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This paper introduces the development of an anthropomorphic soft robotic hand

integrated with multiple flexible force sensors in the fingers. By leveraging on the

integrated force sensing mechanism, grip state estimation networks have been

developed. The robotic hand was tasked to hold the given object on the table for 1.5 s

and lift it up within 1 s. The object manipulation experiment of grasping and lifting the given

objects were conducted with various pneumatic pressure (50, 80, and 120 kPa). Learning

networks were developed to estimate occurrence of object instability and slippage due

to acceleration of the robot or insufficient grasp strength. Hence the grip state estimation

network can potentially feedback object stability status to the pneumatic control system.

This would allow the pneumatic system to use suitable pneumatic pressure to efficiently

handle different objects, i.e., lower pneumatic pressure (50 kPa) for lightweight objects

which do not require high grasping strength. The learning process of the soft hand is

made challenging by curating a diverse selection of daily objects, some of which displays

dynamic change in shape upon grasping. To address the cost of collecting extensive

training datasets, we adopted one-shot learning (OSL) technique with a long short-term

memory (LSTM) recurrent neural network. OSL aims to allow the networks to learn based

on limited training data. It also promotes the scalability of the network to accommodate

more grasping objects in the future. Three types of LSTM-based networks have been

developed and their performance has been evaluated in this study. Among the three

LSTM networks, triplet network achieved overall stability estimation accuracy at 89.96%,

followed by LSTM network with 88.00% and Siamese LSTM network with 85.16%.

Keywords: machine learning, one shot learning, pneumatic actuators, soft end effector, grasping

INTRODUCTION

The human body consists of many complex and fascinating organs like the hand. Themulti-hinged,
multi-fingered hand enables one to carry out complex manipulation tasks. It is also integrated
with numerous sensory modules to enable somatosensory perception and proprioception. The
perceptual information shapes the cognitive ability, which allows a person to feel and learn about
objects in his environment. Inspired by the structure and sensing capabilities of the hand, this paper
presents the development of a sensorized, anthropomorphic soft robotic hand which is composed
of soft fabric-based pneumatic actuators and flexible force sensor arrays.

It has been demonstrated that embedded tactile sensing capabilities allow a soft robotic hand to
feel the physical features such as shapes, size and stiffness, of the objects that it is interacting with
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(Zhao et al., 2016; Chen et al., 2018). This paper attempts to utilize
the embedded force sensing mechanism to learn to recognize the
stability of objects which have been grasped by the sensorized
soft hand. As the field of soft robotics merges with machine
learning, data-driven capabilities of soft robots, not exclusive to
soft hands, have been developed i.e., texture recognition (Sankar
et al., 2020), proprioception feedback (Thuruthel et al., 2019) and
slippage detection (Shirafuji and Hosoda, 2014). On its own, it
has been demonstrated that soft robotic hands are able to grasp a
large variety of objects (Deimel and Brock, 2015; She et al., 2016).
However, scalability of learnt networks is an issue which has yet
to be addressed. It is noted that collecting training data for a large
range of objects that the soft hand can potentially grasp, is tedious
and time consuming. In this respect, one shot learning (OSL)
technique is adopted in the development of networks which learn
to estimate the stability of grasped object. This enhances the
potential of scaling up the network to accommodate larger variety
of objects in the future.

This paper introduces the development of fabric based
anthropomorphic soft robotic hand. By leveraging on the
integrated force sensors, this paper aims to contribute by
developing one shot learning based grip state estimation
networks which interpret the stability of objects that have
been grasped by the soft hand. It is arranged in the following
order. Section Related Works covers related works. Section
Development of Sensorized Soft Robotic Hand describes the
methods to fabricate the actuators and sensors. It also details the
characterization experiments of the soft robotic hand. Section
Grip State Estimation Networks and Experiments describes
the data collection experiments and development of grip state
estimation networks. Section Performance Evaluation includes
the results and discussion of the experiments. Section Conclusion
concludes the paper.

