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This paper studies a defense approach against one or more swarms of adversarial

agents. In our earlier work, we employed a closed formation (“StringNet”) of defending

agents (defenders) around a swarm of adversarial agents (attackers) to confine their

motion within given bounds, and guide them to a safe area. The adversarial agents were

assumed to remain close enough to each other, i.e., within a prescribed connectivity

region. To handle situations when the attackers no longer stay within such a connectivity

region, but rather split into smaller swarms (clusters) to maximize the chance or impact

of attack, this paper proposes an approach to learn the attacking sub-swarms and

reassign defenders toward the attackers. We use a “Density-based Spatial Clustering of

Application with Noise (DBSCAN)” algorithm to identify the spatially distributed swarms of

the attackers. Then, the defenders are assigned to each identified swarm of attackers by

solving a constrained generalized assignment problem.We also provide conditions under

which defenders can successfully herd all the attackers. The efficacy of the approach is

demonstrated via computer simulations, as well as hardware experiments with a fleet

of quadrotors.

Keywords: decision making, swarm defense, autonomous robots and drones, cooperative control feedback,

multi-agent system

1. INTRODUCTION

Rapid advancements in swarm technology and its increasing presence in airspace pose significant
threat to safety-critical infrastructure such as government facilities, airports, and military bases.
The presence of adversarial swarms nearby such entities, with the aim of causing physical
damage or collecting critical information, can lead to catastrophic consequences. This necessitates
solutions for the protection of safety-critical infrastructure against such attacks, particularly in
populated areas.

Counteracting an adversarial swarm by means of physical interception, as studied in Chen
et al. (2017), Coon and Panagou (2017), and Shishika et al. (2020), may not be desirable at low
altitudes in an urban environment due to human presence. Under the assumption of risk-averse
and self-interested adversarial agents (attackers) that tend to move away from the defending agents
(defenders) and from other dynamic objects, herding can be used as an indirect way of guiding the
attackers to some safe area in order to safe-guard a safety-critical area (protected area).

In our recent work Chipade and Panagou (2019, 2020b), we developed a herding algorithm,
called “StringNet Herding,” to herd a swarm of attackers away from a protected area. A closed
formation (“StringNet”) of defending agents connected by string barriers is formed around a swarm
of attackers to confine their motion within given bounds, and guide them to a safe area. However,
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the assumption that the attackers stay together in a circular
region, and that they react to the defenders collectively as a
single swarm while attacking the protected area, can be quite
conservative in practice.

In this paper, we build upon our earlier work on “StringNet
Herding” (Chipade and Panagou, 2020b) and study the problem
of defending a protected area from attackers that may or
may not stay together throughout their attack. We propose a
“Multi-Swarm StringNet Herding” approach that uses clustering-
based defender assignment, and the “StringNet Herding” method
to herd the multiple swarms adversarial attackers’ to known
safe areas.

1.1. Related Work
Herding has been studied earlier in the literature, see for instance
(Haque et al., 2011; Paranjape et al., 2018; Pierson and Schwager,
2018). The approach in Paranjape et al. (2018) uses an n-
wavefront algorithm to herd a flock of birds away from an airport,
where the birds on the boundary of the flock are influenced based
on the locations of the airport and a safe area.

The herding method in Pierson and Schwager (2018) utilizes
a circular-arc formation of herders to influence the non-linear
dynamics of the herd based on a potential-field approach, and
designs a point-offset controller to guide the herd close to a
specified location. In Haque et al. (2011), biologically-inspired
strategies are developed for confining a group of agents; the
authors develop strategies based on the “wall” and “encirclement”
methods that dolphins use to capture a school of fish. In addition,
they compute regions from which this confinement is possible;
however, the results are limited to constant-velocity motion. A
similar approach called herding by caging is adopted in Varava
et al. (2017), where a cage of high potential is formed around the
attackers. An RRT approach is used to find a motion plan for the
agents; however, the cage is assumed to have already been formed
around the agents, while the caging of the agents thereafter is
only ensured with constant velocity motion under additional
assumptions on the distances between the agents. Forming such
a cage could be more challenging in case of self-interested,
risk-averse attackers under non-constant velocity motion.

In Licitra et al. (2017, 2018), the authors discuss herding
using a switched-system approach; the herder (defender) chases
targets (evaders/attackers) sequentially by switching among them
so that certain dwell-time conditions are satisfied to guarantee
stability of the resulting trajectories. However, the assumption
that only one of the targets is influenced by the herder at any
time might be limiting and non-practical in real applications.
The authors in Deptula et al. (2018) use approximate dynamic
programming to obtain suboptimal control policies for the
herder to chase a target agent to a goal location. A game-theoretic
formulation is used in Nardi et al. (2018) to address the herding
problem by constructing a virtual barrier similar to Pierson and
Schwager (2018). However, the computational complexity due
to the discretization of the state and control-action spaces limits
its applicability.

Most of the aforementioned approaches for herding are
limiting due to one or some of the following aspects: (1)
simplified motion models (Varava et al., 2017; Pierson and

Schwager, 2018), (2) absence of obstacles in the environment
(Licitra et al., 2017, 2018; Paranjape et al., 2018), (3) no
consideration of intra-team collisions (Varava et al., 2017; Pierson
and Schwager, 2018), (4) assumption on a particular form of
potential field to model the repulsive motion of the attackers with
respect to the defenders (Licitra et al., 2017, 2018; Paranjape et al.,
2018; Pierson and Schwager, 2018).

We have addressed the above issues in our recent work
Chipade and Panagou (2019, 2020b), which develops a method
termed as “StringNet Herding,” for defending a protected area
from a swarm of attackers in a 2D obstacle environment. In
“StringNet Herding,” a closed formation of strings (“StringNet”)
is formed by the defenders to surround the swarm of attackers. It
is assumed that the attackers will stay together within a circular
footprint as a swarm and collectively avoid the defenders. It is
also assumed that the string between two defenders serves as a
barrier through which the attackers cannot escape (e.g., a physical
straight-line barrier, or some other mechanism). The StringNet
is then controlled to herd the swarm of attackers to a safe area.
The control strategy for the defenders in “StringNet Herding” is
a combination of time-optimal control actions and finite-time,
state-feedback, bounded control actions, so that the attackers can
be herded to safe area in a timely manner.

Clustering of data points is a popular machine learning
technique (Xu and Tian, 2015). There are various types of
clustering algorithms: partition based (K-means; MacQueen
et al., 1967), hierarchy based (BIRCH; Zhang et al., 1996), density
based (DBSCAN; Ester et al., 1996), stream based (STREAM;
O’Callaghan et al., 2002), graph based (CLICK; Sharan and
Shamir, 2000). In the context of dynamical systems, authors in
Cai et al. (2017) develop a clustering method based on quasi-
consensus motions of dynamic agents where agents belonging
to a particular cluster are expected to aggregate together. This
method however converges to clustering results asymptotically.
In this paper, we are interested in spatial proximity of the agents
during a finite future time. So, we focus mostly on the density
based approaches, for example, DBSCAN, to solve the clustering
problem in this paper.

Assignment problems have also been studied extensively
(Burkard et al., 2012). A detailed survey of an assignment
problem pertaining to defense scenarios called “weapon-target
assignment (WTA)” problem is provided in Kline et al. (2019).
In general, assignment problems are NP-hard, and hence can be
solved only approximately for large number of decision variables.
For example, authors in Rezende et al. (2018) provide a greedy
approach based on ant colony system to solve the WTA problem.
Multi-agent defense problems are difficult to solve optimally
because the problem becomes computationally intractable for
large number of agents. In such cases, all possible pairwise games
are first solved, and then an assignment problem is solved to
assign defending agents against attacking ones based on the cost
of the pairwise games. For example in Chen et al. (2017) and
Coon and Panagou (2017), after solving the pairwise games,
the defenders are assigned to attackers by solving a bipartite
matching problem using Hungarian algorithm (Kuhn, 1955).
Similarly, in Yan et al. (2019) authors solve a mixed integer
program to find assignment of defenders to attackers in a
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multiplayer reach-avoid game played in a convex domain. In this
paper, we are interested in a generalized assignment problem
(GAP) (Öncan, 2007), in which there are more number of objects
than knapsacks to be filled, because we aim to assign groups of
defenders to a number of attackers’ clusters, which are typically
small in number than the number of defenders. Similar to the
standard assignment problems, GAP is known to be NP-hard, but
there are approximation algorithms to solve an arbitrary instance
of GAP (Öncan, 2007).

1.2. Overview of the Proposed Approach
In the preliminary work presented in Chipade and Panagou
(2020c), we extended the “StringNet Herding” approach to
scenarios where attackers no longer stay together and may split
into smaller swarms in reaction to the defenders’ presence. The
proposed approach involves: (1) identification of the clusters
(swarms) of the attackers that stay together, (2) distribution and
assignment of the defenders to each of the identified swarms of
the attackers, (3) use of “StringNet Herding” approach by the
defenders to herd each identified swarm of attackers to the closest
safe area.

