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Recognizing the actions, plans, and goals of a person in an unconstrained environment

is a key feature that future robotic systems will need in order to achieve a natural

human-machine interaction. Indeed, we humans are constantly understanding and

predicting the actions and goals of others, which allows us to interact in intuitive and

safe ways. While action and plan recognition are tasks that humans perform naturally

and with little effort, they are still an unresolved problem from the point of view of artificial

intelligence. The immense variety of possible actions and plans that may be encountered

in an unconstrained environment makes current approaches be far from human-like

performance. In addition, while very different types of algorithms have been proposed

to tackle the problem of activity, plan, and goal (intention) recognition, these tend to

focus in only one part of the problem (e.g., action recognition), and techniques that

address the problem as a whole have been not so thoroughly explored. This review

is meant to provide a general view of the problem of activity, plan, and goal recognition

as a whole. It presents a description of the problem, both from the human perspective

and from the computational perspective, and proposes a classification of the main types

of approaches that have been proposed to address it (logic-based, classical machine

learning, deep learning, and brain-inspired), together with a description and comparison

of the classes. This general view of the problem can help on the identification of research

gaps, and may also provide inspiration for the development of new approaches that

address the problem in a unified way.

Keywords: activity recognition, behavior recognition, action recognition, plan recognition, goal recognition,

human-computer interaction, human-machine interaction, human-robot interaction

1. INTRODUCTION

The ability to recognize human actions, plans and goals is a necessary skill that future robotic
systems will need to implement in order to achieve natural and intuitive human-machine
interaction. In fact, this is a task that we humans perform constantly when we interact with or
observe other humans. However, we do it in such a natural and effortless way that we are usually
not aware of how necessary it is for our daily-life activities. For instance, if we see someone doing
the dishes, we understand what that person is doing by simply observing the body movements and
the context in which the action is taking place (e.g., the place, the objects involved...). In addition, we
are able to guess what the person is trying to achieve, and what will be the next actions to reach that
goal (e.g., after washing the dishes, the person will start to rinse them). This way, this ability allows
us to understand the intentions of the observed person, as well as to predict future actions. This
information, in turn, allows us to take better-grounded decisions (e.g., help the person complete
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the task). While the example just exposed is a very simple one,
the number of possible actions and intentions that a person may
take is actually countless and of very different nature, and the
usefulness of this ability in our daily life is immeasurable (e.g.,
when we collaborate with others, when we move in crowded
places...). Thus, we can consider the ability to recognize others’
actions and intentions a key skill to achieve natural human-
human interaction.

Having said that, it is apparent that computational systems
designed to accomplish natural and intuitive human-machine
interaction will need to be equipped with modules that allow
them to recognize human actions and goals with a close-to-
human performance. Indeed, humans find more intuitive those
interactions that they are accustomed to. Research has shown
that people respond to virtual agents or human-like robots in
social ways and tend to interact with them similar to how they do
with people (Sproull et al., 1996). Therefore, mimicking human-
human interaction seems a good approach to achieve natural
human-machine interaction. On the other hand, this capacity not
only makes the interactions with the system more natural, it also
makes the system more prepared for different tasks with humans
in the loop, allows it to model and predict human behavior, and
can contribute to safety (Akkaladevi and Heindl, 2015).

However, while we humans perform these tasks naturally and
effortlessly, this happens because we are indeed very effective
at it, and computational systems are still far from human-
like performance, especially for the case of real unconstrained
environments. This occurs due to several reasons that make it a
complex problem to cope with. One of the issues that arises when
dealing with this problem in a real unconstrained environment
is the immense variety of possible actions and plans that may
be encountered. As we said before, the number of actions and
intentions that we are able to perform is countless, and we
humans are still quite good at recognizing them. Furthermore,
we are very good at understanding and learning actions and plans
that we have never seen before. Another issue to consider is
the fact that many different actions and plans may seem almost
identical on what the performed movements are, while having
completely different semantic meanings (e.g., lifting your leg in
a ballet performance or in a fight). At the same time, different
instances of the same action or plan may look completely
different from each other in terms of the movements performed,
while having the same semantic meaning (e.g., standing on tiptoe
or getting on a chair to reach a high object). Different people
perform the same activity in different ways, and even the same
person may perform it in very different ways at different times.
The development of an effective algorithm that is able to cope
with these and other challenges at a close-to-human performance
level seems critical if we want to achieve the desired natural
human-machine interaction.

Much effort has been done in the field of activity, plan and
goal recognition to deal with these issues, and many systems have
been developed for very different applications, from surveillance
to video games. However, most of these systems address only a
part of the problem (e.g., activity recognition, plan recognition,
etc.). Since these sub-problems can be considered components of
the larger problem, in this review we try to provide an overview

of the problem as a whole. This holistic view may inspire the
development of new solutions that address the problem in a
unified way.

This article reviews and surveys the literature around the topic
of activity, plan, and goal recognition, and it is organized as
follows: section 2 presents an overview of the main mechanisms
that are believed to be behind this ability in humans. Section 3
defines the main concepts involved in the problem. Section 4
presents and compares the main types of approaches that have
been proposed to address it. Finally, section 5 discusses on this
literature study, the challenges that are still to be faced and
possible future directions.

2. ACTION, PLAN, AND INTENTION
RECOGNITION IN HUMANS

The ability to attribute mental states to others is what
philosophers and psychologists call theory of mind (Premack
and Woodruff, 1978). The term refers to our presumption that
others have a mind, as we do not have direct access to it
and we just infer its existence from observations (Premack and
Woodruff, 1978). This ability allows us, first, to understand that
other people’s thoughts may be different from ours, and second,
to think about what others (and also ourselves) are thinking
(Schaafsma et al., 2015), including emotions, desires, intentions,
beliefs, and knowledge. While it is related to the concept of
empathy, it is not the same: Empathy refers to emotional
perspective-taking, while theory of mind concerns cognitive
perspective-taking (Hynes et al., 2006). This ability contributes
to social skills, such as engaging in meaningful conversations,
resolving conflicts, maintaining intimacy in friendships, and
being more socially competent in general (Wilde Astington,
2003). In particular, it allows us to understand why someone
acts in a certain way and to predict how someone will act (Kloo
et al., 2010). In fact, several research studies have shown that
humans attribute plans and goals to observed agents performing
sequences of actions, and are able to predict the next actions
(Schmidt et al., 1978; Cohen et al., 1981). All these skills also
seem to contribute to executive function (which is responsible
for the cognitive control of behavior), and this contribution
seems to be bidirectional. This way, social competence has been
shown to take part in the development of executive function
(Bierman et al., 2009), and vice versa (Alduncin et al., 2014),
with children with lower levels of social competence showing
deficits in executive function. An interesting fact about the theory
of mind is that children start developing it at around age 3–4
(Kloo et al., 2010), and therefore younger children are unable
to understand that other people’s beliefs or knowledge may
be different from their own (Wellman and Liu, 2004). Then,
these abilities continue being developed along adolescence and
into adulthood.

There are mainly two theories that try to describe how this
theory of mind works: the theory-theory and the simulation
theory. The theory-theory states that humans hold a basic
theory of psychology that allows them to infer the mental
states of others (Ratcliffe, 2006). This way, children develop
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this ability by observing the world, gathering data, and
revising their theories or beliefs accordingly (Scholl and Leslie,
1999), allowing them to better understand the intentions
of others and predict their behavior. A detailed model
that tries to describe the mechanisms behind this theory
is the BDI (belief-desire-intention) model (Bratman, 1987)
(which has been used in the development of intelligent
software agents).

Regarding simulation theory, it states that we infer the
intentions and future actions of others by putting ourselves in
their place and simulating their cognition, using our mind as a
model of theirs (Gordon, 1986). This way, this inference implies
activating mental states that, if carried into action, they would
produce a similar behavior to the one observed. This explanation
has several advantages over other explanations of the theory of
mind: It can easily explain some behaviors in children at much
earlier ages than other theories, and it is a muchmore economical
explanation. In addition, it has a high biological evidence, with
mirror neurons being a good candidate supporting the validity of
this theory.

Mirror neurons are a class of neurons, discovered in rhesus
monkeys, that fire both when the monkey performs a motor
action, such as grasping an object, and when it observes another
individual (monkey or human) performing the same or a similar
action. However, they do not fire when the monkey only observes
the object or the hand mimicking the grasping without a
target object (Gallese et al., 1996). Neurophysiological and brain
imaging experiments have shown strong evidence that a circuit
analogous to the mirror neuron system from monkeys exists in
humans (Rizzolatti and Craighero, 2004). This way, since mirror
neurons fire both when we observe and when we perform an
action, they are believed to be involved in our understanding of
the states and actions of others, bymirroring the observed actions
in our brains as if they were being performed by us (Gallese
et al., 2004). This same mechanism seems to be also involved in
other functions, such as imitation, as it provides motor copies of
others’ actions (Iacoboni et al., 1999). There is also evidence that
mirror neurons take part in intention understanding: Research
has shown that observing an action in a context that allows
us to understand the intention of the action activates mirror
neuron areas that observing the action without the context
does not (Iacoboni et al., 2005). This way, several authors have
suggested that mirror neurons are the basis for the theory of
mind, supporting the simulation theory (Gallese and Goldman,
1998).