RELATED WORKS

To date, numerous robotic hands have been developed in
both commercial and academic research, traditionally using a
combination of alloys and metals. In the alternate paradigm of
robotic hands, mechanically softer robots have been developed
using elastomeric materials. Intrinsically compliant nature of
these robots seeks to emulate the properties of biological tissues
(Godfrey et al., 2013; Tavakoli and Almeida, 2014; Deimel
and Brock, 2015). Actuators of this genre can be fabricated
using different methods such as shape deposition manufacturing
(Deimel and Brock, 2015) and 3D-printing (Yap et al., 2016).
These soft actuators can be activated using compressed fluid
(Galloway et al., 2016), heat (She et al., 2015), or cables (Renda
et al., 2014). In comparison to their rigid counterparts, soft
robotic hands have a higher tendency to conform to the shapes
of external objects. Moreover, the soft actuators are also capable
of high payload to weight ratio (Chen et al., 2018).

Rich diversity of flexible sensing technologies that can be
integrated in soft robots have been shared in the literature, i.e.,
piezoelectric polyvinylidenefluoride (PVDF) film-based sensor,
force sensors, strain gauge sensor sensors and waveguide sensors
(Shirafuji and Hosoda, 2014; Homberg et al., 2015, 2018; Zhao
et al., 2016; Shih et al., 2017; Wall et al., 2017; Rocha et al.,

2018, Truby et al., 2018, Choi et al., 2018). Integrated sensing
is useful in unstructured environment (Kazemi et al., 2014) or
in environment with low visibility (Liarokapis et al., 2015). Due
to the structural material and operation mechanism, the hand
provides compliant interface and sufficient strength to grasp a
variety of daily objects. However, based on the physical features
such as stiffness and weight, different objects require different
grasping strength.

Threshold-based slip detection (Ponraj et al., 2019) was
reported using sensorized tendon driven modular gripper.
However, most of the slip detection works were developed
and demonstrated with limited test objects, i.e., water bottle
(Nakagawa-Silva et al., 2019) and two-dimensional rigid boards
(Jamali and Sammut, 2012; Meier et al., 2016). This limits their
applicability to different daily objects that can be handled by the
soft robotic hand as daily objects come in a diverse range of
shape, size, weight and stiffness. To cope with the large variability
in force profiles, neural networks can be used to detect the
slippage of various objects. An artificial neural network (ANN)
was developed by Shirafuji and Hosoda to detect slippage from
stress measured by the strain gauge integrated in soft fingers
(Shirafuji and Hosoda, 2014).

This paper attempts to take the data-driven approach to learn
to recognize stability of objects which have been grasped by
the sensorized soft hand. During grasping and lifting motion
of soft robotic hand, the object may experience tilting or slight
shifting in position due to grasping strength of the soft hand
or due to acceleration of robot manipulator. If a heavy object
is grasped with insufficient strength, the object may tilt and
proceed to slip from the hand as the robotic hand attempts to
lift it up. However, large datasets would be required to train a
neural network that effectively recognizes the grasp instability of
different objects. Collecting extensive training dataset for each
object can be time consuming and tedious.Moreover, the number
of objects that can be grasped by the robotic hand may vary
as the design of the hand evolves. Hence, there is a concern of
training datasets exponentially increasing with the number of
grasping objects. Therefore, this paper takes OSL based approach.
OSL requires fewer training data (Fei-Fei et al., 2006) and hence,
the prior concern of deep neural network requiring extensive
datasets is addressed. OSL has been implemented in tactile-based
recognition network for object classification (Kaboli et al., 2016).
As compared to vision, OSL has not received much attention
in tactile recognition, much less in sensorized soft robotics
(Abderrahmane et al., 2020). Due to lightweight training dataset,
this learning approach also allow us to potentially scale up the
training process in the future to include more variety of objects.

