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Cranes are widely used in the field of construction, logistics, and the manufacturing
industry. Cranes that use wire ropes as the main lifting mechanism are deeply troubled by
the swaying of heavy objects, which seriously restricts the working efficiency of the crane
and even cause accidents. Compared with the single-pendulum crane, the double-
pendulum effect crane model has stronger nonlinearity, and its controller design is
challenging. In this paper, cranes with a double-pendulum effect are considered, and
their nonlinear dynamical models are established. Then, a controller based on the radial
basis function (RBF) neural network compensation adaptive method is designed, and a
stability analysis is also presented. Finally, the hardware-in-the-loop experimental results
show that the neural network compensation control can effectively improve the control
performance of the controller in practice.
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INTRODUCTION

Cranes are normally utilized to lift or move cargo in the field of construction, logistics, the
manufacturing industry, etc. Cranes come in a variety of forms, and most cranes work by
utilizing wire ropes to suspend cargo. With crane motion or external disturbances, cargo will
sway owing to the flexibility of the wire ropes, and active and passive methods are taken to carry the
cargo to the desired position. The swaying of the cargo is a kind of simple harmonic vibration. When
the cargo carried by the cranes begins to sway, it needs several periods to be suppressed, which is
time-consuming and even lead to working efficiency problems. Therefore, the swaying problem has
become an urgent subject, especially for the port industry. More than that, the swaying problem will
cause safety problems when carrying cargo of great mass, and it may even influence the design of the
crane structure greatly.

Anti-swaying technology for cranes has been studied in the last 20 years. Attention was paid to
both single-pendulum and double-pendulum effect cranes by using mechanical and automatic anti-
swaying technology. When the mass of the spreader for the crane is big enough, the double-
pendulum effect of the cranes cannot be neglected. In order to eliminate this double-pendulum effect,
which brings stronger nonlinearity caused by interactions between the spreader and the payload into
the system, controllers are designed to handle the swaying. A lot of research has been done to design
such controllers for solving the double-pendulum effect. Kamal (Moustafa and Ebeid, 1988) et al.
derived the nonlinear dynamical model of cranes, and, in 1988, a feedback control method was also
presented to eliminate the swaying of the cargo. M. Guitierrez et al. (Gutierrez and Solo, 1998)
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proposed a fuzzy logic controller for an overhead crane prototype
model that had obtained excellent control performances in
simulations and experiments. Z Nowacki et al. (Nowacki et al.,
1996) presented a PD controller with two feedback loops for an
overhead crane and robustness analysis of the system was also
proposed. Chwa et al. (Dongkyoung, 2017) presented a tracking
control method based on a sliding mode control method for a
three-dimensional overhead crane system to suppress the sway
angels of the trolley, and the control performance was proved to
be excellent. H.H Lee et al. (Cho and Lee, 2002) presented a novel
fuzzy anti-swing control scheme combined with a position servo
control and fuzzy logic control for an overhead crane prototype
and the effectiveness of the proposed control strategy is proved by
experiments.

Owing to the excellent approximation capability of the neural
network method, researchers have presented several studies to solve
the swaying problem of the cranes. Chunshien Li and Chun-yi Lee
et al. (Li and Lee, 2001a; Li and Lee, 2001b) proposed a composite
method combined with a neural network adaptive control method
with fuzzy control for an overhead crane with high capacity to resist
disturbance. Park et al. (Park and Le, 2012) had proposed a virtual
prototype co-simulation by MATLAB and ADAMS to study the
floating container crane. Zhang et al. (Zhang et al., 2016) proposed
an adaptive tracking controller based on double-pendulum
overhead cranes with uncertainties and disturbances by building
a new sliding function as the desired trajectory. Ouyang et al.
(Ouyang et al., 2019) presented a novel adaptive hierarchical sliding
mode controller for overhead cranes with a double-pendulum
effect, which can make the states of the system enter the desired
sliding surface faster and even improve the precision of cart
tracking. Ning Sun et al. (Sun et al., 2020a) established a

dynamic model of a cooperative dual rotary crane system based
on Lagrange’s method. Considering the actuator constraints, an
output feedback control method that helps to increase the dual-
boom positioning accuracy was also presented. Also, the control
method mentioned in (Sun et al., 2020a) was extended to the
positioning and tracking control for a pneumatic artificial muscle
system (Sun et al., 2020b). Chen H et al. presented a new control
strategy for a kind of under-actuated system by treating different
constraints, and the proposed method was applied to a double-
pendulum crane system with superior performances (Chen et al.,
2019; Chen and Sun, 2020). Yang T et al. (Yang et al., 2020)
designed an adaptive control method based on the neural network
to solve the positioning problems for a ship-mounted crane system.