3. THE PROBLEM OF ACTIVITY, PLAN,
AND GOAL RECOGNITION

3.1. Problem Definition
Having had this overview about the mechanisms that are believed
to describe action, plan and intention recognition in humans, we
are ready to define the corresponding problem in machines, as
well as to introduce its main challenges. We begin defining the
concepts of activity, plan and goal recognition in the context of
artificial intelligence (Sukthankar et al., 2014; Keren et al., 2019):

• Activity recognition refers to the problem of analyzing and
adequately labeling low-level data from humans or other
autonomous agents performing some action (Vrigkas et al.,
2015; Jobanputra et al., 2019). This task usually involves
processing noisy low-level sensory input streams, looking
for patterns of interest in these data, discretizing them into
meaningful subsequences and labeling each of these temporal
subsequences. Sometimes it is also referred to as behavior
recognition. The decrease in the sensor costs, together with
the advancements in machine learning and big data and the
spread of wearable devices, have boosted this field in the recent
years and brought it to the forefront of research in computer
vision and ubiquitous computing. Typically, these algorithms
work with data coming from video cameras, accelerometers,
motion capture sensors, RFID sensors, smart badges, Wi-Fi
or Bluetooth signals, or GPS sensors, among others. These
data are used to recognize very different types of activities,
from daily-life activities, such as walking or sitting to more
application-specific activities, such as those performed by a
factory worker or a football player. A typical task within
the problem of activity recognition is action recognition

(or action understanding). Action recognition deals with
recognizing short spatiotemporally localized actions or events
(Poppe, 2010). This way, action recognition tries to segment
the most elementary or primitive component of the activity
(e.g., picking a dish) while activity recognition may work with
longer sequences (e.g., washing dishes).

• Goal recognition refers to the problem of inferring the
intention of humans or other autonomous agents by observing
a set of actions performed by those agents or their effect on
the environment (Han and Pereira, 2013). This task usually
gets as input an ordered sequence of action labels (which
may come from an action recognition module) and possibly
a set of conceivable goals, and outputs the goal label that best
explains the observed actions (or a set of labels with their
corresponding probabilities). This task is often also referred
to as intention recognition or intent recognition. However,
several authors discourage the use of these terms due to the
ambiguity of the words intention and intent, which are defined
in very different ways across fields, and even within the same
field (e.g., Xu et al., 2009 included the whole plan as part
of what they called intention). On the other hand, the term
intent recognition (or intent classification) is especially used
to refer to the particular task of understanding the intention
of a person from a sentence in natural language, making it
not the most appropriate to refer to the more general task
of goal recognition. In addition to the apparent differences,
goal recognition also differs from activity recognition in the
predictive component: Goal recognition tries to infer the final
objective of the agent, which will imply a set of future actions,
while activity recognition focuses on the action occurring at
that instant (Kelley et al., 2010).

• Plan recognition is the problem of understanding the goal
of humans or other autonomous agents, as well as the set of
actions that have been or will be performed by those agents
to reach that goal, given a set of observed actions performed
by those agents (Carberry, 2001). This task has several things
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in common with the goal recognition task, but it is more
general: It includes the goal recognition task and complements
it with the task of defining a structure with the set of observed
and predicted actions that will lead to that goal, as well as
their relationships.While it provides a more complete solution
to the problem than goal recognition, goal recognition may
be more appropriate for applications where we need a fast
detection of the goal and the detailed plan is not relevant.

It should be pointed out that, however, inmany cases, recognition
problems do not clearly belong to one of the classes described
above, but they may have components of several of them. For
example, in hierarchical architectures, the task of a layer may
be seen as goal recognition with respect to the actions coming
from the lower layer, but it may be considered action recognition
from the point of view of a higher layer that takes its outputs as
elementary actions. Figure 1 illustrates this idea of hierarchy. For
example, task “Go to bakery” can be seen as an action that can be
taken to achieve goal “Get bread,” but it can also be seen as a goal
that can be achieved through a sequence of actions (“Exit house,”
etc.). Similarly, “Exit house” can also be seen as a goal for lower-
level actions (e.g., “Open door”), and “Get bread” as an action
to perform higher-level goals (e.g., “Have lunch”). Figure 1 also
shows how different plans formed of different sets of actions may
lead to a same goal.

This way, we can define the general problem of activity, plan
and goal recognition as the problem of, given a set of observations
from the environment and/or the observed agent(s) (e.g., sensory
streams, action labels, etc.), and, possibly, given a set of actions
that can be performed (e.g., moving to get a better angle of
view), finding the activity, plan, and/or goal(s) that best explain
those observations. The problem is composed of three elements:
the environment, the observed agent(s) [the actor(s)], and the
observing agent (the observer) (Keren et al., 2019).

Regarding the input to the recognition systems, in addition to
action labels or sensory streams, these systems can also get other
types of input that, while less straightforward, may be decisive
in the recognition task if used appropriately. For instance,
information about the environment where the action occurs (e.g.,
kitchen, airport...) or about who is performing the action (e.g.,
a kid, a fireman...) can help recognition systems better evaluate
what action, plan, or goal explains best the observations.

3.2. System Classification
So far, we have seen a possible way of classifying these
recognition systems attending to their objective (i.e., activity,
plan, or goal recognition). In fact, many other criteria can
be adopted to classify these systems. For example, they are
often classified in terms of the type of approach they take to
address the problem. According to this, we can divide them into
logic-based approaches, classical machine learning approaches,
deep learning approaches, and brain-inspired approaches. We
discuss these approaches in greater detail in section 4. Another
characteristic that defines the type of recognition problem is
the behavior of the observed agent toward the observer. In
these terms, we can define three types of systems: agnostic,
adversarial or intended (Carberry, 2001). In agnostic systems,

the actor performs independently of the observer (he may even
be unaware that he is being observed) (Shrager and Finin, 1982).
In adversarial systems, the actor tries to deceive the observer,
either by occluding the actions or by performing actions with
the purpose of generating confusion (Avrahami-Zilberbrand
and Kaminka, 2014). In intended systems, the actor tries to
help the observer by, e.g., giving cues about the action being
performed (Perrault and Allen, 1980). Similarly, recognition
systems can be classified attending to whether the observing
agent takes action and influences the actor or the environment
with the purpose of making the recognition simpler. In this sense,
recognition systems can be classified as no intervention, offline

intervention, online intervention, or direct communication

systems (Keren et al., 2019). In no intervention systems, the
observing agent does not act in any way over the actor or the
environment to make the recognition task easier (Avrahami-
Zilberbrand and Kaminka, 2014). When these systems are
also agnostic, they are known as keyhole systems. In offline
intervention systems, the observer may introduce changes in
the environment before the recognition process starts, with the
purpose of making the recognition easier (Keren et al., 2014). In
online intervention systems, the observer takes action over the
actor or the environment during the recognition process, with
the purpose of revealing some new information or causing a
reaction over the actor that helps in the recognition task (Shvo
and McIlraith, 2020). A common way to do this is through what
is known as active perception (Bajcsy et al., 2018), which consists
of taking action to increase or improve the input information
(e.g., a robot moving to better see the ongoing action). In direct
communication systems, the observer directly asks questions to
the actor about the ongoing plans or goals, and reasons according
to the answers (Mirsky et al., 2018).

Another way of classifying the recognition systems is
attending to the characteristics of the environment. This way,
the environment can be fully observable (when the observer
perfectly knows its state) or partially observable (when the
observer only gets a possibly noisy fraction of the information
about the state of the environment) (Keren et al., 2016).
It can be deterministic (if given a state and the action(s)
performed over that state the next state is determined) or
stochastic (if given a state and the action(s) performed over
that state the environment may evolve to different states with
different probabilities) (Wayllace et al., 2016). And it can be
discrete or continuous (Kaminka et al., 2018). The systems
can also be classified depending on whether the recognition
process is done offline (the recognition is done at the end,
with all the observations available) or online (observations are
received incrementally, and the recognition is attempted to
be done as soon as possible) (Vered et al., 2016). Another
characteristic of these systems is whether the set of all possible
activities/plans/goals is known or unknown by the observer
(Zhuo, 2014). If it is unknown, the observer needs to be able
to handle new classes of observations appropriately, e.g., by
recognizing them as unknown activities and learning them, so
that it can recognize them in the future. Finally, while most work
in this area is directed toward recognizing the activity of a single
agent, much research has been also done in multiagent systems
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FIGURE 1 | Illustration of the concepts of action, plan, and goal. A same goal may be achieved through different plans. These plans are often hierarchical structures

whose elements can be seen as actions from the point of view of the higher-level elements, and as goals from the point of view of the lower-level elements.

(Saria and Mahadevan, 2004). This second type of recognition
is typically used in cooperative applications, where the agent
belongs to a team and needs to understand the role of the other
members to perform best (Genter et al., 2011). It is also common
when trying to understand the strategy used by the opponent
in the military or sport domains (Laviers et al., 2009). Figure 2
shows some example scenarios classified according to the criteria
just presented.