More specifically, we use the “Density based Spatial Clustering
of Application with Noise (DBSCAN)" algorithm (Ester et al.,
1996) to identify swarms of the attackers based on the
proximity of the attackers to each other. We then formulate a
generalized assignment problem with additional constraints on
the connectivity of the defenders, to find which defender should
go against which swarm of attackers and herd it to one of the
safe areas. This connectivity constrained generalized assignment
problem (C2GAP) is modeled as a mixed integer quadratically
constrained program (MIQCP) to obtain an optimal assignment
solution. Additionally, we provide a hierarchical algorithm to
find the assignment quickly.

In this paper, we further improve the clustering based multi-
swarm herding approach by developing a decentralized variant of
the MIQCP that is used to assign the defenders to the identified
swarms of the attackers. Furthermore, we address the question
of whether the defenders starting at some known positions
can gather on the shortest path of the attackers, starting at
some states, to the protected area and can successfully herd
the attackers to safe areas. We also demonstrate the “StringNet
Herding” algorithm for single attacking swarm case via hardware
experiments with a fleet of quadrotor vehicles that are capable of
flying autonomously in an outdoor aerial robotics facility at the
University of Michigan campus.

1.3. Summary of our Contributions
In summary, compared to the prior literature and our prior
work presented in the conference version (Chipade and Panagou,
2020c), the novelties and contribution of this work are:

• a decentralized cooperative algorithm to group and assign
the defenders to herd the identified different swarms of the
attackers to the closest safe areas;
• a set of conditions under which the defenders are able to gather

on the shortest path of the oncoming attackers to the protected

area before the attackers could reach the gathering location
and thereafter herd all the attackers to the safe areas;
• a demonstration of the “StringNet Herding” approach for a

single attacking swarm case in hardware experiments using a
fleet of quadrotor vehicles equipped with autonomous flight
capability.

1.4. Structure of the Paper
Section 2 describes the mathematical modeling and problem
statement. The “StringNet Herding” approach to herd a single
swarm of attackers is briefly discussed in section 3. The
approach on identification of attackers’ swarms (clusters) and the
defenders’ assignment to these identified swarms for multiple-
swarm herding is discussed in section 4. Simulations are provided
in section 7, and the hardware experiments are discussed in
section 8. Finally, the paper is concluded in section 10.

2. MODELING AND PROBLEM STATEMENT

Notation: We use r, v and u to denote position, velocity and
input acceleration vector, respectively. We use ξ and η to denote
desired position and velocity vector, respectively. We use A and
D to denote the indices of attackers and defenders, respectively,
while I denotes order set of positive integers starting at 1. The
variables ai, ack , dj , dck used as subscripts of the above
variables correspond to the ith attacker, center of mass of kth

swarm of attackers, jth defender and the kth group of defenders,
respectively. Similarly, subscripts p, sm denote the protected area
and mth safe area, respectively. We use subscript d to denote
common variables that correspond to all the defenders and
subscripts a to denote common variables corresponding to all the
attackers. We use sn and sb as a subscripts to denote StringNet
and string barrier, respectively. Any variable with superscript g,
s, e, h correspond to gathering, seeking, enclosing and herding
phase, respectively.

The set of integers greater than 0 is denoted by Z>0. ‖.‖
denotes the Euclidean norm of its argument. |.| denotes the
absolute value of a scalar, and cardinality if the argument is a set.
⌊·⌋ gives the largest integer smaller than the argument number.
A ball of radius ρ centered at the origin is defined as Bρ = {r ∈
R
2| ‖r‖ ≤ ρ}.
We consider Na attackers Ai, i ∈ Ia = {1, 2, ...,Na}, and

Nd defenders Dj, j ∈ Id = {1, 2, ...,Nd}, operating in a 2D
environment W ⊆ R

2 that contains a protected area P ⊂ W ,
defined as P = {r ∈ R

2 |
∥

∥r− rp
∥

∥ ≤ ρp}, and Ns safe areas
Sm ⊂ W , defined as Sm = {r ∈ R

2 | ‖r− rsm‖ ≤ ρsm}, for
all m ∈ Is = {1, 2, ...,Ns}, where (rp, ρp) and (rsm, ρsm) are the
centers and radii of the corresponding areas, respectively. The
attackers aim to reach the protected area P . The attackers may
use flocking controllers (Dai and Li, 2014) to stay together, or they
may choose to split into different smaller swarms (Raghuwaiya
et al., 2016; Goel et al., 2019). The defenders aim to herd each of
these attackers to one of the safe areas in S = {S1,S2, ...,SNs}
before they reach P .

The agents Ai and Dj are modeled as discs of radii ρa and
ρd(≤ ρa), respectively and move under double integrator (DI)
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FIGURE 1 | Problem formulation.

dynamics with quadratic drag (damped double integrator):

ṙai = vai, v̇ai = uai − CD ‖vai‖ vai; (1)

ṙdj = vdj, v̇dj = udj − CD

∥

∥vdj
∥

∥ vdj; (2)

‖uai‖ ≤ ūa,
∥

∥udj
∥

∥ ≤ ūd, (3)

where CD is the drag coefficient, rai = [xai, yai]T and rdj =
[xdj, ydj]

T are the position vectors of Ai and Dj, respectively;

vai = [vxai , vyai ]
T , vdj = [vxdj , vydj ]

T are the velocity vectors,

respectively, and uai = [uxai , uyai ]
T , udj = [uxdj , uydj ]

T are the
accelerations (the control inputs), respectively. This model poses
a speed bound on each player with limited acceleration control,

i.e., vai = ‖vai‖ < v̄a =
√

ūa
Cd

and vdj =
∥

∥vdj
∥

∥ < v̄d =
√

ūd
Cd
. The defenders are assumed to be faster than the attackers,

i.e., v̄a < v̄d (i.e., ūa < ūd). The number of defenders is assumed
to be no less than that of attackers, i.e., Nd ≥ Na.

There is a distributed navigation system that senses the
position rai and velocity vai of the attacker Ai that lies inside
a circular sensing zone Zd = {r ∈ R

2|
∥

∥r− rpa
∥

∥ ≤ ̺d}
for all i ∈ Ia, where ̺d > 0 is the radius of the defenders’
sensing zone. The navigation system communicates the sensed
information to the defenders Dj, for all j ∈ Id. Every attacker Ai

has a local sensing zone Zai = {r ∈ R
2 | ‖r− rai‖ ≤ ̺ai}, where

̺ai > 0 is the radius of the attacker Ai’s sensing zone (Figure 1).
This navigation system can include sensors such as radars, lidars,
cameras that are spatially distributed around the protected area
and provide measurements of positions and velocities of the

attackers and the defenders. The defenders are also assumed to
have sufficient computational power available on board to solve
the assignment problems that are discussed later in the paper.

Formally, we consider the followin g problems.

Problem 1 (Swarm Identification). Identify the swarms
{Ac1 ,Ac2 , ...,AcNac } of the attackers for some unknown Nac ≥ 1
such that attackers in the same swarm Ack , and only them, are
physically close to each other and satisfy prescribed conditions
(described later) on spatial density, where Ack = {Ai|i ∈ Ack},
Ack ⊆ Ia, for all k ∈ Iac = {1, 2, ...,Nac}.
Problem 2 (Multi-Swarm Herding). Find subgroups
{Dc1 ,Dc2 , ...,DcNac } of the defenders and their assignment to
the attackers’ swarms identified in Problem 1, such that all the
defenders in the same subgroup are connected via string barriers
to enclose and herd the assigned attacker’s swarm.

Problem 3 (Defenders’ Dominance Region). Given the initial
positions of the defenders rdj(0), for all j ∈ Id, provide conditions on
the initial positions rai(0), for all i ∈ Ia, of the attackers for which
the defenders are able to gather as a specified formation centered
at a point on the expected path of the attackers before any attacker
reaches the center of the formation.

Before we discuss the solutions to the above three problems,
we first briefly describe the “StringNet Herding” approach used
to herd a single swarm of the attackers in the following section.