Based on the previous analysis, the elimination of the double-
pendulum effect of cranes plays an important role to ensure the
safety and effectiveness of cranes during operation. The main
contribution of this work is as follows:

1. The proposed controller can realize fast positioning and
anti-swing function for the crane system with a double
swing effect.

2. The adaptive controller based on RBF neural network
compensation has an online learning function and is not
sensitive to the change of parameters. Even if there are
some missing items in the controller, it can still get a better
control effect through online learning compensation.

3. Experiment results show that the positioning accuracy and
response speed are better than the traditional sliding mode
controller.

In this paper, an overhead crane with a double-pendulum
effect is chosen as the research object. Firstly, the mathematical
model of the double-pendulum effect crane is established. Base on
the mathematical model, an adaptive controller based on a radial
basis function neural network compensation method is designed
where the core of the controller is the robust controller, and the

FIGURE 1 | Double-pendulum crane.

FIGURE 2 | Simplified model of the crane with double-pendulum.
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neural network is worked as an additional system to output
compensation force. Then, the Lyapunov stability analysis is
performed to testify the stability of the neural network
controller crane system. Finally, hardware in a loop
experimental platform is utilized to verify the proposed
controller. A comparison between the sliding mode controller
and the neural network controller is also presented to verify the
effectiveness and feasibility of the control strategy.

MODELING OF DOUBLE-PENDULUM
EFFECT CRANES

The structure of the overhead crane with a double-pendulum
effect is composed of a trolley, a spreader with a large mass (first-
order payload), and a payload (second-order payload).
Connections between the spreader, trolley, and payload are
made of wire ropes, which are shown in Figure 1.

FIGURE 3 | Adaptive control based on neural network compensation.

FIGURE 4 | Neural network control response of the control system.
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This assumes that the trolley, spreader, and payload of the
crane are working on a two-dimensional plane, and the track of
the trolley is horizontal. It considers the spreader and payload as
particles, and the connection point of the wire rope is on the
centroid of the spreader and payload. The transient wind
disturbances and friction among the trolley, spreader, and
payload connection point are ignored. The simplified model is
shown in Figure 2.

In Figure 2, the positive direction for the x axis is pointed to
the right; F denotes the driving force of the trolley; f represents the
friction force between the trolley and the track; M denotes the
mass of the trolley; m1 and m2 represent the mass of the spreader
and the payload, respectively; l1 and l2 denote the wire rope length
among the centroid of the spreader, trolley, and the payload,
respectively; x represents the displacement of the trolley; θ1 and θ2
denote the swing angle of the spreader and payload, respectively.

According to Lagrange equation of the second kind, the
dynamic equation set of the crane with double-pendulum can
be obtained:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(M +m1 +m2)€x + (m1 +m2)l1(€θ1 cos θ1 − _θ
2

1 sin θ1) +m2 l2(€θ2 cos θ2 − _θ
2

2 sin θ2) + b _x � F

m1 l1(€xcos θ1 + g sin θ1 + l1€θ1) +m2 l1[l1€θ1 + l2€θ2 cos(θ1 − θ2) + l2 _θ
2

2 sin(θ1 − θ2) + €xcos θ1 + g sin θ1] � 0

m2 l
2
2
€θ2 +m2 l1 l2€θ1 cos(θ1 − θ2) −m2 l1 l2 _θ

2

1 sin(θ1 − θ2) +m2 l2 €xcos θ2 +m2 l2g sin θ2 � 0

(1)

where b denotes the damping coefficient; _x represents the velocity
of the trolley; €x denotes the acceleration of the trolley; _θ1 and €θ1
represent the angular velocity and acceleration of the swing angle
1 respectively; _θ2 and €θ2 denote the angular velocity and
acceleration of the swing angle 2, respectively.

ADAPTIVE CONTROLLER BASED ON RBF
NEURAL NETWORK COMPENSATION
METHOD
Owing to the development of neural network technology (Hunt
et al., 1992; Feng, 1995), a great process had been made in the
field of automatic control, signal processing, and pattern
recognition. In this case, the neural network method had

FIGURE 5 | Neural network compensation control system response to phase trajectory.