A completely different way of classifying these systems is
according to the applications for which they were designed.
Indeed, while many of the algorithms developed for activity,
plan and goal recognition can be considered general-purpose,
different applications often involve recognition problems with
very different characteristics and types of input data (e.g., video,
natural language, computer commands...), making algorithms
more or less appropriate depending on the application. In
addition, the “general-purpose” algorithms also require to be
adapted to the particular problem, leading to more application-
specific systems. There is a wide variety of applications where
activity, plan, and goal recognition algorithms have been applied
and proven to be useful. Some examples are smart homes
(Skocir et al., 2016), personal agent assistants (Oh et al., 2014),
human-robot interaction (Kelley et al., 2010), video surveillance
(Poppe, 2010), video games (Ha et al., 2014), natural language
understanding (Meng and Huang, 2018), assistive care for the
elderly (Bouchard et al., 2007), software help systems (Horvitz
et al., 1998), computer network security (Rahmat et al., 2018),

FIGURE 2 | Examples of scenarios of different characteristics, (A) is a grid

navigation scenario (agnostic, no intervention, fully observable, deterministic,

discrete, single agent), (B) is a poker game (adversarial, direct communication,

partially observable, stochastic, discrete, multiagent), (C) is a platform video

game (agnostic, no intervention, partially observable, deterministic, continuous,

single agent), (D) is a human-robot collaboration scenario (intended, online

intervention, partially observable, stochastic, continuous, single agent).

decision support systems (Sengupta et al., 2017), and orthotics
(Rebelo et al., 2013), among others. For example, assistive
systems for the elderly need to understand the intention of
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the assisted person in order to anticipate and be able to help.
Computer network security systems, on the other hand, need to
analyze network activity and detect suspicious actions or actions
performed with a malicious intention, and act accordingly.

3.3. Challenges
Having introduced some of the main characteristics that describe
activity, plan, and goal recognition systems, we can now present
a number of challenges that these systems need to overcome
in order to complete their task effectively. Below we provide
a non-exhaustive list of some of these challenges, as well as
considerations that these systems need to take into account:

• Managing multiple competing hypothesis and uncertainty
(Sadri, 2011)

• Dealing with previously unseen activities/plans/goals
(Carberry, 2001)

• Variability among different instances of the same action/plan
(Vrigkas et al., 2015)

• Predictive capabilities, or completing the recognition task
before the action/plan is completed (Kelley et al., 2010)

• Incomplete knowledge and partial observability of the actor
and the environment, as well as noisy input (Sadri, 2011)

• Interleaved plans or plans executed in parallel, either to
achieve different goals or the same goal in alternative ways
(Sadri, 2011)

• Interrupted plans (Armentano and Amandi, 2007)
• Actions belonging to more than one plan or contributing to

more than one goal (Kautz and Allen, 1986)
• Actions performed by different agents to reach a common goal

(Sadri, 2011)
• Non-rational actions, reactive (not goal-directed) actions,

exploration actions, irrelevant actions, actions executed by
error, or actions executed with the purpose of misleading the
observer (Carberry, 2001; Sadri, 2011)

• Considering the temporal ordering of events (Kautz and Allen,
1986)

• Adapting to the agent being observed (Zhuo, 2017)
• Considering the context (Heinze, 2004)
• Expressivity and interpretability of the system output

(Armentano and Amandi, 2007)
• Scalability to a greater amount of activity/plan/goal classes

and to multi-agent systems, and adaptability to different
environments (Carberry, 2001)

3.4. Other Existing Reviews
Before deepening further in the different types of approaches
taken to tackle these problems, we can go through a brief
overview of other literature reviews available on this topic.
The Introduction chapter of the book Plan, Activity, and Intent
Recognition. Theory and Practice (Sukthankar et al., 2014), for
example, provides a short review of the history of the topic.
However, since the book was published in 2014, it mainly focuses
on logic-based and probabilistic approaches, but the more recent
deep learning approaches are not considered. Vrigkas et al. (2015)
address the topic of activity recognition focusing on applications
that get as input still images or video sequences. Their work also

goes through the low-level task and algorithms for extracting
features of interest from images (which are out of the scope
of our review). A more thorough overview on these kinds of
activity recognition systems can be found on the book Human
Activity Recognition and Prediction (Fu, 2016), which besides
going through the different techniques, also introduces some
general relevant concepts on activity recognition. Another review
on the problem of activity recognition is that of Wang et al.
(2019), in this case focusing on sensors different from cameras
(e.g., body-worn sensors, etc.), and on deep learning approaches.
Other reviews on activity recognition are Poppe (2010), Lara and
Labrador (2013), and Jobanputra et al. (2019). On the other hand,
Carberry (2001) describes in her review the problem of plan
recognition, together with its main challenges and approaches
to address it. While this study was published in 2001, it is a
quite complete work, and many of the concepts and challenges
commented are still relevant nowadays. Armentano and Amandi
(2007) also provide a review on the topic of plan recognition,
which, while focused on interface agents, can also be of interest
to other application fields. Finally, Sadri (2011) reviews the
main logic-based techniques used to approach the problem of
goal recognition.

These reviews, in general, either focus on the problem of plan
and goal recognition, going through the main existing logic-
based and probabilistic solutions, or focus on the problem of
activity recognition, covering machine learning approaches (and,
in recent years, specially deep learning approaches). This goes in
line with what can be found in the research studies themselves,
with a clear separation between those subfields. However, to the
best of our knowledge, there are no reviews that cover the whole
problem of activity, plan, and goal recognition together with the
most common approaches in a comprehensive way. Indeed, none
of the consulted reviews includes logic-based, classical machine
learning and deep learning solutions altogether. Furthermore,
we have found no review covering the most common brain-
inspired methods to approach this recognition problem, which
is a relevant topic when it comes to human-robot interaction. In
this review, we try to fill this gap, by describing the whole problem
of activity, plan, and goal recognition, presenting the main
challenges and characteristics with which it can be described, and
going through the different types of approaches used to address it.
This view of the problem as a whole may also inspire researchers
to think of new approaches that address the complete problem in
a unified way, instead of focusing on just a part of it.

4. APPROACHES TO THE PROBLEM OF
ACTIVITY, PLAN, AND GOAL
RECOGNITION

This section describes in more detail the different types of
approaches that have been taken to address the problem of
activity, plan and goal recognition. As expressed in section 3.2,
we can classify these algorithms according to the type of approach
into four different classes: logic-based, classical machine learning,
deep learning, and brain-inspired.

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2021 | Volume 8 | Article 643010

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Van-Horenbeke and Peer Activity, Plan, and Goal Recognition

4.1. Logic-Based Approaches
Approaches based on logical reasoning (Stuart and Norvig,
2016) have mainly focused on the problem of plan and goal
recognition, even though there have been also attempts to tackle
the activity recognition problem. In fact, the first attempts that
were made to address the problem of activity, plan and goal
recognition took this type of approach (Schank and Abelson,
1977; Schmidt et al., 1978). Following the predominant tendency
in artificial intelligence at these early times, researchers defined a
set of domain-dependent rules that tried to capture the relevant
knowledge that allowed the system to infer conclusions through
deduction (Sukthankar et al., 2014). As occurred in other areas,
this approach soon showed to be very limited in several ways,
particularly in maintainability and scalability. Some years later,
a representation of plans as tree graphs was proposed, where the
plan was represented as the top-level node of the tree, and the
actions in which it was decomposed, as the child nodes (Kautz
andAllen, 1986). This work gave some structure and coherence to
the field, and the conceptual framework proposed is still relevant
today (Sukthankar et al., 2014). However, these early techniques
still suffered from their purely deductive inference method: If
there were more than one possible plan or goal compatible with
all the observations, the system was unable to decide which one
was the most likely explanation.

Since then, mainly two kinds of reasoning have been
employed to cope with this issue of hypothesis selection:
abductive reasoning and hybrid logic-probabilistic reasoning.
Abductive reasoning, or abduction, is a form of logical inference
that tries to find the simplest or most likely conclusion that can
explain some given observation(s) (Josephson and Josephson,
1994). This way, unlike deduction, the conclusions reached
through abduction are not positively verified, but are rather
plausible conclusions understood as best explanations. This type
of reasoning allows the inference system to choose among several
hypotheses to explain an observation. In fact, hybrid logic-
probabilistic approaches can be considered a special case of this
kind of abduction. Sohrabi et al. (2016), for example, associated
a cost to each of the possible plans, as well as to the noisy
or missing observations. By summing these values for a given
observation and candidate plan, they obtained the weight for that
hypothesis. The plan with the lowest weight was the most likely
one. Jarvis et al. (2004), on the other hand, developed a terrorist
activity detection system based on the definition of two concepts,
called “frequencies” and “accuracies,” that were associated to each
of the actions. An action with a lower “frequency” or higher
“accuracy” associated would be considered more relevant when
it was observed.