DEVELOPMENT OF SENSORIZED SOFT
ROBOTIC HAND

Fabrication of Anthropomorphic Soft
Robotic Hand
Fabric-based finger actuators (FFAs) of the robotic hand were
made of TPU-coated nylon N420D fabric (Jiaxing Inch ECO
Materials Co., LTD, Zhejiang, China). Airtight pneumatic
structures could be achieved with heat-press-sealing based
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FIGURE 1 | Illustration of the fabrication stages of FFA. (A) Custom heat jig machine, (B–F) fabrication cycle of one FFA, (G) assembled FFA in soft hand.

TABLE 1 | Dimensions of FFAs used in this study.

Finger Folds Actuations

length (mm)

Actual finger

length (mm)

I Pollex 4 100 105 ± 9.3

II Digitus secundus manus 6 150 150 ± 16.6

III Digitus medius manus 6 150 157 ± 14.7

IV Digitus quartus manus 6 150 146 ± 15

V Digitus minimus manus 150 125 124 ± 12.7

approach, which was reported in our previous work (Low et al.,
2017). In this paper, we built a custom heat-jig machine to fully
automate and standardize the fabrication protocol (Figure 1A).
We also modified the sealing process to achieve pneumatic
channels of maximum width without having to compromise on
the overall width of the actuator.

To fabricate the pneumatic bladder of the FFA, the first step
was to delineate the layout of the inner pneumatic channel by
patterning with a layer of high temperature resistant adhesive
paper on the TPU-coated surface of the fabric (Figure 1B).
During the subsequent sealing step, this prevented TPU in the
delineated region from sealing together and an inner pneumatic
pocket was created in the adjacent layer of welded fabric pieces.
A 5mm width sealing area was reserved at the top and bottom of
the air channel, while a 22mm width sealing area was reserved at
the side.

The second step would be to seal the pneumatic bladder. The
fabric was double-folded into a sleeve and the edges were heat
sealed by the heat-jig (Figure 1C). The open ends were sealed to
form two closed ends, one of which was fitted with a tube. One
polyurethane air tube of 52mm diameter was used as an inlet
of choice for the pneumatic bladder. This created a fully sealed

bladder with a channel width of 22mm, which could be used to
create FFA. One short pneumatic bladder, one longer pneumatic
bladder and fishbone shaped fabric backing (Figure 1D) were
used to make the bladder into FFA.

FFA was created by folding the longer air bladder in a
segmented sinuous pattern and securing it on top of the shorter
bladder (Figure 1D). Upon actuation, the longer air bladder
served as the flexion component, and the shorter air bladder
served as the extension component. Instead of using cable-ties
to secure the folds as mentioned previously (Low et al., 2017), the
folded air bladder was secured in place using a backing layer of
fishbone shaped TPU-coated fabric. The backing fabric allowed
the folds to be secured at predefined regular intervals (Figure 1E).
This enabled further reduction of the width of FFA, as additional
sealing area was no longer required for the insertion of the cable-
ties. Furthermore, we were able to construct FFA solely using
fabric, except the polyurethane air tube, which was used as inlet
of air source.

The length of the folds and the base of the folds were 38 and
25mm, respectively. The actuation length of the FFA (Figure 1F)
was defined as the sum of base of the folds. Three types of FFA
with different folds and actuation lengths were proposed in this
study (Table 1). The average weight of a FFA was∼16.8 g.

Characterization of Anthropomorphic Soft
Robotic Hand
Important characteristics of the FFA such as bending angle,
compressive tip force and pull force were investigated. Each
parameter corresponding to various air pressures, ranging from
0 to 120 kPa, was tested at incremental steps of 30 kPa. Three
samples were used, and the average of the data was recorded at
each pneumatic pressure.

Bending angle of the inflated actuator was analyzed with
an image-processing program, ImageJ (National Institutes of
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FIGURE 2 | (A–E) Actuation profile of FFA at different pneumatic pressure.