3. HERDING A SINGLE SWARM OF
ATTACKERS

To herd a swarm of attackers to S , we use “StringNet Herding,”
developed in Chipade and Panagou (2020b). StringNet is a closed
net of strings formed by the defenders as shown in Figure 3.
The strings are realized as impenetrable and extendable line
barriers (e.g., spring-loaded pulley and a rope or other similar
mechanism; Mirjan et al., 2016) that prevent attackers from
passing through them. The extendable string barrier allows free
relative motion of the two defenders connected by the string. The
string barrier can have a maximum length of R̄sb > 0. If the string
barrier were to be physical one, then it can be established between
two defenders Dj and Dj′ only when they are close to each other

and have almost same velocity, i.e.,
∥

∥rdj − rdj′
∥

∥ ≤ ǫ1 < R̄sb
and

∥

∥vdj − vdj′
∥

∥ ≤ ǫ2, where ǫ1 and ǫ2 are small numbers.
The underlying graph structure for the two different “StringNet”
formations defined for a subset of defenders D′ = {Dj | j ∈ I′

d
},

where I′
d
⊆ Id, are defined as follows:

Definition 1 (Closed-StringNet). The Closed-StringNet
Gcl
sn(I
′
d
) = (Vcl

sn(I
′
d
), Ecl

sn(I
′
d
)) is a cycle graph consisting of: 1)

a subset of defenders as the vertices, Vcl
sn(I
′
d
) = {Dj | j ∈ I′

d
}, 2) a

set of edges, Ecl
sn(I
′
d
) = {(Dj,Dj′ ) ∈ Vcl

sn(I
′
d
)×Vcl

sn(I
′
d
)|Dj

s←→ Dj′},
where the operator

s←→ denotes an impenetrable line barrier
between the defenders.

Definition 2 (Open-StringNet). The Open-StringNet G
op
sn (I′d) =

(V
op
sn (I′d), E

op
sn (I′d)) is a path graph consisting of: 1) a set of vertices,

V
op
sn (I′d) and 2) a set of edges, E

op
sn (I′d), similar to that in Definition 1.
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FIGURE 2 | Block diagram for “StringNet Herding”.

The StringNet herding consists of four phases: (1) gathering,
(2) seeking,(3) enclosing, and (4) herding to a safe area, see the
block diagram in Figure 2.

These phases are discussed as follows.

3.1. Gathering
We assume that the attackers start as single swarm that stays
together and they may start splitting into smaller groups as they
sense the defenders in their path. The aim of the defenders is
to converge to an open formation F

g

d
centered at the gathering

center rdcg located on the expected path of the attackers, where
the expected path is defined as the shortest path of the attackers to
the protected area, before the attackers reach rdcg (see Figure 3).
LetRd(Na) :Z>0 → Z>0 be the resource allocation function that
outputs the number of the defenders that can be assigned to the
given Na attackers. We make the following assumption about the
resource allocation function.

Assumption 1. The resource allocation function is a strictly
monotonically increasing function, i.e., Rd(Na) < Rd(Na + 1)
and satisfies Rd(Na) ≥ Na.

Assumption 1 ensures that there are adequate number of
defenders to go after each attacker in the event the attackers
in the swarm disintegrate into singular swarms (swarms with
less than 3 attackers). In the case of large number of singular
swarms, herding may not be the most economical way of
defense as there needs to be at least 3 defenders to form a
Closed-StringNet. In which case, one could employ a different
mechanism to counteract the attack, for example, physical
capture or interception of the attacker. In this paper we only
the consider the attackers’ swarms with greater than or equal to
3 attackers. The case of singular swarms will be studied in our
future work.

The open formation F
g

d
is characterized by the positions ξ

g

l
,

for all l ∈ Idc0 = {1, 2, ...,Rd(Na)}, and is chosen to be a straight
line formation1 (see Figure 3). Once the defenders arrive at these

1This is a better choice compared to a semicircular formation as chosen in Chipade
and Panagou (2020b). Because, the semicircular formation, for a given length
constraint on the string barrier (R̄sb), creates smaller blockage to the attackers

positions, the defenders get connected by strings as follows: the
defender at ξ

g

l
gets connected to the defender at ξ

g

l+1 for all

l ∈ I−
dc0
= {1, 2, ...,Rd(Na) − 1} (see Figure 3). The angle

made by the normal to the line joining ξ
g
1 and ξ

g
Nd

(clockwise

from ξ
g
1, see Figure 3) is the orientation φ of the formation. The

formation F
g

d
is chosen such that its orientation is toward the

attackers on their expected path (defined above), see the blue
formation in Figure 3. The desired positions ξ

g

l
on F

g

d
centered

at rdcg are:

ξ
g

l
= rdcg + Rlô(θdcg + π

2 ), for all l ∈ Idc0; (4)

where Rl = 0.5
(

Rd(|Ack |)− 2l+ 1
)

R
g

sb
, ô(θ) =

[cos(θ), sin(θ)]T is the unit vector making an angle θ with
x-axis, θdcg = θ∗acm + π , where θ

∗
acm

is the angle made by the line
segment joining the attackers’ center of mass (ACoM) to the
center of the protected area (the shortest path from the initial
position of ACoM to P) with x-axis. These positions are static,
i.e., ξ̇

g

l = ξ̈
g

l = 0. The gathering center rdcg = ρ
g

df
ô(θdcg ) is such

that ρ
g

df
> ρp. We define the defender-goal assignment as:

Definition 3 (Defender-Goal Assignment). An injective mapping
β0 :{1, 2, ...,Rd(Na)} → Id such that the defenderDβ0(l) is assigned

to go to the goal ξ
g

l
.

As discussed in Algorithm 1 in Chipade and Panagou (2020b)
and as shown in Figure 2, we design a time-optimal motion
plan so that the defenders gather at the desired formation F

g

d

as early as possible and before the attackers reach close to F
g

d
.

The idea in Algorithm 1 in Chipade and Panagou (2020b) is
to iteratively solve a mixed integer quadratic program (MIQP)
until a gathering center for the gathering formation is found
which is as far as possible from the protected area and such that
the defenders are able to gather at the formation F

g

d
centered

at the gathering center with bounded acceleration before the
attackers can.

as compared to the line formation. Although, Completing a circular formation
starting from a semicircular formation of the same radius is faster. It is a trade-off
between effectiveness and speed.
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FIGURE 3 | Assignment of defenders to the attackers’ swarms.

3.2. Seeking
After the defenders accomplish gathering, suppose a group of
defenders Dck = {Dj|j ∈ Dck}, Dck ⊆ Id, is tasked to herd a
swarm of attackers Ack = {Ai|i ∈ Ack}, Ack ⊆ Ia, the details
are discussed later in section 4. Denote Idck = {1, 2, ..., |Dck |} and
let βk : Idck → Dck be the mapping that gives the indexing order
of the defenders in Dck on the Open-StringNet line formation

F
s
dck

(similar to F
g

d
but with R̄sb being the distance of each

defender from their immediate neighbor). In the seeking phase,
the defenders in Dck maintain the line formation F

s
dck

and try to

get closer to the swarm of attackers Ack by using state-feedback,
finite-time convergent, bounded control laws as discussed in
Chipade and Panagou (2020b). The control actions in Chipade
and Panagou (2020b) for the defenders in Dck are modified
to incorporate collision avoidance from the other StringNet
formations formed by Dck′ , for k

′ 6= k.

3.3. Enclosing: Closed-StringNet Formation
Once the Open-StringNet formation reaches close to the
attackers’ formation, the defenders start enclosing the attackers
by moving to their desired positions on the enclosing formations
while staying connected to their neighbors. We choose two
formations for this phase that the defenders sequentially

achieve: (1) Semi-circular Open-StringNet formation (F
eop
dck

),

(2) Circular Closed-StringNet formation (F
ecl
dck

). When the

defenders directly try to converge to a circular formation from
a line formation during this phase, the defenders at the either
end of the Open-StringNet formation will start coming closer
to each other reducing the length of the overall barrier in

the attackers’ path significantly. This is because the desired
positions of these terminal defenders in the circular formation
would be very close to each other on the opposite side of
the circular formation (see Figure 3) and collision avoidance
part of the controller is only active locally near the circle
of maximum radius ρ̄ack around the swarm Ack . So the
defenders would first converge to a semi-circular formation
and would converge to a circular formation after the former
is achieved.

The desired position ξ
eop
ck ,l

on the Open-StringNet formation

F
eop
dck

(Figure 3) is chosen on the circle with radius ρsnk centered
at rack as:

ξ
eop
ck ,l
= rack + ρsnk ô(θl), where θl = θ e∗dck +

π
2 +

π(l−1)
|Dck
|−1 , (5)

for all l ∈ Idck , where θ
e∗
dck
= θ s∗

dck
. rack =

∑

i∈Iack
rai
|Ack
| is the center

of mass of Ack . The radius ρsnk should satisfy, ρ̄ack + bd < ρsnk ,
where ρ̄ack is maximum radius of swarm Ack . The parameter bd
is the tracking error for the defenders in this phase (Chipade and
Panagou, 2020b).

Similarly, the desired positions ξ
ecl
ck ,l

on the Closed-StringNet

formation F
ecl
dck

same as in Equation (5) with θl = θ e∗dck +
π(2l−1)
|Dck
| ,

for all l ∈ Idck . Both formations move with the same velocity as

that of the attackers’ center of mass, i.e., ξ̇
eop
ck ,l
= ξ̇

ecl
ck ,l
= ṙack .