As we just mentioned, hybrid logic-probabilistic reasoning
can in fact be considered a special case of abductive reasoning
which explicitly deals with probabilities. However, we consider it
separately from pure abductive reasoning because, even though
it is conceptually similar, it combines logic inference methods
with probabilistic inference methods. These approaches have the
advantage that they keep the expressivity of logic solutions while
being able to handle uncertainty in a probabilistic way. There are
different ways of combining those two types of reasoning. Some
examples of commonly used hybridmodels are relationalMarkov

models and Markov logic networks (Kautz, 2011). Relational
Markov models (RMM) generalize Markov models by allowing
states to be of different types and to be hierarchically structured,
while Markov logic networks (MLN) combine ideas of Markov
networks with first-order logic, enabling probabilistic inference.
Pereira and Han (2009) proposed an intention recognition
system for elder care based on causal Bayesian networks. These
networks established probabilistic relationships among causes,
intentions, actions and effects, and were used to extract the
most probable intentions. The plausibility of these intentions
in the given situation was then checked through a logic plan
generator. Raghavan et al. (2014) proposed a very different
approach, which lied on the framework of statistical relational
learning (SRL). The formalisms within this framework typically
describe relational properties using first-order logic, while they
handle the uncertainty through probabilistic models. In the
paper, they proposed an extension of Markov logic networks and
Bayesian logic programs to adapt them to abductive reasoning
and perform plan recognition.

Some authors combine these abductive or hybrid reasoning
techniques with some kind of logic-based causal theory, such
as situation calculus or event calculus (Stuart and Norvig,
2016). These formalisms allow reasoning in dynamic domains
through the introduction of temporal constraints, which enable
the definition of temporal properties, such as preconditions
or effects. Quaresma and Lopes (1995) combined abductive
reasoning with event calculus and some concepts from the theory
of mind (commented in section 2) to address the problem
of recognizing plans and intentions behind speech acts. Their
model described the mental state of the observed agent in
terms of intentions and beliefs, and reasoned according to that
mental state and to the effects the agent was believed to expect
from the actions.

So far, we have focused on the type of reasoning to classify
the logic-based approaches to the problem of activity, plan
and goal recognition. These approaches can also be classified
in terms of how knowledge is represented. Attending to
this, we can divide them into two types: plan-library based
and domain-theory based (Stuart and Norvig, 2016; Vered
and Kaminka, 2017). Approaches based on plan libraries are
sometimes referred to as plan recognition as parsing, because
plans are usually represented as a hierarchy of lower-level
actions, and the problem is reduced to finding the best fit of
the observed actions into those plans. There are several ways
of representing the knowledge in plan libraries. A common
one is using hierarchical task networks (HTN) (Stuart and
Norvig, 2016). Hierarchical task networks represent tasks as a
set of subtasks and constraints on them or among them. This
way, tasks can be iteratively expanded until primitive tasks
are reached, which would correspond to observable actions.
Myers (1997) used hierarchical task networks to recognize the
high-level goal of a user of a collaborative planning system
by observing a partial plan (a partial set of actions). Once a
complete plan to which that partial plan belonged was identified,
the system could complete the remaining actions. Another
usual way of representing the knowledge in plan libraries is
using grammars (Stuart and Norvig, 2016). Grammars define
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a set of symbols and production rules that describe how they
can be combined, enabling the generation of hierarchical tree-
like structures. They were originally used in the parsing of
natural language, but they have also shown to be useful in plan
recognition (note the similarity between both tasks, dealing with
hierarchical and sequential data). When the grammar rules are
described through probabilities, they are known as stochastic
grammars. Geib and Goldman (2009) proposed a probabilistic
plan recognition system based on plan tree grammars that was
able to handle interleaved plans, partially ordered plans, and
partial observations.

Regarding domain-theory based approaches, they are often
known as plan recognition as planning. In these approaches,
off-the-shelf planning systems are used to generate candidate
plans for the observed agent. These planning systems generally
rely on planning languages, such as STRIPS or PDDL (Stuart
and Norvig, 2016), which allow them to describe the state
of the environment and the effects of the possible actions, as
well as to reason over that knowledge in order to develop
candidate plans that lead to the achievement of given goals.
These candidate plans are then weighted by the plan recognition
system according to the observations obtained, and the most
likely plan and/or goal is selected according to those weights.
When the planning system used relies on Bayesian inference to
reason, these recognition approaches are sometimes referred to as
Bayesian inverse planning systems. Ramirez and Geffner (2009)
were the first ones suggesting the plan recognition as planning
approach. They proposed an approximate planning method that
generated an acceptable set of plans to the possible goals, and that
was able to scale well. Pereira et al. (2020) went through some
of the main state-of-the-art domain-theory based techniques to
goal recognition focusing on the concept of landmarks, which are
states or actions through which the observed agent needs to go in
order to achieve a certain goal. They proposed a landmark-based
goal recognition approach that was able to perform faster than
other systems, while having a comparable accuracy.

4.1.1. Summary
As a summary, we can say that logic-based and hybrid logic-
probabilistic approaches are probably the most commonly used
ones in the literature to deal with the problem of plan and
goal recognition. Logic systems present several advantages that
are very useful for this problem. One of the main ones is
that they are very good at working with highly structured
representations. Logic representations can define different kinds
of relationships among entities, such as preconditions, mutual
exclusions, or decompositions, which are very useful for the
problem at hand. Besides, these logic relationships allow these
systems to generate new plausible candidate plans online,
which can be compared to the actual observations. A second
advantage is that logic representations are highly expressive.
This way, these systems allow their designers and users to
easily understand the meaning of their output, as well as how
they have reached that conclusion. In addition, when combined
with probabilistic reasoning techniques, logic-based systems can
reduce some of their main weaknesses, such as not being able to
handle uncertainty.

However, even when combined with probabilistic reasoning
methods, they still present some disadvantages. For example,
logic systems are very rigid: They define entities in terms of
a set of properties and relations, and observations need to
fit them perfectly in order to be considered such entity. In
general, however, real-world “entities” are more ambiguous
and require more flexible approaches. Even when combined
with probabilistic methods, the logic-based component of the
system usually keeps this rigidity. This is particularly relevant in
more uncertain environments, such as those partially observable,
where the knowledge of the observed agent is unknown, or where
interleaved or interrupted plans can occur. Another disadvantage
of these systems is that they usually require the designer to
introduce manually the domain knowledge upon which the
system will reason. This limits the use of these approaches to
applications where the necessary knowledge can be expressed
in such way. Indeed, even if the system is able to generate new
candidate plans online, they will always be based on that limited
domain knowledge, and plans that fall out of the scope of this
domain will not be recognizable. In addition, in domains that
are complex enough, introducing all the knowledgemanually will
require much domain-expert effort and will be prone to errors.
This makes these systems bad at scaling and generalizing. Finally,
these systems usually assume that the observed agent is rational,
and try to find the optimal plan that best fits the observations.
However, humans often act in non-rational ways (Dreyfus, 2007),
making these systems not so appropriate.

4.2. Classical Machine Learning
Approaches
In the previous section, we saw some examples of hybrid
logic-probabilistic approaches to the problem of activity, plan
and goal recognition. In fact, probably most of the proposed
classical machine learning solutions to this problem are based
on probabilistic systems, such as Bayesian networks or Markov
decision processes. Therefore, in this section we will focus mainly
on these probabilistic approaches, depicting at the end also
some non-probabilistic techniques that have been used for this
problem. As we just said, many of these approaches are based on
different types of Bayesian networks (BN) (Stuart and Norvig,
2016), such as dynamic Bayesian networks or hidden Markov
models. Bayesian networks are generative probabilistic graphical
models that represent random variables as nodes and conditional
dependencies as arrows between them. They can provide the
probability distribution of any set of random variables given
another set of observed variables. In the case of activity, plan and
goal recognition systems, those random variables can represent,
e.g., low-level observations, actions at different hierarchical
levels, or final goals. Due to the temporal nature of the problem,
the Bayesian networks used typically take the form of dynamic

Bayesian networks (DBN) (Stuart and Norvig, 2016). Dynamic
Bayesian networks are a kind of Bayesian network that represents
its variables at different time steps, as well as the conditional
dependencies across time steps. For example, Liao et al. (2004)
built a dynamic Bayesian network with a hierarchical structure
that could infer the transportation modes or destination goals
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of a user from low-level GPS sensor measurements, as well as
recognize abnormal or unknown activity. They used particle
filtering to infer across the network.

A particular well-known type of dynamic Bayesian network
that has been commonly used for the problem of activity, plan
and goal recognition is hidden Markov models (HMM) (Stuart
and Norvig, 2016). Hidden Markov models assume that an
observable variable exists which depends on a hidden variable
(i.e., the state), which depends on itself at the previous timestep.
This allows to, given a sequence of observations, find the most
likely hidden state(s). The use of this type of Bayesian network
is quite spread in problems dealing with sequential data, such
as natural language processing, and well-known techniques exist
to infer on it. Kelley et al. (2010) used hidden Markov models
to model actions and goals within a human-robot interaction
scenario. They built one hidden Markov model for each possible
goal, with the hidden states representing the possible actions.
However, hidden Markov models are quite simple models, with
little structure, while as we argued earlier, activities, plans, and
goals often have a relatively complex and hierarchical structure.
Some extensions of hidden Markov models exist that where
designed with hierarchical structure in mind and that have been
successfully applied to the problem of activity, plan and goal
recognition, such as layered hidden Markov models (LHMM)
Oliver et al. (2002) or hierarchical hidden Markov models
(HHMM) (Bui et al., 2004). Bui et al. (2004), for example,
proposed an extension of the hierarchical hidden Markov model
that allowed two states to share the same child (e.g., the same
action belonging to two different plans), and applied it to the
problem of action and plan recognition in an airport scenario.