FIGURE 3 | (A) Schematic diagram of grip test. (B–F) Photo of FFA in vertical grip test and soft robotic hand in (G) vertical, and (H) horizontal grip test.

Health, Bethesda, MD). The actuator was clamped on a retort
stand with a red line on its uninflated tip (Figure 2). A DSLR
camera was used to capture the image of the actuation and the
image was post-processed with ImageJ to obtain the bending
angle. The bending angle was measured by obtaining the angle
between the horizontal x-axis and the line on the tip.

To analyze the ability of FFA to grasp and hold, a pull
test was conducted using the Instron Universal Tester 3345
(Instron, Norwood, MA) to measure the maximum vertical

resistive grip force (Figure 3A). A test jig, consisting of a cylinder
with diameter of 50mm secured to the load cell of the Instron
machine via a customized base, was designed for the pull test
(Figures 3B–F). The maximum resistive grip force was defined
as the maximum force needed to hold a cylinder in place as it was
being pulled upward at a fixed velocity of 8 mm/s. The recorded
force at the point of release was the maximum resistive grip force.

Similarly, the grip strength of the soft robotic hand (as
described in Section Grip State Estimation Networks and
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FIGURE 4 | Schematic diagram of flexible force sensor array.

Experiments) was evaluated by conducting the same pull test with
two different grip conditions, (i) vertical grip (Figure 3G) and
(ii) horizontal grip (Figure 3H). The test cylinder was positioned
at the palm of the hand and the FFAs were pressurized to 120
kPa to fully enclose the cylinder. The cylinder was then pulled
upward at a fixed velocity of 8 mm/s. The maximum vertical
and horizontal resistive grip force were obtained according to
the grip configurations, respectively. Two object sizes (50 and
75mm) were tested in horizontal grip condition while one object
size (50mm) was tested in vertical grip.

Fabrication of Force Sensor
A force sensor array was made using layers of printed electrode
on polyethylene sheets and piezoresistive fabric (Figure 4). Each
array of piezoresistive sensor consisted of four taxels, each of
which measured to be 7mm by 7mm. Spatial resolution between
adjacent taxel was 4mm. Due to changes in resistance upon
application of force, voltage output of the sensor changed from
its idle state. The extent of voltage drop depended on the applied
load on the sensor. Five force sensor arrays, each of which has
four sensing taxels, were fabricated and were embedded in each
finger of the soft robotic hand.

GRIP STATE ESTIMATION NETWORKS
AND EXPERIMENTS

Data Collection Experiments
To collect the data, soft robotic hand was integrated on a
collaborative robotic arm (UR 5e) (Universal Robots, Odense,
Denmark). This paper attempts to develop a data-driven grip
stability estimation network which learns to recognize stability
of object within the grasp of the robotic hand. Force sensing
mechanism would be used to distinguish instances whereby the
object is merely shifting or tilting within the hand or if the object
is slipping from the hand. Twenty different objects were used as
grasping items (Figure 5). The choice of items covers a range of
features: rigidity, fragility, shape, size and weight. For instance,
bag of refill powder and chips are deformable as their shapes
change upon being grasped. This makes the grasping force profile
more unpredictable as compared to objects with rigid surface
such as wineglass. It is challenging to apply the right amount of
pressure to manipulate these items with deformable packaging
and yet not damage the food items inside. Items such as wineglass
are considered as delicate items and are prompted to be damaged
by rigid gripper without proper force control. This underscores
the usage of soft robotic hands which provide compliant grasping
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FIGURE 5 | Twenty objects that were used as grasping objects. (a) First set of 8 objects with 2 reference objects, (b) Second set of 10 objects with 2 reference

objects.

interface and sufficient grasping strength to lift the items without
damaging them.

