see, however,
that when playing against the online learning agents, human
performance drops toward the end of the game, indicating that
the online agents’ performance increases. We also see that the
COPPER-based agent achieved the best average victories when
compared with the other agents.

7 DISCUSSIONS

Our experiments demonstrate the main advantages of the COPPER
algorithm and, with this, the advantages that come from using
dynamic and online adaptation in multiple agents’ contexts. First,
COPPER improves the performance of online reinforcement
learning in the Chef’s Hat game. Second, the proposed three

experimental setups help us to quantify the degree of these
improvements. However, numbers and benchmarking are not the
main contributions of this study; rather, the intended contribution is
summarized in the following subsections.

7.1 Chef’s Hat Simulation Environment
In this article, we describe the implementation, the evaluation,
and the experimental testing of a multiplayer competitive game
that involves elements of reinforcement learning that are suitable
for serial play instances. Also, we evaluated and reported a series
of complex experiments that involve standard reinforcement
learning elements—a serializable state and action
representation, a world representation that is easy to explain
and to understand but difficult to master, and a decision-making
process that is not trivial. Moreover, differently from existing
environments, we implement the Chef’s Hat competitive
scenario, which is designed to enable data collection related to
human play strategies and therefore to facilitate the modeling of
online interactions between the agents. Future development will
make the resulting model unable to define the playing strategies
of a social robot.

Because learning the rules of a game, the Chef’s Hat game in
particular, is not enough to generate competitive decision-
making for artificial agents (Bai and Jin, 2020), learning
heuristics of how the opponents play the game have a strong
impact on the effectiveness of the learning agents. Allowing the
agents to learn from a well-structured scenario and to adapt to
continuous interactions to master how to play against other
agents is one of the most significant contributions of our
proposed simulation environment.

7.2 Chef’s Hat Online
The web interface of the Chef’s Hat simulation allows a hassle-
free setup to include human-in-the-loop experiments. The
capability to play the same game using the same structure, as
in the simulated environment, gives us a powerful tool to extract
heuristics from human behavior and directly compare it with data
from the simulation environment.

In our experiments, the Chef’s Hat online implementation
allowed us to demonstrate that our agents, although very effective
when playing against each other, are still not a match for humans.
The development of agents capable of playing against humans
will be achieved when we start tackling the competitive aspects of

FIGURE 8 | Average number of victories (Y-axis), for 10 human players, per agent type when playing 10 games in a row (X-axis).
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Chef’s Hat, in particular by understanding and modeling how
humans play the game. We believe that using the Chef’s Hat
Online tool to evaluate different aspects of human–agent
interaction will endow the development of much more
complex and effective agents.

7.3 The Chef’s Hat Players Club
Yet another contribution to the community of online
reinforcement learning is the implementation of 12 different
types of learning agents for the Chef’s Hat game. The Chef’s
Hat Players Club is presented as an established collection of
players, with an associated benchmark and behavioral analysis,
that can serve as the basis for the future development of online
reinforcement learning. Agents that are developed following the
Players Club structure can take part in the Chef’s Hat simulation
environment, which will facilitate the development, assessment,
and reproducibility of more complex algorithms. The integration
of the Players Club with the Chef’s Hat Online interface also
allows for the fast development of novel agents that leverage
human data.

7.4 We Dig for COPPER, We Found Gold!
COPPER is a simple, yet efficient, solution for online and
competitive learning based on Chef’s Hat. It has, however, the
following limitation: as it is based on the experience replay, the
more games an agent plays, the more examples are collected on
the experience replay.

Our experiments gave us the insight that COPPER will
stabilize the learning of the agent at some point, which makes
it more robust against known opponents. If the COPPER-based
agent plays against a large number of players, in theory, it would
be able to generalize and play against several different types of
opponents.

The main advantage of COPPER compared to the established
PER algorithm is the speed at which the adaptation to specific
players happens. All of our experiments demonstrated this
characteristic, including when playing against the most
complex agents of all—humans.

7.5 Limitations
The RL agents, especially in multiplayer settings, are susceptible
to large variances in performance, depending on conditions.
Therefore, although COPPER has a faster adaptation than
PER in the scenario with different opponents and the
COPPER-based agent achieved the best average victories when
compared to the other agents in our experiments, performance
variance is not considered and more data gathering and statistical
validation will be needed in the future.

8 CONCLUSIONS

In this article, we introduce COPPER, a competitive experience
replay algorithm for online reinforcement learning. To be able to

better explain, assess, and provide our solution to the research
community, we also propose a series of tools as follows: a novel
simulation environment that implements a card game (Chef’s
Hat) in a 1:1 manner; the Chef’s Hat Online interface that allows
assessment and data collection from agents playing against
humans; and the Chef’s Hat Players Club, a collection of
implemented, trained, and benchmarked agents in the Chef’s
Hat game.

Chef’s Hat was shown to be a plausible candidate for multi-
agent and dynamic competitive interactions. We run an extensive
number of experiments and demonstrate that our COPPER-
based agents learn faster and more effectively than off-line and
experience replay–based online agents.

Although the holistic analysis of COPPER demonstrates that
its simple architecture learns how to adapt to different opponents
playing Chef’s Hat over time, it still relies on several collected
samples. We believe that investigating different opponent
prediction mechanisms could help even further in the
development of next-level competitive learning agents. In this
study, we scratched the surface of an investigation of the behavior
and performance of the COPPER-based agents against human
players. Exploring this side of the work and understanding the
modeling of dynamic strategies from humans is important
future work.
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