Another popular probabilistic model used in sequential
classification problems, and that has been usedmainly for activity
recognition, is linear chain conditional random fields (linear
chain CRF) (Stuart and Norvig, 2016). Linear chain conditional
random fields are discriminative probabilistic graphs that are
applied and can deal with similar problems as hidden Markov
models. However, they are more powerful, since they can model
everything that hidden Markov models can and more. Zhao et al.
(2010) proposed an activity recognition system that extracted
a set of features from patterns found in inertial data to feed a
linear chain conditional random field. Similar to hidden Markov
models, linear chain conditional random fields are also quite
simple in terms of structure. Liao et al. (2007) used a two-level so-
called hierarchical conditional random field (hierarchical CRF) to
predict a person’s activity (first level) and the place at which the
activity was taking place (second level) based on GPS data.

A different probabilistic approach to those already mentioned
is modeling the observed agent as a Markov decision process

(MDP) (Stuart and Norvig, 2016). Markov decision processes
model an agent decision process in a system where the transition
between states, as well as the rewards obtained by the agent,
depend probabilistically on the actions taken. This type of
approach is sometimes referred to as inverse reinforcement
learning. Oh et al. (2014) proposed a proactive assistant agent for
domains such as emergency response and military peacekeeping
operations, which modeled the observed agent as a Markov
decision process, allowing the system to infer the agent’s goals,

predict the following actions and provide assistance accordingly.
Markov decision processes assume that the state of the system
is known to the agent. However, this is not the case in general.
Partially observableMarkov decision processes (POMDP) (Stuart
and Norvig, 2016) deal with this by maintaining a probability
distribution over the set of possible states. Baker and Tenenbaum
(2014) proposed a probabilistic theory of mind model where
the mental state of the observed agent (beliefs and desires)
where modeled as probabilistic distributions within a partially
observable Markov decision process. Using Bayesian inference,
the system could estimate the belief state and reward function of
the agent.

As we said earlier, other non-probabilistic classical machine
learning techniques have also been used, mainly for the problem
of activity recognition, such as support vector machines (SVM),
decision trees, k-nearest neighbors (KNN), or shallow artificial
neural networks (shallow ANN) (Lara and Labrador, 2013; Stuart
and Norvig, 2016). Support vector machines are binary classifiers
that divide the feature space through a hyperplane, with each of
the resulting subspaces corresponding to each category. While
they are intrinsically linear, they can be extended to perform non-
linear classification, as well as to work withmore than two classes.
Samanta and Chanda (2014) used support vector machines to
classify human activities represented through space-time features
extracted from video data, and tested their approach on several
standard datasets. Decision trees are classification algorithms that
use a tree-like model of decision. Each node is characterized by
some criterion according to which samples are sent to one of its
subnodes, until samples reach an end node or leaf, which has a
class assigned. Fan et al. (2013) used decision trees to classify
daily-life activity data coming from the accelerometers of a
smartphone. The system was able to classify the data successfully
independently of the actual location of the smartphone.

Finally, few unsupervised learning systems have also been
proposed to address the problem of activity recognition. These
systems, however, while unsupervised, are quite limited in
performance and in the types of applications for which they
can be useful. For example, Vahdatpour et al. (2009) proposed
an unsupervised system for motif (recurring pattern) learning
and detection for activity recognition using clustering techniques.
Polyvyanyy et al. (2020), on the other hand, proposed an
unsupervised probabilistic goal recognition system based on
process mining techniques.

4.2.1. Summary
In summary, classical machine learning approaches (and, in
particular, probabilistic approaches) to the problem of activity,
plan and goal recognition have shown as their main advantage
being good at handling uncertainty. This makes them useful
to deal with situations that are common in real environments,
such as handling interrupted or interleaved plans, coping with
partial observability or noisy data, or even dealing with non-
rational agents or dynamic domains. These advantages are
especially noticeable in the task of activity recognition, in which
logic-based approaches are often not appropriate. In addition,
classical machine learning approaches do not require a full
manual introduction of the domain knowledge, as they can
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learn the parameters (e.g., probabilities) given enough training
data. On the other hand, well-studied hierarchical networks exist
that provide structure to the models, minimizing one of the
limitations of these approaches.

However, classical machine learning approaches have also
several disadvantages. First, these methods are less expressive
than logic-based ones, and it is often hard to understand how
one of thesemodels has reached a certain conclusion. In addition,
while it is true that some classical machine learning systems
scale well (see section 4.3), probabilistic systems in general do
not: As these systems become more complex, more variables
and dependencies among them need to be modeled, estimated,
stored and properly used. Besides the fast growth in the number
of dependencies, the structure of the network also needs to
be designed. While this structure can also be learned from
data, taking this approach requires a higher amount of data,
and leads to difficult-to-understand networks and relationships
between variables. On the other hand, even though well-known
hierarchical structures exist, they are still very limited on the
types of relationships among variables they can model, and their
structure is also very rigid. Regarding non-probabilistic systems,
not dealing explicitly with probabilities also comes with some
limitations, as they do not provide information on the certainty
of the obtained output. This can be an issue in applications
where having a “best guess” is not enough, but information on
the confidence of that guess is also required. Online recognition
systems may also need such information to understand if the
ongoing action/plan/goal has already been recognized. Finally,
classical machine learning approaches in general, similar to logic-
based ones, are not designed to learn online new activities, plans
or goals, something that may be necessary in real environments.

4.3. Deep Learning Approaches
The quick introduction and success in recent years of deep
learning approaches into the fields where more classical machine
learning techniques were commonly used has also affected the
field of activity, plan and goal recognition. In particular, deep
learning (Goodfellow et al., 2016) is becoming one of the main
technologies to deal with the problem of activity recognition
(Wang et al., 2019), and it has also been used for plan and
goal recognition. Among the different deep learning approaches,
the most commonly used one is deep neural networks (DNN)
(Goodfellow et al., 2016). Deep neural networks usually consist
of a set of layers composed of several neurons. The input
data goes from the input layer, through all the hidden layers
until it reaches the output, and it is processed in each layer
according to a function that has been learned. A deep neural
network architecture that is simple in terms of design and that
has been used for activity recognition is the deep feedforward

fully-connected neural network, where there are no cyclic
connections between the neurons and all neurons of a layer
are connected to all neurons of the next layer. Hammerla
et al. (2016) designed a five-hidden-layer network to recognize
activities from data coming from wearable sensors and compared
this architecture to other popular deep architectures, such as
convolutional neural networks and long short-term memory
networks. These last architectures, in general, outperformed the

first one, and were able to converge to a systemwith an acceptable
performance much faster.

Convolutional neural networks (CNN) (Goodfellow et al.,
2016) are probably the most commonly used deep approach
to the problem of activity recognition. These networks are
very popular when processing images or temporal data because
they extract local patterns from elements close in the image
or in time. When applied to temporal data, the input data
is usually divided into time windows, and these windows are
classified by the network. In the case of activity recognition, these
networks have shown to be very effective when working with
prolonged and repetitive activities, such as walking or running
(Hammerla et al., 2016). Bevilacqua et al. (2018) used and
compared different configurations of inertial sensor data to train
different convolutional neural network architectures to classify
physical activities. Ronao and Cho (2016) tried convolutional
neural networks of different depths and kernel sizes to classify
activities coming from smartphone sensors.

Another deep architecture that has been used for the problems
of activity, as well as plan and goal recognition is recurrent
neural networks (RNN) (Goodfellow et al., 2016). In these
architectures, cyclic connections between the neurons exist,
allowing the network to have memory and to be aware of the
context of the data. This makes them very useful to process
sequential data. Among the different recurrent architectures,
the most widespread one is long short-term memory networks

(LSTM) (Goodfellow et al., 2016). These networks are designed
so that they can decide when to update their memory depending
on the context and they can learn long-range relationships in
the input data. This is an advantage over convolutional neural
networks, which can only count on the information in the
temporal window for the classification. In the case of activity
recognition, recurrent neural networks have demonstrated to be
very useful at classifying activities that are short in duration but
have a natural ordering, thanks to their ability to take the context
into account (Hammerla et al., 2016). Amado et al. (2018a)
proposed the use of long short-term memory networks for a goal
recognition task dealing with sensory input data, requiring much
less manual introduction of domain knowledge than other state-
of-the-art goal recognition approaches. Ordóñez and Roggen
(2016) combined convolutional neural networks with long short-
term memory networks for the task of activity recognition. They
used the convolutional networks for low-level feature extraction
at the first layers of the network, followed by long short-term
memory networks that could capture the temporal dynamics and
context of the observations.