Instead of grasping and lifting the objects using a single grasp
pose, each of the object was grasped using one suitable pose
from a selection of four poses (Figure 7). These four grasp pose
were curated because power grasp pose (Pose 1) would not be
a suitable choice to grasp all the 20 objects. In particular, objects
with smaller profile could be graspedwell with fewer fingers (Pose
2 or Pose 3). Objects which are shorter and wider, i.e., banana,
could be grasped with power grasp pose. However, it would
naturally be more suitable for the soft hand to approach the
banana from top-down orientation (Pose 4). Using the selected
grasp pose, each object was held on the table for 1.5 s and lifted
50mm above the table in 1 s. For each object, the experiment
was repeated 15 times whereby supplied pneumatic pressure was
varied to 50, 80, and 120 kPa for each of the five trials. Hence,
there are 15 sets of time series based force sensor readings (15
grasping trials) for each object at the three different supplied
air pressures and a total of 300 sets of time series based force
sensor readings (300 grasping trials) for 20 objects at three
pneumatic pressure.

An Inertial Measurement Unit (IMU) (Pololu, NV, USA) was
attached on the object and stability of object was monitored by
tracing the acceleration of IMU in three axis. Time series of
IMU sensor readings and embedded force sensor readings were
continuously recorded at 100Hz which is within the range of 50–
500Hz of mechanical transients sensing by fast adapting type I
(FA-I) and fast adapting type II (FA-II) tactile afferents in human
skin sense (Romeo and Zollo, 2020). In post processing, rate of
change of IMU acceleration in three axis (Ax, Ay, and Az) were
analyzed. The object was considered to have shifted when the rate
of change of Ax, Ay, or Az exceeds 5%. During lifting, movement
of objects due to grasp instabilitymay occur. If the object began to
slip from the hand, subsequent fluctuation in acceleration would

be observed. Based on this, force sensor recordings were labeled
in three classes based on movements of the object. The three
classes are (1) object is stably grasped by the hand, (2) object is
grasped by the hand and it is tilting or slightly shifting within the
hand, (3) object slips from the hand.

Development of Grip State Estimation
Networks
Three types of networks were developed and their grip state
estimation accuracies were compared (Figure 6). The first
network is two layered Long Short-Term Memory (LSTM)
recurrent neural network which has 30 neurons per layer. The
choice of LSTM is due to sequential nature of contact force
readings that are obtained from the embedded sensors. Second
network is a Siamese LSTM network which also has two layers of
neurons with 30 neurons per layer. Siamese network is made of
twin networks which simultaneously receive two different inputs
and share weight matrices (Bromley et al., 1993). At the top of
the network, a function is implemented which receives the high
level feature representations of the two distinct inputs for further
computation. The third network is a triplet network which also
has two layers of neurons and 30 neurons per layer. Triplet
network functions similar to the second Siamese network but
it has an additional parallel layer of network which allows the
network to receive three distinct inputs.

The first LSTM network receives only one input of force
sensor readings. It is noted that force readings of different
grasping trials were independent of each other. Hence, the
network was trained episodically as it was repeatedly provided
with different sets of sensor readings from grasping trials. The
time series data of different grasping trials were not concatenated.
For the first set of 10 objects (objects 1–8, 19, & 20), four sets of
force sensor readings (four grasping trials) at each pressure level
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FIGURE 6 | (A) Triplet LSTM network, (B) Siamese LSTM network, (C) LSTM network. Network receives inputs from different objects as indicated by the colors.

Multi-colored input bubbles indicate that the network receives sensor readings from either one of the indicated objects.

(total of 12 sets of force sensor readings) were used to train the
network with 20% validation split. For this set of objects, grip
state estimation accuracy was tested using the remaining grasping
trial data. Then, for the next set of 10 objects (object 9–18), one
set of force sensor readings (one grasping trial) at each pressure
level (total of 3 sets of force sensor readings) were provided as
input. The grip state estimation accuracy was tested with unseen
force readings from different grasping trials. LSTM network has
an output layer with three neurons which predicts the stability
of objects based on three classes as mentioned previously. The
output layer has softmax activation function and is trained with
categorical cross entropy loss function.