FIGURE 6 | Experimental physical prototype.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6397344

Qiang et al. Anti-Sway and Positioning Adaptive Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


been introduced into the crane system, and the model of the
double-pendulum crane follows Eq. 2:

M(q)€q + C(q, _q) _q + G(q) � τ + d (2)

where q � [ x θ1 θ2 ]T ; _q � [ _x _θ1 _θ2 ]T ;
€q � [ €x €θ1 €θ2]T ; τ � [ F 0 0 ]T ;

The control purpose of the double-pendulum crane is to help
the trolley stop at the desired position while the first and second
payloads which is set below the trolley keeps still. The tracking

signal is defined as qd � ⎡⎢⎢⎢⎢⎢⎣ xd
θ1d
θ2d

⎤⎥⎥⎥⎥⎥⎦; _qd � ⎡⎢⎢⎢⎢⎢⎣ _xd
_θ1d
_θ2d

⎤⎥⎥⎥⎥⎥⎦; €qd � ⎡⎣ €xd
€θ1d
€θ2d

⎤⎦.
The calculated traction is utilized to control the double-

pendulum crane system. The controller is composed of a
traction calculation method and a neural network
compensation method. An RBF neural network correction
controller is defined as an additional to recognize the online
model error of the crane. As shown in Figure 3.

Calculated Traction Controller
The calculated traction control method is defined as a kind of
robust controller (Weiping et al., 2004). According to the dynamic
Eq. 2 of the crane, the control law can be designed as follows:

τ � M0(q)(€qd − kv _e − kpe) + C0(q, _q) _q + G0(q) (3)

where kp � ⎡⎢⎢⎢⎢⎢⎣ α1 0 0
0 α2 0
0 0 α3

⎤⎥⎥⎥⎥⎥⎦; kv � ⎡⎢⎢⎢⎢⎢⎣ β1 0 0
0 β2 0
0 0 β3

⎤⎥⎥⎥⎥⎥⎦, α＞0, β＞0.

The systematic error is defined as follows:

€e + kv _e + kpe � 0 (4)

where e � q − qd ; _e � _q − _qd ; qd represents the ideal tracking signal.

RBFNeural Network Controller and Stability
Analysis
RBF neural network method is adopted to approximate f (·) and
the RBF network algorithm can be defined as follow:

hi � exp(‖x − ci‖2
2b2i

), i � 1, 2, . . . , n (5)

f � wTh(x) (6)

where the input of the network is defined as x � [e, _e]T ; ci denotes
the coordinate vector of the center point of the Gaussian basis
function of the ith neuron in the hidden layer of the network; bi
represents the width for Gaussian function of the ith neuron
in the hidden layer; h � [h1, h2, . . . , hn]T denotes the calculated
output of Gaussian function; w represents the weight of the
network; f denotes the compensation force output from the
network.

FIGURE 7 | Response of the positioning anti-swing system based on sliding mode method.
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The adaptive control law can be designed as follows:

_̂w � chxTPB (7)

where γ＞0; A � ( 0 I
−kp −kv ); B � [ 0

M−1
0 (q)].

The Lyapunov function is designed as follows:

V � 1
2
xTPx + 1

2c
‖~w‖2 (8)

where γ＞0.
The matrix P is Symmetric and positive definite. Moreover, P

should satisfy the Lyapunov equation as follows:

PA + ATP � −Q (9)

where Q ≥ 0.

‖R‖2 � ∑
i,j

∣∣∣∣rij∣∣∣∣2 � tr(RRT) � tr(RTR) (10)

where tr(·) denotes the trace of the matrix. We can obtain the
following:

‖~w‖2 � tr(~wT ~w) (11)

V is derived with respect to time, and we can get the following:

_V � 1
2
[xTP _x + _xTPx] + 1

c
tr( _~wT

~w)
� 1
2
{xTP[Ax + B(η − ~wTh)] + [xTAT + (η − ~wTh)TBT]Px}

+ 1
c
tr( _~wT

~w)
� 1
2
[xT(PA + ATP)x + (xTPBη − xTPB~wTh + ηTBTPx

− hT ~wBTPx)] + 1
c
tr( _~wT

~w)
� 1
2
xTQx + ηTBTPx − hT ~wBTPx + 1

c
tr( _~wT

~w)
where xTPB~wTh � hT ~wBTPx; xTPBη � ηTBTPx.

Due to

hT ~wBTPx � tr[BTPxhT ~w] (12)

FIGURE 8 | System Response by using neural network compensation adaptive controller.
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_V can be rewritten as follows:

_V � −1
2
xTQx + 1

c
tr(−cBTPxhT ~w + _~w

T
~w) + ηTBTPx

� −1
2
xTQx + ηTBTPx

(13)

According to the known conditions, it can be concluded that!!!!ηT!!!!≤ !!!!η0!!!!, ‖B‖ � !!!!M−1
0 (q)!!!!

_V ≤ − 1
2
λmin(Q)‖x‖2 +

!!!!η0!!!!!!!!M−1
0 (q)!!!!λmin(P)‖x‖

� −1
2
‖x‖[λmin(Q)‖x‖ − 2

!!!!η0!!!!!!!!M−1
0 (q)!!!!λmin(P)]

(14)

where λmax(P) denotes the maximum eigenvalue of matrix P,
λmin(Q) denotes the minimum eigenvalue of matrix Q.