The defendersDck first track the desired goal positions ξ
eop
ck ,l

by

using the finite-time convergent, bounded control actions given
in Chipade and Panagou (2020b). Once the defender Dβk(1) and

Dβk(|Dck
|) reach within a distance of bd from ξ

eop
ck ,1

and ξ
eop
ck ,|Dck

|,

i.e.,
∥

∥

∥
rdβk(1) − ξ

eop
ck ,1

∥

∥

∥
< bd and

∥

∥

∥
rdβk(|Dck

|) − ξ
eop
ck ,|Dck

|

∥

∥

∥
< bd,

respectively, the desired goal positions are changed from ξ
eop
ck ,l

to ξ
ecl
ck ,l

for all l ∈ Idck . The StringNet is achieved when
∥

∥

∥
rdβk(l) − ξ

ecl
ck ,l

∥

∥

∥
≤ bd for all l ∈ Idck during this phase.

3.4. Herding: Moving the Closed-StringNet
to Safe Area
Once a group of defenders Dck forms a StringNet around a
swarm of attackers Ack , they move while tracking a desired rigid

closed circular formation F
h
dck

centered at a virtual agent rdch
k
as

discussed in Chipade and Panagou (2020b). The swarm is herded

to the closest safe area Sς(k), where ς(k) = argmin
m∈Is

∥

∥

∥
rdch

k
− rsm

∥

∥

∥
.

4. MULTI-SWARM HERDING

In this section, we consider that the attackers split into smaller
groups as they sense the defenders along their way to the
protected area, to maximize the chance of at least some attackers
reaching the protected area by circumnavigating the oncoming
defenders. To respond to such strategic movements of the
attackers, the defenders need to collaborate intelligently. In
the approach presented in this paper, as shown in the block
diagram in Figure 4, the defenders continuously keep checking
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FIGURE 4 | Block diagram for “Multi-Swarm StringNet Herding”.

whether the attackers have split, i.e., whether the attackers no
longer satisfy certain spatial proximity constraints (defined later
in the text). After a split event has happened, the defenders
first identify the spatial clusters of the attackers. Then, the
defenders distribute themselves into smaller connected groups,
and these connected groups are assigned to the herd different
spatial clusters (swarms) of the attackers to safe areas. Here, by
“connected group of defenders" we mean that the defenders have
already been connected via string barriers and established an
Open-StringNet formation, see for example the defenders at the
locations {ξ g1, ξ

g
2, ..., ξ

g
5} and {ξ

g
6, ξ

g
7, ..., ξ

g
10} as shown in Figure 3.

In the next subsections, we discuss how the swarms (clusters) of
the attackers are identified and how the defenders are assigned to
these identified swarms of the attackers.

4.1. Identifying Swarms of the Attackers
In order to identify the spatially distributed clusters (swarms)
of the attackers, the defenders utilize the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
(Ester et al., 1996). Given a set of points, DBSCAN algorithm
finds clusters of high density points (i.e., points withmany nearby
neighbors), and marks the points as outliers if they lie alone in
low-density regions (whose nearest neighbors are too far away).
DBSCAN algorithm can identify clusters of any shape in the data
and requires two parameters that define the density of the points
in the clusters: (1) εnb (radius of the neighborhood of a point),
(2) mpts (minimum number of points in εnb-neighborhood of a
point). In general, attackers can split into formations with varied
range of densities making the choice of the parameters εnb and
mpts challenging. There are variants of the DBSCAN algorithm,
such as OPTICS (Ankerst et al., 1999), which can find clusters
of varying density; however, they are more time consuming.
Therefore, to keep the computational demands low, we use the
DBSCAN algorithm with fixed parameters εnb and mpts, which
quickly yields useful clustering information about the attackers
satisfying a specified connectivity constraints.

The neighborhood of an attacker is defined using
weighted distance between two attackers: d(xai, xai′ ) =

√

(xai − xai′ )TM(xai − xai′ ), where xai = [rTai, v
T
ai]

T and M

is a weighing matrix defined as M = diag([1, 1,ϕ,ϕ]), where
ϕ weights relative velocity against relative position. We choose
ϕ < 1 because relative position is more important in a spatial
cluster than the velocity alignment at a given time instance. The
εnb-neighborhood of an attacker Ai is then defined as the set of
points x ∈ R

2 × Bv̄a such that d(xai, x) < εnb.
The largest circle inscribed in the largest Closed-StringNet

formation formed by the Rd(Na) defenders has radius ρ̄ac =
R̄sb
2 cot( π

Rd(Na)
). Maximum radius of any cluster with Na points

identified by DBSCAN algorithm with parameters εnb and mpts

is εnb(Na−1)
mpts−1 . If all of the attackers were to be a single swarm

enclosed inside the region with radius ρ̄ac, then we would require

εnb to be greater than
ρ̄ac(mpts−1)

Na−1 in order to identify them as

a single cluster. So we choose εnb =
ρ̄ac(mpts−1)

Na−1 , and since we
want to identify clusters with as low as 3 agents, we need to
choosempts = 3. With these parameters for DBSCAN algorithm,
we have:

Lemma 1. Let Ac(t) = {Ac1 (t),Ac2 (t), ...,AcNac(t)
(t)} be the

clusters identified by DBSCAN algorithm with εnb =
ρ̄ac(mpts−1)
(Na−1)

at time t, where Nac(t) is the total number of clusters at time t.
If |Ack (t)| > 3 and Na = Nd, then the radius ρack (t) of the
cluster Ack (t) satisfies ρack (t) = maxi∈Iack (t)

∥

∥rai(t)− rack (t)
∥

∥ ≤
R̄sb
2 cot

(

π

Rd(|Ack
(t)|)

)

, for all k ∈ Iac(t) = {1, 2, ...,Nac(t)}.

As the number of attackers increases, the computational cost
for DBSCAN becomes higher and looses its practical usefulness.
Furthermore, the knowledge of the clusters is only required by
the defenders when a swarm of attackers does not satisfy the
assumed constraint on its connectivity radius so the defenders
can be reconfigured and reassigned. So we continuously track the
radii of the clusters and run the DBSCAN algorithm only when
at some instant t = tse the connectivity constraint is violated by
the swarms of attackers Ack (tse) for some k ∈ Iac(tse) i.e., when
the radius ρack (tse) of the swarm of attackers Ack (tse) exceeds the
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value ρ̄ack (tse) =
R̄sb
2 cot

(

π

Rd(Na)

) |Ack
(tse)|−1

Na−1 . The connectivity

constraint violation is termed as split in this paper. The split event
is defined as:

Definition 4 (Split event). An instant tse when for any swarm
Ack (tse), k ∈ Iac(tse), the radius of the swarm of attackers Ack (tse)
defined as ρack (tse) = maxi∈Iack (tse)

∥

∥rai(tse)− rack (tse)
∥

∥ exceeds

the value ρ̄ack (tse).

We also make the following assumption regarding the
splitting behavior of the attackers.

Assumption 2. Once a swarm of attackers splits, its member
attackers never rejoin each other, i.e., for all i ∈ Ia, if ∃ t > 0
such that Ai /∈ Ack (t) for any k ∈ Iac(t) then Ai /∈ Ack (t

′)
for all t ≤ t′.

4.2. Defender Assignment to the Swarms
of Attackers
The initially single-one swarm of attackers splits into smaller
swarms that are being identified by the defenders. After
then, the defenders must distribute themselves into smaller
groups, and assign these groups to the attackers’ swarms
(clusters), so that subsequently they enclose the attackers’
clusters and herd them to the closest safe area. Let Ac(tse) =
{Ac1 (tse),Ac2 (tse), . . . ,AcNac (tse)} be a set of swarms of the
attackers after a split event has happened at time tse.

We assume that none of the swarms inAc(t) is a singular one,
i.e., a swarm with less than three agents, |Ack (t)| > 2 for all
k ∈ Iac(t), t ≥ 0. We formally define the defender to attackers’
swarm assignment as:

Definition 5 (Defender-to-AttackSwarm Assignment). A set
β(t) = {β1(t, ·),β2(t, ·), ...βNac (t, ·)} of mappings βk(t, ·) :{1, 2, ...,
Rd(|Ack (t)|)} → Id, where βk(t, ·) gives the indices of the defenders
assigned to the swarmAck (t) at time t for all k ∈ Iac(t).

We want to find an assignment that minimizes the sum
of distances of the defenders from the centers of the assigned
attackers’ swarms. This ensures that the collective effort needed
by all the defenders is minimized when enclosing the swarms
of the attackers. For successful enclosing of the newly formed
attacking swarms, it is required that all the defenders that are
assigned to an attackers’ cluster are neighbors of each other,
are already connected to each other via string barriers, and the
underlying graph is an Open-StringNet.

Let Dc(t−se ) = {Dc1 (t
−
se ),Dc2 (t

−
se ), . . . ,Dc

Ndc(t
−
se )
(t−se )} be a set

of swarms of the defenders, where t−se denotes the instant
immediately before t = tse. Each of these swarms is already
connected via a StringNet and was assigned to herd some cluster
of attackers an instant before a split event happened at time
tse. Now that a split event has happened and new smaller
clusters have been formed by the attackers, we seek to reassign
the defenders Dc(t−se ) to herd the newly formed clusters of
the attackers.