In computer vision, sample data were paired to be “similar”
or “dissimilar” for Siamese networks. In the case of triplet
network, triplet of data would be coupled as “anchor,” “positive,”
and “negative” samples (Bromley et al., 1993). However, in
this scenario, manipulation process of objects by the soft
hand was allowed to occur naturally. Occurrence of slippage
or object instability were not manually orchestrated. Thus,
labeling of force sensor readings from different grasping
trials have become more indistinct as one set of force
sensor readings would have occurrence of grasped object
instability or slippage at random time interval. However,
comparison study for Siamese and triplet networks can still
be achieved by selecting grasp objects which have high

failure rates and high success rates, to be used as references
for comparison.

To further elaborate, two objects (object 19 and 20) were
chosen to be used in comparison learning with the remaining
grasp objects. Based on Figure 7, it is noted that object 19
exhibited one of the highest grasp success rate at all pneumatic
pressure level and object 20 exhibited lowest grasp success rate
at all pneumatic pressure levels. However, as no two sets of
samples would be completely similar or dissimilar to each other,
these two objects would simply be referred to as “reference”
objects. The remaining 18 objects would be referred to as “query”
objects. Siamese and triplet networks determine the similarity or
dissimilarity between query object and reference object based on
smaller batches of time series which have lookback window of
50. Time-series based LSTM networks were reported to improve
accuracy with window size up to 50, beyond which the increase
in window size does not produce significant improvement (Wyk
and Falco, 2018). By learning to compare with objects of high
success rate (object 19) and highest failure rate (object 20), the
network learns to estimate the stability of query objects.

Siamese network was trained in same manner as described
above for the first LSTM network. However, due to pairing of
input data, the first set of objects would only include eight items
(object 1–8). For instance, Siamese network is first trained with
a pair of force sensor readings from object 1 and object 19
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FIGURE 7 | Grasp and lift success rates of 20 objects out of five trials and the type of grasp pose that were used to pick up the object.

(reference 1). In the subsequent cycle, the network receives a
pair of sensor readings from object 1 and object 20 (reference
2). Thus, the network always receives two different pairs of
sensor readings for the same query object (i.e., object 1) with
either one of the two reference objects (object 19 or 20). For
the second set of objects, the networks would receive one set
of force sensor readings at each pressure level from each query
object. These input data would also be compared with that of
reference objects (object 19 and 20). The network was tested
using unseen sets of force readings from remaining grasping trials
for the 18 objects. The Siamese network has an output layer with
two neurons which predict whether the query sample is similar
or dissimilar to reference sample. The output layer has softmax
activation function and is trained with categorical cross entropy
loss function.

Similarly, triplet network receives a triplet of data which
consist of force sensor readings from selected grasping object,
reference 1 (object 19) and reference 2 (object 20). Triplet
network was also trained in the same episodical manner as
Siamese network. The network was also tested using unseen
sets of force readings from remaining grasping trials for the 18
objects. However, the network is able to simultaneously receive
input of sensor readings for query object (i.e., object 1) and two
reference objects. Triplet network has an output layer with two
neurons which predicts whether the query sample is similar or

dissimilar to each reference sample. The output layer has sigmoid
activation function and is trained with binary cross entropy
loss function.

In Siamese and triplet LSTM networks, two different lambda
functions were embedded between final LSTM layer and output
dense layer. Lambda function implemented in Siamese network
is as follows:

DS = f
(

xq
)

− f (xref ) (1)

This function compares the similarity between the two samples
in a pair by measuring the distance between encoded features
of query samples (f

(

xq
)

) and reference samples (f
(

xref
)

). The
lambda function that was implemented in triplet network, was
implemented as follows:

DT =
(

f
(

xq
)

− f
(

xref 1
))

−
(

f
(

xq
)

− f
(

xref 2
))

(2)

The function measures the similarity of query samples (f
(

xq
)

) to
reference sample 1 (f

(

xref 1
)

) and reference samples 2 (f
(

xref 2
)

).
It then compares the extent of similarity between the two pairs
(f

(

xq
)

and f
(

xref 1
)

, f (xq), and f
(

xref 2
)

).
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FIGURE 8 | (A) Bending profile of FFA. Grip force characterization of (B) single FFA in vertical resistive grip test and soft robotic hand in (C) horizontal resistive grip

test and (D) vertical resistive grip test.