Finally, there are deep architectures that can learn the low-
level feature extraction functions in an unsupervised way, such
as autoencoders or deep belief networks (DBN) (Goodfellow
et al., 2016), requiring less labeled data to achieve acceptable
performances. Zhang et al. (2015) implemented a deep belief
network for activity recognition that could run and be
trained in a smartphone, showing that these networks can be
computationally very efficient. Min et al. (2014) used stacked
denoising autoencoders to model the goals of players in an
open-ended digital game, improving considerably the accuracy
of other state-of-the-art models. On the other hand, few-shot
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learning and zero-shot learning techniques have recently gained
interest for the task of activity recognition systems. Indeed, these
techniques are gaining popularity in the last years, especially
in the labeling of images and videos. Few-shot learning allows
systems to learn to recognize new classes from very few labeled
samples. During this process, it is also important that they do
not forget the previously learnt classes. A common way to do this
is by training a deep network to extract a set of representative
features that are later used in a nearest neighbor-like classifier
(e.g., a Siamese neural network) (Sheng and Huber, 2019). Data
augmentation techniques, i.e., generating new synthetic data out
of the existing ones, and overfitting avoidance techniques are
also commonly used (Dwivedi et al., 2019). However, most of
the work in few-shot activity recognition has focused on images,
and only few studies exist working with videos (e.g., Xian et al.,
2020). In addition, the performance achieved in these systems
is far from satisfactory. Zero shot learning, on the other hand,
allows systems to label, or associate semantic meaning, to classes
that were not present in the training data. Note that these systems
do not actually learn during this recognition process, they just
describe those unknown classes in terms of what they already
knew. Zero-shot activity recognition systems are usually formed
of two components: a visual feature extractor that describes input
images and videos in terms of features, and a semantic feature
extractor that maps semantic side information (e.g., in the form
of descriptive sentences) to features. The training data is used
to learn a mapping function between these two feature spaces,
allowing the system to describe the images and videos in terms
of the side information. This mapping is expected to be able to
generalize to unseen classes (Junior et al., 2019). However, the
zero-shot activity recognition systems proposed up to date still
show poor performance.

4.3.1. Summary
To sum up, deep learning models have several strengths that have
made them the de facto algorithms in different fields, and that
also apply to activity, plan and goal recognition. One of the main
advantages of these approaches is that they are able to learn very
different patterns, and their hierarchical architecture in layers
allows them to extract features from the input data at different
levels of abstraction, which are then used by the next layers.
This also makes the training faster and the data requirements
smaller, as higher-level layers usually require similar lower-
level features. This way, they are very flexible and hierarchical
by nature, something very useful for the problem of activity,
plan and goal recognition. In addition, the input data to the
network is often the sensor data itself, and the first layers
of the network learn automatically the best feature extraction
functions from the sensor data for the task at hand during the
training process. This is an important advantage for activity
recognition, and also for plan and goal recognition when they
deal with sensor data. Most logic-based and classical machine
learning approaches use manually designed features from the
sensor data as input for the algorithms. These features require
human effort and domain knowledge, are not generalizable,
and may not be optimal. Finally, similar to classical machine
learning models, deep learning approaches are good at dealing

with uncertainty and with partial and noisy information, as long
as those characteristics also exist in the training data.

One of the main disadvantages of deep learning approaches
is that they usually require large amounts of labeled training
data to perform successfully. This is related to the fact that,
to achieve their high flexibility, they have many parameters
that need to be learnt. Even using unsupervised approaches as
those commented above to learn low-level features, they still
require large labeled datasets. Few-shot learning approaches, on
the other hand, cannot be considered satisfactory in terms of
performance. This is a relevant limitation in the problem of
activity, plan and goal recognition, as the different available
datasets are built using different types of sensors, in different
configurations and labeled according to different activities or
goals, and therefore it is hard to combine them and exploit
them together. Another limitation of deep architectures is that
they usually require high computational power, especially on the
training phase. Besides, deep networks are difficult to interpret,
and they are often seen as black boxes, with the reasons that lead
them to a particular conclusion being unknown to their designers
or users. This can be a limitation especially for plan recognition,
where the description of plans usually requires high expressivity.
In addition, most deep architectures are non-probabilistic, which
brings a set of difficulties, as we discussed in section 4.2.1 (e.g., not
providing information on the certainty of the outputs). Finally,
the most common architectures are not designed to learn online
new classes, and even when they can, they require labeled data.
This is a limitation in real environments. In this sense, note that
zero-shot learning systems, besides performing poorly, do not
learn the newly observed activities. This way, they are not able
to adapt and learn new useful features online, and neither to
learn to predict next actions, something often required within the
problem of activity, plan and goal recognition.

4.4. Brain-Inspired Approaches
The approaches seen so far use algorithms and techniques that
are, in general, well-established within the artificial intelligence
and machine learning communities. In fact, most of the work
in this area has been done using these types of approaches.
However, as we have just seen, these standard approaches present
some relevant limitations for the problem at hand, especially
when dealing with real environments, where being able to handle
ambiguity, partial information and unknown actions or goals is
very important. Therefore, several authors have tried alternative
approaches to address this problem, inspired by the fact that the
human brain is able to deal with these issues in a very effective
way. These approaches have especially been used in human-robot
interaction applications.

As we explained in section 2, mirror neurons are believed
to be a key element in our ability to understand the actions
and intentions of others. This way, several models of mirror

neurons have been used for the tasks of action and goal
recognition, as well as for imitation. For example, mirror neurons
have been often modeled as auto-associative memories. These
memories learn patterns of actions when executing movements,
associating the actions to the corresponding observations during
execution. Then, when the execution of a similar action is
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observed, the action is recognized (Kuniyoshi et al., 2003). A
more elaborated model of mirror neurons is MNS2 (Mirror
Neuron System 2) (Bonaiuto et al., 2005), which models several
regions of the brain as recurrent neural networks, and is
able to learn different actions through self-observation to later
recognize them on others. A quite different model of mirror
neurons is the Mental State Inference model (Oztop et al., 2005).
This model is not based on the association of self-performed
actions with their corresponding observations, but instead, given
some observations, simulates the actions that would correspond
to the possible intentions and compares them to the actual
observations, choosing the intention with the best prediction as
the most likely one.

There are also several models that, while they do not try
to mimic directly the functioning of the mirror neurons, show
several similarities, and have shown to be useful on the tasks
of action and goal recognition, as well as imitation. One of
these models is MOSAIC (Modular Selection and Identification
for Control) (Haruno et al., 2001). MOSAIC is a learning
control system that consists of several predictor-controller
modules. The controller part of each module generates motor
commands that are used by the predictor part to simulate
the movements that those commands would imply, and those
simulated movements are then compared with the observed
ones. This way, modules with better predictions become more
influential. Another popular system with a similar architecture
of inverse-forward blocks is HAMMER (Hierarchical, Attentive,
Multiple Models for Execution and Recognition) (Demiris and
Khadhouri, 2005). The modules in this system can be combined
to formmore complexmodules, achieving a hierarchy ofmodules
that can operate at a higher level and can represent more
abstract or full behaviors. A limitation of these architectures
is the conflict between generalization and segmentation that
arises when motor primitives overlap, where generalization
leads to representing many similar primitives with the same
module, while segmentation requires that different primitives are
represented in different modules.Multiple timescales recurrent

neural networks were designed as an attempt to overcome this
issue (Yamashita and Tani, 2008). Instead of using separate
modules, they work with self-organization mechanisms and
neurons working at different timescales, which leads to the
emergence of a functional hierarchy among actions. Finally,
some action recognition systems directly implement some form
of explicit visuo-spatial perspective-taking (i.e., they project the
point of view of the observed agent onto their own). Alkurdi
et al. (2018), for example, projected the frame of reference
of the observed agent into that of the observer, to then feed
an action recognition system that was built upon a cognitive
framework known as dynamic field theory (Schöner and Spencer,
2016). Their system first detected the object of interest over
which the action would be performed, to then compare the
observed trajectory to those corresponding to the possible actions
over that object.

Many other brain-inspired algorithms and cognitive

architectures exist, such as Adaptive Control of Thought-
Rational (ACT-R) (Ritter et al., 2019), Soar (Laird, 2012),
Adaptive Resonance Theory (ART) (da Silva et al., 2019), or

Hierarchical Temporal Memory (HTM) (Hawkins et al., 2016),
that could be used to approach the problem of activity, plan and
goal recognition. These architectures try to mimic in different
ways and integrate the existing known mechanisms in our brain
(e.g., different types of memory, learning, attention, etc.) to
achieve cognition. For example, HTMmodels neocortex layers as
a set of nodes that learn following a Hebbian-like rule, and that
are activated according to a sparse coding paradigm. Hebbian
learning is a simplified model of how neurons in the brain learn.
It works in an online and unsupervised way, and has shown to be
very practical at learning and extracting patterns. Sparse coding
is a representation method that is believed to occur in the brain,
in which just a small set of all the elements are active for each
represented concept. These elements may represent the presence
of certain features in the represented concept. This method
has shown to be very robust and useful at representing new
concepts in terms of previously learned features. As an example
of a recognition system, Oltramari and Lebiere (2014) built an
ACT-R-based system for the recognition of actions in a video
surveillance application. However, most of these brain-inspired
frameworks and architectures have been little explored for the
problem at hand, and it is therefore difficult to predict how
effective they and their mechanisms would be for this problem.
An overview and comparison of some of the best-known existing
cognitive architectures can be found in Kotseruba and Tsotsos
(2020).