This assignment problem is closely related to generalized
assignment problem (GAP) (Öncan, 2007), in which n objects
are to be filled in m knapsacks (n ≥ m). This problem is

modeled as a GAP with additional constraints on the objects
(defenders) that are assigned to a given knapsack (attackers’
swarm). The additional constraint on the defenders is to ensure
their connectivity to each other within a newly formed swarm
of defenders. So, we call this constrained assignment problem
as connectivity constrained generalized assignment problem
(C2GAP), and provide a mixed integer quadratically constrained
program (MIQCP) to find the optimal assignment centrally as:

δ∗(tse) = argmin
δ(tse)

∑Nac(tse)
k=1

∑Rd(Na)
j=1

∥

∥rack (tse)− rdj(tse)
∥

∥ δjk(tse) (6a)

Subject to
∑

k∈Iac(tse) δjk(tse)=1, ∀j∈Idc0 ; (6b)
∑

j∈Idc0
δjk(tse)=Rd(|Ack

(tse)|), ∀k∈Iac(tse); (6c)

∑Ndc(t
−
se )

k′=1
∑

l∈Ĩdck′
(t−se )

δ
β
−
k′ (l)k

δ
β
−
k′ (l+1)k

≥Rd(|Ack
(tse)|)−1,

∀k ∈ Iac(tse); (6d)
∑

k∈Iac(tse)
∑

j∈Idc0
δjk(tse)=Rd(Na); (6e)

δjk(tse)∈{0,1}, ∀j∈Idc0 , k∈Iac(tse); (6f)

where Idc0 = {1, 2, ...,Rd(Na)}; Ĩdck′ (t
−
se ) = {1, 2, ..., |Dck′ (t

−
se )| −

1}, where Dck′ (t
−
se ) is the k′th swarm before the reassignment;

δ(tse) ∈ {0, 1}Rd(Na)Nac is the binary decision vector defined as
δ(tse) = {δjk(tse)|j ∈ Idc0 , k ∈ Iac(tse)}, where δjk(tse) is a decision
variable which is equal to 1 when the defender Dj is assigned to

the swarm Ack (tse) and 0 otherwise; and β−
k′ (·) = βk′ (t−se , ·) is the

assignment of the defenders to a clusterAck′ (t
−
se ) prior to the split

event. The constraints (6b) ensure that each defender is assigned
to exactly one swarm of the attackers. The capacity constraints
(6c) ensure that for all k ∈ Iac(tse) swarm Ack (tse) has exactly
Rd(|Ack (tse)|) defenders assigned to it. The quadratic constraints
(6d) ensure that all the defenders assigned to swarm Ack (tse) are
connected together with an underlying Open-StringNet for all
k ∈ Iac(tse). Consider any sub-group of Rd(|Ack (tse)|) defenders
out of the defenders that are already connected via Open-
StringNet at the time of assignment. The intuition behind the
constraints (6d) is that, for these Rd(|Ack (tse)|) defenders, to be
connected to each other via an Open-StringNet, each defender
needs to be connected to its immediate neighbors and the total
number of such connections should be equal Rd(|Ack (tse)|) − 1.
If the total number of connections is less than Rd(|Ack (tse)|) −
1 then it is evident that there are at least two disconnected
components in the given subgroup of defenders and they do
not form a single Open-StringNet, which is not desired in our
case. For example, in the scenario shown in Figure 3, if we were
to assign 5 defenders to a cluster of attackers then the only
choices under this quadratic constraint would be to choose the
defenders at ξ

g

l
for l ∈ {1, 2, ..., 5} or the defenders at ξ

g

l
for

l ∈ {6, 7, ..., 10} and not the defenders at ξ
g

l
for l ∈ {1, 2, 7, 8, 9}

or any such combination of defenders that violates the Open-
StringNet connectivity. The constraint (6e) ensures that all the
Rd(Na) defenders are assigned to the attackers’ swarms.
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The aforementionedMIQCP can be solved using a MIP solver
Gurobi (Gurobi Optimization, 2018). After solving (6), one can
find the mapping βk(t, ·), for all k ∈ Iac(t), as follows:

βk(t, l) = β−k∗ (l0 + l), for t ∈ [tse + tcomp, min(tnextse ,∞)],
(7)

where k∗ = argmaxk′
∑|Dck′ (t

−
se )|

l′ δβ−
k′ (l
′)k(tse) and l0 is the smallest

integer for which δβ−
k∗ (l0+1)k

(tse) = 1; tcomp is the computation

time to solve (6); and tnextse is an unknown future time at which
a split happens. In other words, the assignment obtained using
the states at tse continues to be a valid assignment until the next
split event happens at some unknown time tnextse in the future.
As shown in an instance of the defender-swarm assignment in
Figure 3, the defenders at ξ

g

l
for l ∈ {1, 2, ..., 5} are assigned to

swarmAc2 (tse) and those at ξ
g

l
for l ∈ {6, 7, ..., 10} are assigned to

swarmAc1 (tse).

4.3. Decentralized Algorithm for Defender
to AttackSwarm Assignment
The MIQCP in (6) is solved centrally, i.e., a single agent has
access to the information pertaining to all the agents and
the MIQCP is solved by a single agent or computer and the
assignment result is communicated to other agents. To make the
proposed assignment approach robust toward failure, we provide
a decentralized algorithm to solve the assignment problem.

When a swarm of attackers Ack splits into smaller swarms
at t = tse. The newly identified swarms of the attackers by the
DBSCAN algorithm are assigned new indices. Namely, one of
the swarm is assigned the index k, i.e., the index of the parent
swarmAck and the rest swarms are assigned integers greater than

Nac(tse) as their indices. Let C(k)(tse) denote the indices of the
clusters of the attackers that are newly formed out of the parent
clusterAck (t

−
se ), when the clusterAck splits at t = tse, as identified

by the DBSCAN algorithm. Then, we can assign the defenders
in Dck (t

−
se ) only to the clusters Ac′

k
(tse), for all k′ ∈ C(k)(tse), and

not consider other clusters of attackers, that did not split, or the
other defenders during the reassignment process. We do so by
solving the following modified MIQCP, which is solved only for
the defenders in Dck (t

−
se ) and the attackers in the cluster Ack (t

−
se ).

δ(k)∗(tse) = argmin
δ(k)(tse)

∑

k′∈C(k)(tse)
∑

j∈Dck
(t−se )

∥

∥rack′ (tse)− rdj(tse)
∥

∥ δjk′ (tse) (8a)

Subject to
∑

k′∈C(k)(tse) δjk′ (tse)=1, ∀j∈Dck
(t−se ); (8b)

∑

j∈Dck (t
−
se )

δjk′=Rd(|Ack′ (tse)|), ∀k′∈C(k)(tse); (8c)

∑

l∈Ĩdck (t
−
se )
δ
β
−
k
(l)k′ δβ−

k
(l+1)k′≥Rd(|Ack′ (tse)|)−1,

∀k′ ∈ C(k)(tse); (8d)
∑

j∈Dck (t
−
se )

∑

k′∈C(k)(tse) δjk′=|Dck
(t−se )|; (8e)

δjk(tse)∈{0,1}, ∀j∈Dck
(t−se ), k∈C(k)(tse); (8f)

where δ(k)(tse) ∈ {0, 1}|Dck
(t−se )||C(k)(tse)| defined as δ(k)(tse) =

[δjk′ (tse)|j ∈ Dck (t
−
se ), k

′ ∈ C(k)(tse)], Dck (t
−
se ) = {βk(t−se , j)|j ∈

{1, 2, ..., |Dck (t
−
se )|}} is the set of indices of the defenders in Dck

prior to the reassignment. As one can see, the dimension of
the decision vector δ(k)(tse) is going to be smaller than that of
the decision vector in (6) and hence (8) can be solved relatively
quicker than (6).

Although the clustering information is acquired and tracked
centrally, the problem in (8) is solved and the assignment solution
is communicated to other teammates by the lead defender in
Dck (t

−
se ), where the lead defender is identified to be the one in

the middle of the Open-StringNet formation, i.e., the defender

Dβk(t
−
se ,li

) where li = ⌊
|Dck

(t−se )|
2 ⌋, for all k for which the Ack

have split.
This helps the defenders find the Defender-to-AttackSwarm

assignment quickly, and without having to consider all the agents
in the assignment formulation, i.e., in a decentralized way.

If only one swarm of the attackers splits at a given time instant
tse then indeed the optimal cost obtained in (6) and (8) are same.
For other cases, the cost obtained by the decentralized algorithm
would be suboptimal. A detailed analysis of performance of the
centralized and the decentralized algorithms will be studied in
our future work.