PERFORMANCE EVALUATION

Characterization of Anthropomorphic Soft
Robotic Hand
During the depressurized state, FFA has a bending angle of
112.33 ± 3.95◦ (baseline). The actuator achieves maximum

bending angle when the supplied pressurized air reaches the
range between 60 and 80 kPa (Figure 8A). When pneumatic

pressure is further increased, the bending angle of FFA starts to

decrease. The maximum bending angle, as shown in Figure 8A,
is 166.39◦ at 75 kPa and reduces to 157.76 ± 8.86◦ at 120
kPa. The irregularity in the bending profile of the FFA is due

to the interaction between the backing layer and the inflating
flexion actuator. A considerable straightening effect is observed
in flexion of the actuator when the pneumatic pressure increases
beyond 75 kPa.

As described, the flexion actuator is folded in pleats and
secured in place with a backing layer of fishbone shaped TPU-
coated fabric. These placeholders fixate the longer folded air
bladder on top of the shorter air bladder. This patterned fixture

design reinforces the manifestation of flexion behavior of the FFA
when the upper folded air bladder is pressurized. However, when
the pressure increases to a certain value (in this case, 75 kPa),
the restricted segments of the folded air bladder stiffen and begin
to straighten the folded actuator into a beam. When pneumatic
pressure increases beyond 75 kPa, equilibrium state is reached
between the resistive force exerted by the stiffening folded
bladder and the restraining force applied by the placeholders of
reinforcement backing layer.

The vertical resistive grip force of FFA increases exponentially
against the air pressure (Figure 8B). The maximum grip force is
6.05 ± 0.63N at the maximum pressure of 120 kPa tested in this
study. Compared to the high-force 3D-printed single-channel
actuator (Galloway et al., 2016), it requires smaller air pressure
to achieve similar grip performance. The 3D-printed actuator
requires air pressure of 200 kPa to withstand up to 6N of vertical
pulling force.

The maximum horizontal resistive grip force generated by
the soft robotic hand (Figure 8C) at 120 kPa is 6.2 ± 0.38N
and 7.1 ± 0.58N, with a cylinder of diameter 50 and 75mm,
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FIGURE 9 | Estimation accuracy of grasped object stability by three networks (T, Triplet network; S, Siamese network; L, LSTM network) at three different pneumatic

pressure (50, 80, and 120 kPa). Graph (A–C) were produced by comparing the query objects with reference object 19. Graph (D–F) were produced by comparing the

query objects with reference object 20.

respectively. The maximum vertical resistive grip force generated
by the soft robotic hand (Figure 8D) at 120 kPa is 26.53 ±

0.87N with a cylinder of diameter 50mm. These results show
that the grip strength of the soft robotic hand is comparable
with other soft pneumatic robotic grippers. A gripper with two
silicone-based bellows-type actuators generates 16.6N vertical
resistive grip force and 5.6N horizontal resistive grip force at
124 kPa operating air pressure under the same testing condition
(Galloway et al., 2016).

On the other hand, it performs better than soft robotic
grippers using other types of actuators such as shape memory
alloy-based actuators and dielectric elastomer actuators. For
instance, a three-fingered high stiffness shape memory alloy-
based gripper can only generate 5.8N of vertical pulling force
when holding a test cylinder of diameter 80mm (Wang and Ahn,
2017).