4.4.1. Summary
We conclude that, due to the great variety and diversity of
brain-inspired algorithms and architectures, it is difficult to
outline general advantages or disadvantages of these methods
over those described in the previous sections. However, we can
comment on the mechanisms that are known to exist in the
brain and that are often integrated in these frameworks. One
of these mechanisms is Hebbian-like learning, which, as we said
previously, is a form of unsupervised and online learning method
that is good at finding patterns. This can be particularly useful
for real open environments and, in general, to relax the human
effort requirements for training. Related to this, sparse coding
can also help on the learning of new concepts online and in
few shots. This adaptability also endows these systems with tools
to handle uncertainty and dynamic environments. In addition,
these algorithms often work in a predictive way, which is a
usual requirement for plan and goal recognition systems. Some
brain-inspired algorithms also implement self-organization
mechanisms, which, besides working in an unsupervisedmanner,
can improve the performance and interpretability of the system.
Similarly, attention mechanisms are often included in these
frameworks, which can also improve the interpretability and
performance of the system, besides reducing the computational
requirements. Finally, mimicking particular structures of the
brain, such as the hierarchical organization of certain regions or
the mirror systems for action learning and imitation, has also
been shown useful in different tasks.

One limitation of these types of approaches is that we are still
far from a deep understanding of the functioning of the brain,
and this makes the task of actually replicating its functionality
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virtually impossible. Even though we already understand many
mechanisms in the brain that have shown good results when
implemented in artificial systems, there are still many tasks where
those systems are far from the high performance reached by
the human brain. Another disadvantage when trying to mimic
the brain is the fact that the human brain has about 86 billion
neurons and 100 trillion connections between them, and current
computers are still far from such high computational power.
Therefore, hardware limitations may be prohibitive when trying
to mimic the human brain in performing certain tasks. Still,
note that models may be found that emulate the behavior of
certain brain regions with an acceptable performance while
having a considerably lower internal complexity. Finally, similar
to classical machine learning and deep learning approaches,
brain-inspired architectures are in general less expressive than
logic-based ones, being hard to interpret how they have reached
a particular conclusion. However, this depends on the particular
framework used, and there are mechanisms that can alleviate
this issue.

5. DISCUSSION

The main aim of this review was to provide a general view on the
problem of activity, plan, and goal recognition. This is a relevant
problem in applications with humans in the loop, since the ability
to recognize actions and intentions is a key element that allows
us humans to interact naturally with others. Several reviews
exist that describe, either the problem of activity recognition,
or the problem of plan and goal recognition, together with
their corresponding most common approaches. However, to
the best of our knowledge, there are no reviews covering the
whole problem of activity, plan, and goal recognition in a
comprehensive way. The purpose of this review is precisely to
fill this gap from the literature. To do so, we have started with
a brief introduction to the mechanisms that are believed to take
part in the process of action and intention recognition in humans,
followed by a definition, possible taxonomy and main challenges
of the problem and a description of the main approaches that
have been proposed to address it.

As we have seen in section 3.2, there are many possible
criteria to classify these systems, such as according to their
objective (activity, plan, and/or goal recognition) or according
to the type of approach followed to address the problem
(logic-based, classical machine learning, deep learning, or brain-
inspired). Other possible criteria attend to the characteristics of
the environment and the agents. For example, real environments
(e.g., in human-robot interaction applications) are generally
characterized as being partially observable, stochastic and
continuous. In the case they are also open environments, the
recognition system will need to deal with unknown actions,
plans, and goals. Table 1 shows a classification of the original
studies that have been presented along this review according to
the criteria described in section 3.2. These criteria may be used
in future research studies to classify the presented approaches,
allowing the community to better understand the scope of
applicability and enabling a more straightforward comparison of

approaches. In addition, they may also inspire the development
of more standardized performance evaluation and comparison
methods, which could consist, for instance, of a set of standard
problems/datasets of different nature. These standard problems
should allow us to better understand the scope of applicability of
each approach, as well as their performance in the different types
of applications.

Table 1, while not meant to be exhaustive, can also give an
idea about what kinds of systems have been extensively studied
and which ones are still not well-explored. For example, the
table shows that most existing work considers agnostic actors,
non-intervening observers, known possible activities/plans/goals
and single agent systems. However, applications in real
environments, for instance, may require a further exploration of
scenarios with both adversarial and intended actors, with online
intervention and/or direct communication, with unknown
possible actions/plans/goals and with multiple agents.

On the other hand, very few of the surveyed systems do action
and plan recognition at the same time. In fact, most logic-based
approaches focus on plan or goal recognition, while the rest of the
approaches are mainly used for activity or goal recognition. This
is coherent with the characteristics of those approaches, which are
summarized in Table 2. This table compares the four proposed
types of approaches attending to some of their properties, as
well as to their ability to deal with different challenges. This
way, hybrid logic-probabilistic approaches are probably the most
commonly used ones for plan and goal recognition due to their
high expressivity and the possibility to define different kinds of
relationships among entities, while at the same time being able
to handle uncertainty. They have the limitation that they usually
require a manual introduction of a relevant part of the necessary
knowledge. This generally implies much domain-expert human
effort and systems that are hard to generalize, bad at scaling,
prone to errors, and unable to handle plans or goals out of the
scope of their domain knowledge. Deep learning approaches, on
the other hand, are the natural evolution of classical machine
learning techniques, and are becoming the main solution to
the problem of activity recognition, due to their ability to deal
with raw sensor data, extract features at different abstraction
levels, and learn very different patterns from the training data
(e.g., intraclass variability, ambiguous activities, etc.). These
approaches, however, usually require large amounts of labeled
data, which, again, implies much human effort. In addition, they
are not good at handling and learning new activities online.
Finally, brain-inspired approaches are an alternative that is
sometimes used when it comes to real environments where
the recognition needs to be done online (e.g., in human-robot
interaction). These algorithms are hard to evaluate and compare
with the others due to their great diversity and to the fact that
they have not been in general as extensively explored. However,
they show characteristics that place them as promising candidates
to solve, in the near future, some of the yet unsolved challenges
present in real unconstrained environments (e.g., learning new
actions, plans and goals in an unsupervised and online way, and
in few shots, similarly to how we humans do).

While systems addressing the whole problem are not common
in the literature, end-to-end systems that are able to recognize
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TABLE 1 | Classification of the original studies presented along the review according to their approach (logic-based, classical machine learning, deep learning, or

brain-inspired), objective (activity/action, plan, or goal recognition), observed agent involvement (agnostic, adversarial, or intended), observer intervention (no intervention,

offline intervention, online intervention, or direct communication), environment (fully or partially observable, deterministic or stochastic, and discrete or continuous),

recognition time (offline or online), knowledge of possible classes, i.e., activities/plans/goals (known or unknown), number of agents (single or multiple), and application.

Reference Objective Agent Intervention Environment Recognition Classes #Agents Application

Logic-based approaches

Shrager and Finin (1982) Goal Agnostic No Fully obs. Det. Disc. Online Known Single Software help

Avrahami-Zilberbrand and Kaminka

(2014)

Plan Adversarial No Part. obs. Stoch. Cont. Online Unknown Single Surveillance

Perrault and Allen (1980) Goal Intended No Fully obs. Det. Disc. Offline Known Single Language und.

Keren et al. (2014) Goal Agnostic Offline Fully obs. Det. Disc. Online Known Single Destin. guess

Shvo and McIlraith (2020) Goal Agnostic Online Part. obs. Stoch. Cont. Online Known Single General

Mirsky et al. (2018) Plan Intended Direct Fully obs. Det. Disc. Online Known Single Software help

Keren et al. (2016) Goal Agnostic Offline Part. obs. Det. Disc. Online Known Single Destin. guess

Wayllace et al. (2016) Goal Agnostic Offline Fully obs. Stoch. Disc. Online Known Single Destin. guess

Kaminka et al. (2018) Plan Agnostic No Part. obs. Stoch. Cont. Online Known Single General

Vered et al. (2016) Goal Agnostic No Fully obs. Det. Cont. Online Known Single Destin. guess

Zhuo (2014) Plan Agnostic No Part. obs. Det. Disc. Offline Known Multiple Theoretic

Genter et al. (2011) Goal Agnostic No Fully obs. Det. Disc. Online Known Multiple Video games

Skocir et al. (2016) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Smart homes

Ha et al. (2014) Goal Agnostic No Fully obs. Det. Cont. Online Known Single Video games

Bouchard et al. (2007) Plan Agnostic No Part. obs. Stoch. Cont. Online Unknown Single Elderly care

(Sengupta et al., 2017) Plan Intended Direct Fully obs. Det. Disc. Online Unknown Single Decision support

Kautz and Allen (1986) Plan Agnostic No Fully obs. Det. Disc. Offline Known Single Theoretic

Zhuo (2017) Plan Agnostic No Fully obs. Det. Cont. Offline Known Single Experimental

Schank and Abelson (1977) Plan Intended No Fully obs. Det. Disc. Offline Known Single Language und.