4.4. Heuristic to Find Defender-To-
AttackSwarm Assignment
Finding the optimal defender-swarm assignment by solving the
MIQCPs discussed above may not be real-time implementable
for a large number of agents (> 100). In this section, we develop a
computationally-efficient heuristic, called hierarchical approach,
to find defender-swarm assignment. A large dimensional
assignment problem is split into smaller, lower-dimensional
assignment problems that can be solved optimally and quickly
using the MIQCP formulation discussed earlier. Algorithm
1 provides the steps to reduce the problem of size Nac to
smaller problems of size smaller than or equal Nac(≤ Nac). In
Algorithm 1, A is a data structure, at the time of assignment
t = tse, with fields that store the information of: (i) centers
of the attackers’ swarms Ra(tse) = [rack′ (tse)|k′ ∈ C(k)(tse)],
(ii) numbers of the attackers in each newly formed swarm
na(tse) = [|Ack′ (tse)||k′ ∈ C(k)(tse)], (iii) total number of
attackers N−a = Nack (t

−
se ). Similarly, D is a data structure that

stores the information of: (i) defenders’ positions Rd(t
−
se ) =

{rdj(t−se )|j ∈ Dck (t
−
se )}, and (ii) the goal assignment β− = βk(t−se , ·).

splitApproxEqual function splits the attackers into two
groups A

l and A
r of roughly equal number of attackers, and

the defenders into two groups D
l and D

r . The split is performed
based on the angles ψk′ made by relative vectors rack′ (tse) −
rdc(t

−
se ), for all k

′ ∈ C(k)(tse), with the vector rdβ−(|Dck
(t−se )|)(tse) −

rdc(t
−
se ) where rdc(t

−
se ) is the center of Rd(t

−
se ) as shown in

Figure 5.
We first arrange these angles ψk′ in descending order. The

first few clusters in the arranged list with roughly half the total
number of attackers become the left groupA

l and the rest become
the right group A

r . Similarly, the left group D
l is formed by

the first A
l.N−a defenders as per the assignment β− and the rest

defenders form the right group D
r . For example, as shown in
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FIGURE 5 | Splitting for the hierarchical algorithm.

Algorithm 1: Defender-Swarm Assignment

1 Function assignHierarchical(A,D):
2 if A.Nac > Nac then

3 [Al,Dl,Ar ,Dr]=splitApproxEqual (A,D);

4 if A
l.Nac > Nac then

5 β=assignHierarchical (Al,Dl);
6 else

7 β l =assignMIQCP (Al,Dl);

8 if A
r .Nac > Nac then

9 βr =assignHierarchical (Ar ,Dr);
10 else

11 βr =assignMIQCP (Ar ,Dr);

12 β = {β l,βr};
13 else

14 β=assignMIQCP (A,D);

15 return β = {β1,β2, ...,βNac}

Figure 5, after the very first split event, the clusters Ac1 , Ac3

become part of A
r
1 and Ac2 , Ac4 are a part of A

l
1. Similarly,

the defenders at ξ
g
c1 ,j

for j ∈ {1, 2, ..., 8} become part of D
l
1

while the defenders at ξ
g
c1 ,j

for j ∈ {9, 10, ..., 18} become part

of D
r
1. We assign the defenders in D

l only to the swarms in

A
l and those in D

r only to the swarms in A
r . By doing so we

may or may not obtain an assignment that minimizes the cost
in (6a) but we reduce the computation time significantly and
obtain a reasonably good assignment quickly. As in Algorithm
1, the process of splitting is done recursively until the number of

attackers’ swarms is smaller than a pre-specified numberNac. The
function assignMIQCP finds the defender-swarm assignment
by solving (6).

In Figure 6, we show the average computation time for a
number of cluster configurations and random initial conditions.
The computation cost first increases with the number of clusters,
reaches a maximum point, and then decreases. This is because
the computation cost is proportional to the number of choices
available, i.e., number of ways Nac groups of given sizes can be
formed out of N players (NCNac ). More importantly, as shown
in Figure 6, the average computation time for the hierarchical
approach (heuristic) to assignment is significantly smaller than
that of the MIQCP formulation. We also compare the cost of
MIQCP and the heuristic. Figure 6 shows the percentage error
between the cost from heuristic and the optimal cost from

MIQCP, defined as % error = 100|costMIQCP−costHeuristic|
costMIQCP

, where

costMIQCP and costHeuristic are the costs obtained by the MIQCP
and the Heuristic, respectively. The cost of the hierarchical
algorithm is very close to the optimal cost (MIQCP), see
Figure 6. In summary, the hierarchical heuristic exploits the
geometry to provide a reasonable assignment solution within a
fraction of time that the optimal MIQCP formulation could have
taken to find.

5. DOMINANCE REGION FOR THE
DEFENDERS

In this and the following section, we provide conditions under
which the defenders can successfully herd the attackers. The
defenders succeed in herding the attackers if they manage to
achieve the open-StringNet with line formation F

g

d
centered at
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FIGURE 6 | Run-time for assignment algorithms.

a gathering center on the expected path of the attackers, well
before the attackers reach the gathering center. If the successful
gathering is possible by the defenders, then they could proceed
to use the proposed StringNet herding approach to herd the
attackers to safe areas, otherwise, the defenders would have to use
some other approach to defense, such as direct physical capturing
of the attackers.

For given initial conditions of all the agents, the defenders
require to solve the problem of finding the best gathering
center rdcg and the corresponding defender-goal assignment βo
using the iterative MIQP formulation discussed in Algorithm
1 in Chipade and Panagou (2020b). One needs to check if
this problem is feasible for given initial conditions to conclude
whether defenders can succeed in gathering. This formulation,
however, becomes computationally demanding as the number of
agents becomes larger. In order to quickly decide if the successful
gathering is feasible or not, we provide the following approximate
problem formulation that can be solved relatively quickly.

Let Ta(ra, r, ρa) be the minimum time required by an attacker
at ra to reach within ρa distance from the point r ∈ R

2. Let
Rd = [rd1, rd2, ..., rdNd

] denote the positions of the defenders

Dj for all j ∈ Id. Let Td(Rd,F
g

d
(r, θ)) be the maximum time

required by all the defenders to achieve the gathering formation
F

g

d
(r, θ) centered at r with orientation vector making an angle θ

with x-axis.

FIGURE 7 | Abstraction for estimate of dominance region.

Consider Nd defenders and Na attackers located at given
positions as shown in Figure 7. Consider the protected area
located at the origin (rp = [0, 0]T). Let the largest radius of the
attackers’ formation be ρ̄ac. Let the position vector of the center
of mass of the attackers make an angle θac with x-axis. Let the
center of the desired formation be located at a distance R from
the protected area along the direction θac. The distance of the
defender Dj from the center of the desired formation is:

̺j =
√

R2 + R2j − 2RRj cos(|θdj − θac|), (9)

for all j ∈ Id. The maximum value among ̺j, for all j ∈ Id, can

be bounded as: ¯̺ = max
j∈Id

̺j ≤ ˜̺δ =
(

∑

j∈Id
̺δj

)
1
δ
(Stipanović et al.,

2012). For which we also have lim
δ→∞

˜̺δ = ¯̺ .
The maximum distance any defender would have to travel

in the best defender-goal assignment can be upper bounded by
¯̺d = ˜̺δ + 0.5(Nd − 1)R

g

sb
. The maximum time for any defender

to reach the gathering location assigned to it as per the best
defender-goal assignment under time-optimal control (Chipade
and Panagou, 2020a) can be bounded from above by:

T̄d = τ ( ¯̺d, 0, 0) = 1
λ0

(

tanh−1
(

vsw
v̄d

)

+ tan−1
(

vsw
v̄d

))

(10)

where λ0 =
√
ūdCD, vsw =

√

(λ−1)ūd
(λ+1)CD

, λ = e2CD ¯̺d . Similarly, the

minimum time that the attackers require to reach the gathering
location is when the attackers move toward the protected with
the maximum possible speed. Then, the difference between the
time needed for the attackers to reach the gathering location and
the time required by the defenders to reach there can be bounded
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from below by:

1T = Rac − ρ̄ac − R

v̄a
− T̄d(R) (11)

where Rac is the distance of the center of mass of the attackers
from the center of the protected area and ρ̄ac is the maximum
radius of the attackers’ formation under consideration. Defenders
want 1T ≥ 1T

g

d
to be able to gather well before the attackers

reach the gathering center. Here 1T
g

d
is a user-defined time

to account for the size of the attackers’ swarm and the time
required by the defenders to get connected by string barriers
once arrived at the desired gathering formation. Given initial
states of the attackers, one can find 1T using (11) to assess,
at least conservatively, whether the defenders can gather in the
attackers’ path before the attackers, without solving the actual,
computationally heavy iterativeMIQP formulation (Chipade and
Panagou, 2020b).