In this case, as long as λmin(Q) ≥ 2‖M−1
0 (q)‖λmax(P)

‖x‖
!!!!η0!!!!, then:

_V ≤ 0.
At this time, the system satisfies the stability in the sense of

Lyapunov.
According to the stability analysis criteria, if the matrix P is

Symmetric and positive definite, in order to keep the system
stable, the Lyapunov equation PA +ATP � −Q should be satisfied,
where Q ≥ 0.

According to Eq. 2 and Eq. 3 and combining the
approximation result f̂ (·) from the neural network, the
ultimate controller can be designed as follows:

τ � M0(q)(€qd − kv _e − kpe) + C0(q, _q) _q + G0(q) − f̂ ( · ) (15)

MATLAB is utilized to establish the crane system and the
control system. Suitable control parameters are tuned and the
results of the adaptive control system based on neural network
compensation are shown in Figure 4 and Figure 5.

It can be depicted from Figure 4 that the neural network
compensation can track the position accurately and suppress the
swing angle very well. It is also shown in Figure 5 that the final
state of the neural network controller is convergent to zero which
proved the effectiveness of the controller.

EXPERIMENTS

The hardware in the loop (HIL) simulation is introduced into
the experiment, which is known as an advanced method in
scientific research. In this experiment, the HIL is mainly
composed of PC, the controller, and the mechanical
structure. The PC had already been installed with the
MATLAB/Simulink software and was used as a host
computer. The motion control card is driven and
communicated with the PC. The mechanical structure is
driven by the motion card, and the motion parameters of the
mechanical structure are collected by the motion control card
and passed to the PC. The experimental physical prototype is
shown in Figure 6.

In order to testify the performance of the presented neural network-
based controller, the well-performed sliding mode controller in (Tuan
and Lee, 2013) is also presented as a comparison group. The input of the
sliding mode controller is defined as follows:

FIGURE 9 | Response of anti-disturbance system based on sliding mode method.
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u � −(m1 +m2)l1€θ1 cos θ1 −m2l2€θ2 cos θ2 + b _x

+(m1 +m2)l1 _θ21 sin θ1 +m2l2 _θ
2

2 sin θ2

−(M +m1 +m2)(λ _x + α _θ1 + β _θ2) − Ksgn(s) (16)

where K denotes the amplitude of the control switch gain; λ, α, β
represent the designed parameters; sgn(·) denotes the sign function.

Controller Positioning Anti-swing Control
Experiments
The sliding mode controller is established in MATLAB/Simulink
and the control parameters are tuned to adapt to the experimental
facilities. The experimental facility at the original point is static.
With the control of the controller, the motion of the trolley
follows the target position and the response results are obtained.

It depicts in Figure 7 that the sliding mode control-based
method can eliminate the swing angular velocity very quickly in the
wide range, and the amplitude of the swing angle is quite small.

However, the switch character of the swing angle with high frequency,
especially for the swing angles around 0°, will lead to oscillation.

With the same control object, the results of the RBF neural
network compensation controller is shown as follows:

From Figure 8, the adaptive controller basedonRBFneural network
compensation has no chattering problem of the sliding mode controller,
and the process is smoother than the sliding mode controller.

Anti-disturbance Control Experiment
This experiment is starting with a static trolley and the payload
does not have a swing angle. After that, the payload is given a
force that makes the payload swing, and the experiment is utilized
to evaluate the anti-disturbance performances of the presented
controller.

It is shown in Figure 9 that after external excitation the spreader
or the payload can go back to the original position very quickly by
using a sliding mode controller; the effect of the anti-swing is
significant, and the final state is a high-frequency swing state.
When the swing angle is big enough, the control effect is better.

FIGURE 10 | Response of anti-disturbance system based on neural network based compensation controller.
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The performance of the neural network-based controller is
shown in Figure 10. Compared to the sliding mode-based
controller, the neural network-based controller can control a
greater swing angle. Additionally, with the bigger excitation, the
maximum swing angle can reach 30°. It is proved that the
proposed neural network-based controller can control a
greater swing angle, which would make a quicker response
with the same disturbances, and the working performance is
superior in harsh situations.

CONCLUSION

The overhead crane with the double-pendulum effect is chosen
as the research object in this paper. A dynamic model of the
crane has been established first. Then, an RBF-based neural
network compensation adaptive controller is proposed, and
simulations with MATLAB are also performed to verify the
stability of the system. Finally, experiments with HIL are
presented to test the presented controller where a
comparison with a sliding mode based controller is also
presented. The experimental results show that compares with

the traditional sliding mode based controller, the neural
network-based controller has a superior performance and
better ability to anti-disturbances and without oscillation.
Moreover, the proposed controller is also proved to be
adequate for real-time control by experimental results.
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