Sohrabi et al. (2016) Plan Agnostic No Part. obs. Det. Disc. Offline Known Single Theoretic

Jarvis et al. (2004) Plan Adversarial No Part. obs. Stoch. Cont. Online Known Single Surveillance

Pereira and Han (2009) Goal Agnostic No Part. obs. Stoch. Cont. Online Known Single Elderly care

Raghavan et al. (2014) Plan Agnostic No Fully obs. Det. Disc. Offline Known Single Various

Quaresma and Lopes (1995) Plan Agnostic No Fully obs. Det. Disc. Offline Known Double Language und.

Vered and Kaminka (2017) Goal Agnostic No Part. obs. Det. Cont. Online Known Single Destin. guess

Myers (1997) Plan Intended No Part. obs. Det. Disc. Offline Known Single Planning help

Geib and Goldman (2009) Plan Agnostic No Part. obs. Det. Disc. Online Known Single Theoretic

Ramirez and Geffner (2009) Plan Agnostic No Fully obs. Det. Disc. Online Known Single Destin. guess

Pereira et al. (2020) Goal Agnostic No Part. obs. Stoch. Cont. Online Known Single General

Granada et al. (2017) Action/Plan Agnostic No Part. obs. Stoch. Cont. Offline Known Single Cooking

Amado et al. (2018b) Action/Goal Agnostic No Part. obs. Det. Disc. Online Known Single Puzzle solving

Classical machine learning approaches

Akkaladevi and Heindl (2015) Action Intended No Part. obs. Stoch. Cont. Online Known Single Human-robot

int.

Han and Pereira (2013) Goal Agnostic No Part. obs. Stoch. Cont. Online Known Single Elderly care

Kelley et al. (2010) Action/Goal Agnostic No Part. obs. Stoch. Cont. Online Known Multiple Human-robot

int.

Saria and Mahadevan (2004) Action/Plan Agnostic No Part. obs. Stoch. Cont. Online Known Multiple Experimental

Laviers et al. (2009) Goal Adversarial No Fully obs. Stoch. Cont. Online Known Multiple Video games

Oh et al. (2014) Plan Intended No Fully obs. Det. Disc. Online Known Single Assist. agents

Horvitz et al. (1998) Goal Agnostic No Fully obs. Det. Disc. Online Known Single Software help

Rebelo et al. (2013) Activity Intended No Part. obs. Stoch. Cont. Online Known Single Orthotics

Liao et al. (2004) Action/Goal Agnostic No Part. obs. Stoch. Cont. Online Unknown Single Destin. guess

Oliver et al. (2002) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Office awar.

Bui et al. (2004) Action/Plan Agnostic No Part. obs. Stoch. Cont. Online Known Single Surveillance

Zhao et al. (2010) Activity Agnostic No Part. obs. Stoch. Cont. Offline Known Single Experimental

Liao et al. (2007) Activity Agnostic No Part. obs. Stoch. Cont. Offline Known Single Daily life

(Continued)

Frontiers in Robotics and AI | www.frontiersin.org 14 May 2021 | Volume 8 | Article 643010

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Van-Horenbeke and Peer Activity, Plan, and Goal Recognition

TABLE 1 | Continued

Reference Objective Agent Intervention Environment Recognition Classes #Agents Application

Baker and Tenenbaum (2014) Plan Agnostic No Part. obs. Stoch. Cont. Online Known Single Experimental

Samanta and Chanda (2014) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Video tagging

Fan et al. (2013) Activity Agnostic No Part. obs. Stoch. Cont. Offline Known Single Daily life

Vahdatpour et al. (2009) Activity Agnostic No Part. obs. Stoch. Cont. Online Unknown Single Elderly care

Polyvyanyy et al. (2020) Goal Agnostic No Part. obs. Stoch. Cont. Online Unknown Single General

Deep learning approaches

Meng and Huang (2018) Goal Intended No Fully obs. Det. Disc. Offline Known Single Language und.

Rahmat et al. (2018) Goal Adversarial No Fully obs. Det. Disc. Online Unknown Single Net. security

Hammerla et al. (2016) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Bevilacqua et al. (2018) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Experimental

Ronao and Cho (2016) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Amado et al. (2018a) Goal Agnostic No Part. obs. Det. Disc. Offline Known Single Experimental

Ordóñez and Roggen (2016) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Zhang et al. (2015) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Min et al. (2014) Goal Agnostic No Fully obs. Det. Cont. Online Known Single Video games

Sheng and Huber (2019) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Dwivedi et al. (2019) Activity Agnostic No Part. obs. Stoch. Cont. Online Known Single Video tagging

Xian et al. (2020) Activity Agnostic No Part. obs. Stoch. Cont. Offline Known Multiple Video tagging

Brain-inspired approaches

Kuniyoshi et al. (2003) Action Agnostic No Part. obs. Stoch. Cont. Online Unknown Single Human-robot

int.

Bonaiuto et al. (2005) Action Agnostic No Part. obs. Stoch. Cont. Online Known Single Experimental

Oztop et al. (2005) Action/Goal Adversarial No Part. obs. Stoch. Cont. Online Known Single Experimental

Haruno et al. (2001) Action Agnostic No Part. obs. Stoch. Cont. Online Unknown Single Human-robot

int.

Demiris and Khadhouri (2005) Action/Goal Agnostic No Part. obs. Stoch. Cont. Online Known Single Human-robot

int.

Yamashita and Tani (2008) Action Agnostic No Part. obs. Stoch. Cont. Online Known Single Human-robot

int.

Alkurdi et al. (2018) Action Agnostic No Part. obs. Stoch. Cont. Online Known Single Daily life

Oltramari and Lebiere (2014) Action Agnostic No Part. obs. Stoch. Cont. Online Known Single Surveillance

from primitive actions to high-level plans may be very useful and
even necessary in different applications. One way to approach
this problem may be to combine existing action recognition
and plan recognition systems. For example, Granada et al.
(2017) built a logic-based plan recognition system upon a deep
learning action recognition system. However, the similarities
between the two sub-problems may justify the development of
more homogenous systems. Indeed, as commented in section
3.1, the three sub-problems present similar characteristics and
need to deal with similar challenges, and the whole problem
can be considered a hierarchical task in which the different
levels of the hierarchy can be seen as performing action or
goal/plan recognition with respect to the higher or lower levels,
respectively. Some examples of existing systems approaching
the whole problem in a unified way are those relying on
hierarchical probabilistic models (e.g., Saria and Mahadevan,
2004). Another direction that could lead to successful unified
solutions could be to find suitable ways of combining logic-
based and deep learning approaches in a way that the advantages
of both worlds can be exploited, similar to what was done

with logic-based and probabilistic approaches (some work in
this direction has already been done, e.g., see Amado et al.,
2018b). These hybrid systems could be very good at dealing with
sensory data while at the same time being very expressive at
describing complete and complex plans. A further investigation
of deep learning and brain-inspired approaches in the context
of plan recognition may also lead to new insights. In particular,
bringing ideas from the brain mechanisms involved in the
human recognition of plans to the well-established deep-
learning networks may contribute to new successful systems.
Ideas from cognitive science and from our knowledge on
disorders related to the recognition of intentions or actions may
also inspire the development of new successful brain-inspired
computational systems.

Concerning the applications, some commercially successful
action, plan, and goal recognition systems already exist in areas as
diverse as virtual assistants or fitness/activity tracking. However,
even in these successful areas, the performance is often not
up to the user expectations or demands. In addition, there
are many areas where the transition of new technologies from
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TABLE 2 | Summary comparison among the types of approaches in terms of their

ability to represent structured data, their expressivity, their capacity to deal with

uncertainty, their flexibility to adapt to different data, their robustness, their

competency at handling sensor data, the human effort required to develop the

system, their scalability, their aptness to deal with open environments, and the

maturity of the technology.

Properties/challenges Logic-based Classical

machine

learning

Deep

learning

Brain-

inspired

Structure + + − + +

Expressivity + + o − o

Uncertainty o + + + + + +

Flexibility − − + + + +

Robustness − + + + +

Sensory input − − o + + +

Human effort − − − − o

Scalability − − + o

Open environment − − o +

Maturity + + + + + −

A score is presented (− −, −, o, +, + +) for each type of approach and criterion, with the

scores ranging from − − (very bad at it) to + + (very good at it).

academia to common-use real world applications, together with
the expected increasing demand, may soon bring important
breakthroughs, such as human-robot interaction or elderly
care. On the other hand, considering the recent boost in the
areas of computer vision and natural language understanding,
we can also expect important advances in these areas in
the following years. This way, applications relying on these
technologies to perform action or goal recognition will also
experience important advancements, as well as applications

relying on technologies that can take advantage from advances
in deep learning.

In conclusion, hybrid logic-probabilistic approaches and deep
learning approaches are probably the ones that are showing better
results as of today in the problems of plan/goal recognition and
activity recognition, respectively. Nevertheless, they still require
further research to improve their performance and to tackle the
challenges that are not able to address properly yet (e.g., dealing
with unknown activities, plans, or goals), as well as to be able
to deal with the complete problem. On the other hand, brain-
inspired approaches, while not so extensively explored, count
on some promising characteristics, and a further development
may help better address those challenges. This way, combining
ideas from these different approaches may contribute to finding
new ways to address the yet challenging issues, as well as to find
end-to-end solutions to the whole problem.
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