Furthermore, using the above approximate analysis, for given
initial conditions of the defenders, we characterize sufficient
conditions on the initial positions of the attackers for which
the defenders successfully gather on the shortest path of the
attackers to the protected area, before the attackers can reach
there. We call this set of initial conditions of the attackers as the
dominance region for the given initial positions of the defenders.
The dominance region is formally defined as:

Definition 6 (Defenders’ Dominance Region).

Dom(Rd, ρ̄ac,1T
g

d
) = {r ∈ R

2|∃υ ∈ (
ρp
‖r‖ , 1 −

ρ̄ac
‖r‖ ) such that

Ta(r, rdcg , ρ̄ac)− Td(Rd,F
g

d
(rdcg , θdcg )) ≥ 1T

g

d
where rdcg = υr}.

We use (11) to find an estimate Domest of the dominance
region Dom that is completely contained inside Dom. We are
interested in the limiting condition when 1T = 1T

g

d
, that

corresponds to the boundary of Domest , for which we have:

Rac = f (R) = ρ̄ac + R+ v̄a(T̄d(R)+1T
g

d
). (12)

We want to find the smallest value Rac(> ρp) of Rac for

which1T = 1T
g

d
, i.e.,

Rac = minR>ρp f (R). (13)

Lemma 2. Given that no two defenders are co-located, i.e.,
∥

∥rdj − rdj′
∥

∥ > 0 for all j 6= j′ ∈ Id, f (R) as given in Equation (12)
is a locally convex function of R.

Proof: The proof is provided in the Appendix.

One can find Rac by solving the convex optimization (13)
with R = R∗, the minimizer of ˜̺δ(R), as an initial guess to a
gradient descent algorithm with sufficiently small step size. For
different directions from which the attackers can approach the
protected area, we solve the convex optimization (13) to find the
corresponding point on the boundary Domest . Figure 8 shows
the boundaries ∂Domest and ∂Dom of the estimate Domest and
the dominance region Dom, respectively. Here ∂Dom is obtained
by numerically evaluating the iterative MIQP for each direction.

The regions outside of the closed boundaries ∂Domest and ∂Dom
are, respectively, Domest and Dom, computed for the case where
the defenders are at given locations (blue circles). On the other
hand, the set inside the boundaries ∂Domest and ∂Dom are the
complement sets Domc

est = R
2\Domest and Domc = R

2\Dom,
respectively. The set Domc is essentially the dominance region of
the attackers, i.e., the attackers can reach the protected area before
the defenders can gather on their path if the attackers start inside
Domc. Note that the estimate Domest is completely contained in
the dominance region Dom. The region Dom is larger on the
side where the density of the defenders is larger. This is intuitive
because many defenders have to travel less when the attackers
approach from this side and hence allow defenders to gather on
the expected path of the attackers in time even if the attackers
start more closer to the protected area on this side. We have the
following result based on the above analysis.

Theorem 3. Consider a group of defendersDc = {D1,D2, ...DNdc
}

starting at given locations Rdc = [rd1, rd2, ..., rdNd
] and a swarm

of Attackers Ac with footprint of maximum radius ρ̄ac. If the
attackers start inside Domest(Rdc, ρ̄ac,1T

g

d
), then the defenders in

Dc are guaranteed to achieve a formation F
g

d
(rdcg , θdcg ) on the

shortest path from the center of mass of the attackers in Ac to the
protected area P before the attackers could reach there.

Proof: By construction, Domest(Rdc, ρ̄ac,1T
g

d
) ⊆

Dom(Rdc, ρ̄ac,1T
g

d
). The proof follows from the definition

of the dominance region Dom(Rdc, ρ̄ac,1T
g

d
).

In other words, Theorem 3 states that for the attackers starting
in Domest(Rd, ρ̄ac,1T

g

d
), the defenders are guaranteed to gather

in their shortest path to the protected area in time. However, if
the attackers do not start in Domest(Rd, ρ̄ac,1T

g

d
) nothing can be

concretely said about the gathering of the defenders based on the
above approximate analysis.

6. RESULTS

Based on the DBSCAN clustering based assignment algorithm
discussed earlier and the conditions on the initial states of the
agents for successful gathering, we have the following result on
the successful herding of the attackers.

Theorem 4. Consider a group of defenders Dc =
{D1,D2, ...DRd(Na)

} starting at given locations Rdc =
[rd1, rd2, ..., rdRd(Na)

]. Let attackers’ initial positions be

such that ρac(0) = maxi∈Ia
∥

∥rai(0)− rac(0)
∥

∥ ≤ ρ̄ac, where

rac(0) =
∑

i∈Ia
rai(0)
Na

, and that they belong to Domest(Rdc, ρ̄ac).
Furthermore, suppose that for all times t > 0, each attacker
belongs to one of the clusters {Ac1 ,Ac2 , ...,AcNac }, for some Nac,

that are identified by DBSCAN algorithm with εnb =
ρ̄ac(mpts−1)

Na−1
and mpts = 3 whenever a swarm splits into smaller swarms.
Then,

(i) the defenders in Dc are guaranteed to enclose every attacker
inside a StringNet; and

Frontiers in Robotics and AI | www.frontiersin.org 12 April 2021 | Volume 8 | Article 640446

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Chipade et al. Aerial Swarm Defense

FIGURE 8 | Dominance regions of the players.

(ii) if a swarm of attackers has not reached the protected area P

by the time it is enclosed within a StringNet then the swarm is
guaranteed to be herded to one of the safe areas.

Proof: (i) The attackers start inside Domest(Rdc, ρ̄ac) ⊂
Dom(Rdc, ρ̄ac), so as per Theorem 3 the defenders are
able to gather and get connected by string barriers on the
shortest path of the attackers to the protected area. Since
each attacker belongs to one of the swarms of attackers
{Ac1 ,Ac2 , ...,AcNac } that is identified by DBSCAN algorithm,
we have from the Lemma 1 that each cluster satisfies

ρack = maxi∈Iack
∥

∥rai − rack
∥

∥ ≤ R̄sb
2 cot

(

π

Rd(|Ack
|)

)

, as long

as |Ack | > 3. This implies that a group of Rd(|Ack |) defenders
Dck connected via StringNet are capable of enclosing the
attackers in Ack for all k ∈ Iac. Under the control laws as
described in section 3 (and in Chipade and Panagou (2020b)),
it is proved in Theorem 5 and 6 in Chipade and Panagou
(2020b) that the defenders in Dck form a closed-StringNet
around the attackers in Ack , i.e., the defenders enclose the
attackers, for all k ∈ Iac.

(ii) Once the attackers in a cluster Ack are enclosed by the
defenders in Dck and it is true that the attackers have not
reached the protected area, then the defenders in Dck , under
the control actions described in section 3.4 (and in Chipade
and Panagou 2020b), herd the attackers in Ack to one of the
safe areas as proved in Theorem 7 in Chipade and Panagou
(2020b), for all k ∈ Iac.

Remark 1. We do provide strong guarantees on the completion
of the gathering phase. We also proved in Chipade and Panagou
(2020b) that the attackers’ clusters will be enclosed within some
finite time under the state-feedback control laws as discussed in
Chipade and Panagou (2020b). However, finding upper bounds
on this finite time with many agents and formation interacting
with each other is not a trivial task and hence providing strong
conditions under which seeking and enclosing phases are also

FIGURE 9 | Multi-Swarm StringNet Herding: Snapshot 1.

completed well before attackers reach the protected areas for each
cluster of attackers is left open for future research.

7. SIMULATIONS

In this section, we provide a simulation of 18 defenders herding
18 attackers to S with bounded control inputs. Figures 9–12
show the snapshots of the paths taken by all agents. The positions
and paths of the defenders are shown in blue color, and that of
the attackers in red. The string-barriers between the defenders
are shown as wide solid blue lines with white dashes in them.

Snapshot 1 shows the paths during the gathering phase. As
observed the defenders are able to gather at a location on the
shortest path of the attackers to the protected area before the
attacker reach there. Five attackers are already separated from the
rest 13 in reaction to the incoming defenders in their path. The
defenders have identified two swarms of the attackers Ac1 and
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FIGURE 10 | Multi-Swarm StringNet Herding: Snapshot 2.

FIGURE 11 | Multi-Swarm StringNet Herding: Snapshot 3.

Ac2 at the end of the gathering phase and assign two subgroups
Dc1 and Dc2 of the defenders to Ac1 and Ac2 using Algorithm 1.
As shown in snapshot 2, Dc1 and Dc2 seek Ac1 and Ac2 , but the
attackers in swarm Ac2 further start splitting and the defenders
identify this newly formed Ac2 and Ac3 at time t = 120.11 s.
The group Dc2 is then split into two subgroups Dc2 and Dc3 of
appropriate sizes and assigned to the new swarms Ac2 and Ac3

using Algorithm 1.
Snapshot 3 shows how the 3 subgroups of the defenders are

able to enclose the identified 3 swarms of the attackers by forming
Closed-StringNets around them. Snapshot 4 shows how all the
three enclosed swarms of the attackers are taken to the respective
closest safe areas while each defenders’ group ensures collision
avoidance from other defenders’ groups. Additional simulations
can be found at https://tinyurl.com/yypb2yv9.