Analysis of Grip State Estimation Networks
Three LSTM based networks have been developed and were
trained to estimate the stability of grasped object during the
holding and lifting action of the robot. Based on the physical
form of the object, it will experience instability in terms of slight
shifting or tilting in position when it is lifted from the table. In
certain scenarios such as insufficient grip strength, the object will

tilt and then slip from the hand as the robot attempts to lift it up.
Most of the 20 objects can be gripped and lifted successfully at
three pneumatic pressure levels (50, 80, and 120 kPa). However,
there are exceptions such as object 5, 6, and 20 which require
higher grasping strength to be lifted.

Figure 9 shows the grip state estimation accuracy of three
networks on 18 objects at three different pneumatic pressure
levels. Object 19 and 20 were excluded as they were used as
comparison references in Siamese and triplet networks. The
results show that the networks are generally able to accurately
estimate the stability of object that has been grasped and lifted
by the hand. It is noted that at lower pneumatic pressure (50
kPa), estimation accuracy decreased. This could be attributed by
the lower grasping strength of the robotic hand which affected
the accuracy of contact force readings by the embedded sensors.
It is also noted that it is challenging to estimate the stability
of object 5 which is a deformable bag filled with powder. The
change in shape of object 5 varies across different trials and
hence, this would also increase variation in contact force readings
for different trials. Hence, this limits the ability of network to
accurately predict the stability of object 5.

Among the three LSTM networks, triplet network achieved
overall stability estimation accuracy at 89.96%, followed by single
LSTM network with 88.00% and Siamese LSTM network with
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85.16%. Compared to single and Siamese LSTM networks, the
triplet network received one query sample and two reference
samples. This allowed the network to simultaneously compare
the query sample with two contrasting references which enabled
it to distinguish the stability status of objects more efficiently.
On the other hand, Siamese LSTM network did not perform as
well-even though it received one query sample and one reference
sample. The lambda function in Siamese network measures the
distance between encoded features of query sample and reference
sample. While easy negative samples can be differentiated easily,
hard negative samples may be placed closer to the query
samples than positive reference samples (Schroff et al., 2015). As
the Siamese network is unable to simultaneously compare the
query sample with both references, it is not able to effectively
distinguish the status of object stability. The aforementioned
grip state estimation accuracy of 89.96% remains comparable
with 82.88–91.71% grasp success detection accuracy reported by
Zimmer et al. (2019).

CONCLUSION

To conclude, we introduced development of fabric based
anthropomorphic soft robotic hand. By leveraging on the
integrated force sensors, this paper contributed by developing
one shot learning based grip state estimation networks which
interpret the stability of objects that have been grasped and lifted
using the soft hand. The developed networks learnt to estimate
the following occurrence during the manipulation process- (1)
object is stably grasped by the hand, (2) object is grasped by
the hand and it is tilting or slightly shifting within the hand, (3)
object slips from the hand. During the lifting, object may tilt or
shift slightly due to acceleration of the robot or due to grasping
strength of the soft hand. Heavy objects which were grasped
with insufficient grasping strength, may subsequently experience
slippage. We have curated a diverse range of 20 grasping objects
in terms of rigidity, fragility, shape, size, and weight. For instance,
a plastic bag of refill powder and chips are deformable as their
shapes changes upon being grasped. This makes the grasping
force profile more unpredictable as compared to objects with

rigid surface such as wineglass. The developed networks were
primarily trained with 10 objects whereby four sets of force
sensor readings at each pressure level were provided as input.
For the next set of 10 objects, the number of required samples
were reduced to one set of force readings at each pressure level
per object. Nonetheless, the networks are still able to estimate
stability of grasped objects at an average of 85.16–89.96%. Hence,
this study has showed that one shot learning which has mostly
been used in machine vision, could be adopted to develop tactile
perception in sensorized soft hand. In future study, the networks
could be further improved and integrated with pneumatic control
system as real time feedback system.
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