FIGURE 12 | Multi-Swarm StringNet Herding: Snapshot 4.

8. EXPERIMENTAL RESULTS

In this section, we provide hardware demonstrations of the
herding approach. For this purpose, we use a fleet of in-
house built 4 quadrotors each of which uses PixHawk cube
2.1 autopilot board for autonomous control. Each quadrotor
is also fitted with Real-Time Kinetic (RTK) supported here+
GPS module and a ESP8266 Wi-Fi module. Figure 13 shows
the overall experimental setup used for the demonstrations.
The experimental setup consists of the fleet of quadrotors,
a ground station computer, a wifi router, a RTK GPS base
module. The ground station computer and the quadrotors are
connected to a common wifi network created by the wifi
router. The wifi modules on the quadrotors are used for the
communication between the quadrotors and the ground station
computer. The RTK GPS base module is used to provide
corrections to the on-board GPS modules to provide centimeter
level position accuracy. We use robot operating system (ROS)
as an underlying framework to exchange and manipulate
different signals used across the system. In particular, we use
MAVROS package, based onMAVLink communication protocol,
to exchange information between the ground station and the
quadrotors.

As a proof of concept, we only demonstrate the “StringNet
Herding” for single attacking swarm case in a centralized
setting. In this setup, the ground station receives position and
velocity commands from the vehicles and sends next reference
commands, obtained through the MATLAB simulation running
in the background based on the StringNet Herding formulation
discussed earlier, to the quadrotors. The decentralized version
for multi-swarm case can be tested similarly by having sufficient
computational power available on the quadrotors.

We perform our experiments in an outdoor netted facility
named M-Air at the University of Michigan. M-Air is a cuboid
shaped netted facility as shown in Figure 13. We consider a
scenario with 3 defenders (D1,D2,D3) and 1 attacker (A1) to
demonstrate the proposed herding approach due to the limited
space available in M-Air. The location of the protected area, the
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FIGURE 13 | Experimental setup, M-Air facility and the initial configuration (The dotted line in the figure on the left shows the safe region of operation inside M-Air

facility).

safe area and the initial locations of the quadrotors in M-Air
are shown in Figure 13. We chose the protected area outside
the M-Air so that we have large area available for quadrotors’
motion. The safe area is chosen to be centered at one corner of
M-Air with radius of 13 m so that the entire formation of the
defenders after enclosing the attacker is able to reach inside the
safe area.

Again due to limited space, we only demonstrate the enclosing
and the herding phases of the StringNet Herding approach.
During the experiment all the quadrotors are commanded to fly
at an altitude of 2.5 m above the local ground. The paths traversed
by the quadrotors starting at the initial positions as shown
in Figure 13 during the experiment are shown in Figure 14.
The visuals of the quadrotors at different time instances during
the experiment are shown in Figure 15. In Figure 15, the

defenders D1, D2, and D3 are denoted by D1, D2, and D3,
respectively, with blue oval drawn around them to highlight
where they are located in the figure. Similarly, the attacker is
denoted by A1 and a red oval is drawn around it to highlight it.

As one can observe in Figure 14 the attacker starts moving
toward the protected area in the beginning. Once it detects the
defenders on its path, it starts to move away from them in
order to protect itself. But, the defenders are able to enclose the
attacker successfully at around t = 77 s despite attacker’s initial
attempt at escaping from them, see Figure 15 for the visual of
the quadrotors at this instance. After the attacker is enclosed
it is herded to the safe area located at the corner of M-Air at
t = 149 s as shown in Figures 14, 15 and thus the protected
area is protected from the attack by the attacker. The video of the
experiment can be found at https://tinyurl.com/yyd3qfty.
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FIGURE 14 | Paths traversed by the quadrotors during StringNet Herding (The

dotted blue lines denote the paths of the defenders while the red denote that

of the attackers. The solid blue lines with white dashes in them denote the

string barrier assumed between the quadrotors).

9. OUR THOUGHTS ON THREE
DIMENSIONAL (3D) CASE AND
NON-CIRCULAR GEOMETRIES

The idea of StringNet can also be applied to 3D case. In our recent
work Zhang et al. (2020), we extended the idea of “StringNet
Herding” to the 3D case. The StringNet in 3D case, 3D-StringNet,
is a single component, orientable triangle mesh with zero genus
(holes) made of triangular net-like barrier faces. Similar to 2D-
Stringnet herding, 3D-StringNet herding also consists of four
phases: (1) gathering, (2) seeking, (3) enclosing and (4) herding.
In Zhang et al. (2020), we design three 3D-StringNet formations
of the defenders namely planar, hemispherical, spherical that are
required to be achieved in the phases discussed above in order to
effectively enclose the attackers and herd them to a safe area.

Although we assumed that the areas and the agents are
circular, the proposed algorithm can be easily extended to non-
circular geometries by considering appropriate distance metric
in the algorithmic formulation.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a clustering-based, connectivity-
constrained, assignment algorithm that distributes and assigns
groups of defenders against swarms of the attackers, to herd
them to the closest safe area using “StringNet Herding”

FIGURE 15 | Snapshot of the quadrotors after enclosing and herding phases

are completed by the defenders.

approach. We provide two algorithms to solve this assignment
problem: centralized and decentralized, and also a heuristic
based on the optimal MIQCP that finds this assignment quickly.
Furthermore, we provide conditions under which the defenders
can successfully herd the attackers to safe areas.

Simulations show how this proposed multi-swarm herding
method improves the original “StringNet Herding” method
and enables the defenders herd all the attackers to safe areas
even though the attackers start splitting into smaller swarms in
reaction to the defenders. Hardware experiments demonstrate
the success of the approach in real applications.

In our future work, we want to study a defense approach
that combines herding and interception approach together
in order to defend against wide range of attacks by
the attackers.
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11. APPENDIX

11.1. Proof of Lemma 2
Sum of two convex functions is always a convex function (Boyd
and Vandenberghe, 2004), so it is sufficient to show that T̄d(R)
is a locally convex function to show that f (R) is a locally convex
function. Let g(R) = T̄d( ¯̺d(R)). The double derivative of g is:

∂2g

∂R2
= ∂2T̄d

∂ ¯̺ 2
d

(

∂ ¯̺d
∂R

)2
+ ∂T̄d

∂ ¯̺d
∂2 ¯̺d
∂R2

. (14)

We have

∂T̄d
∂ ¯̺d =

Cd
λ0

√

λ+1
λ−1 ≥ 0; (15a)

∂2T̄d
∂ ¯̺ 2

d

= 1
λ0

(

(2Cd)
2λ

1−λ2
√

λ+1
λ−1

)

≤ 0; (15b)

∂ ¯̺d
∂R =

∑Nd
j=1 ̺

δ−2
j ( ˜̺δ)

1
δ
−1 (R− Rθ j); (15c)

∂2 ¯̺d
∂R2
=

∑Nd
j=1 ( ˜̺δ)

1
δ
−1 ̺δ−2j

{

( 1
δ
− 1)

(R−Rθ j)
( ˜̺δ)

∂ ¯̺d
∂R

1+ (δ − 2)̺−2j (R− Rθ j)2
}

, (15d)

where Rθ j = Rjcos(|θdj− θac|). Let R∗ be such that ∂ ¯̺d∂R |R=R∗ =
0. We have that ̺j is a convex function of R which implies that its
ℓδ-norm, ˜̺δ , is also a convex function (Boyd and Vandenberghe,
2004). This means ˜̺δ(R∗) is the minimum value of ˜̺δ , i.e.,
˜̺δ ≥ ˜̺δ(R∗). Since not all defenders are co-located ˜̺δ(R∗) > 0
implying ˜̺δ > 0 and λ > 1. From Equation (15d), we have
∂2 ¯̺d
∂R2
|R=R∗ > 0. Then from Equation (14), we get ∂

2g

∂R2
|R=R∗ > 0.

We know that ̺j is a twice continuously differentiable function
of R for R > 0 and if we choose δ ≥ 2 then we can show

that both ∂ ¯̺d
∂R and ∂2 ¯̺d

∂R2
are continuous functions of R. From

Equations (15a) and (15b), we have that ∂T̄d
∂ ¯̺d and ∂2T̄d

∂ ¯̺ 2
d

are

continuous functions of R. This implies that ∂2g

∂R2
is continuous

at R = R∗.
Combining the two results that ∂

2g

∂R2
is continuous and greater

than 0 at R = R∗ implies that there exists ǫ > 0 such

that ∂2g

∂R2
> 0 for all R satisfying |R − R∗| < ǫ, i.e., g(R)

is locally convex in the neighborhood of R = R∗. Hence
f (R) is also a locally convex function in the neighborhood
of R = R∗.
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