
Risk-Aware Model-Based Control
Chen Yu and Andre Rosendo*

Living Machines Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Model-Based Reinforcement Learning (MBRL) algorithms have been shown to have an
advantage on data-efficiency, but often overshadowed by state-of-the-art model-free
methods in performance, especially when facing high-dimensional and complex problems.
In this work, a novel MBRL method is proposed, called Risk-Aware Model-Based Control
(RAMCO). It combines uncertainty-aware deep dynamics models and the risk assessment
technique Conditional Value at Risk (CVaR). This mechanism is appropriate for real-world
application since it takes epistemic risk into consideration. In addition, we use a model-free
solver to producewarm-up training data, and this setting improves the performance in low-
dimensional environments and covers the shortage of MBRL’s nature in the high-
dimensional scenarios. In comparison with other state-of-the-art reinforcement learning
algorithms, we show that it produces superior results on a walking robot model. We also
evaluate themethodwith an Eidos environment, which is a novel experimental methodwith
multi-dimensional randomly initialized deep neural networks to measure the performance
of any reinforcement learning algorithm, and the advantages of RAMCO are highlighted.

Keywords: machine learning, reinforcement learning, dynamics model, risk awareness, conditional value at risk,
data efficiency, eidos, mujoco

1 INTRODUCTION

The controllers of robots are primarily designed and tuned by human engineers through tiresome
iterations and require extensive experience and a high degree of expertize (Deisenroth et al., 2013).
The resulting programmed controllers are built upon assuming rigorous models of both the robot’s
behavior and its environment. As a consequence, hard-coded controllers for robots have its
limitations when a robot needs to adapt to a new situation or when the robot/environment
cannot be precisely modeled. Machine learning and, particularly, deep learning, have made
ground-breaking success in various domains, such as speech recognition (Hinton et al., 2012),
computer vision (Krizhevsky et al., 2012), video games (Mnih et al., 2015), or medicine (Xu et al.,
2020) in recent years. However, unlike other machine learning branches, RL is still not widely applied
to real-world engineering products, especially in the field of robotics. Overall, the main obstacles on
the application of RL to such problems are 1) data inefficiency, 2) lack of robustness, and 3) lack of
practical advantage over hand-tuned controllers.

It can be easily stated that most of the successful and famous methods up to now (Lillicrap et al.,
2015; Schulman et al., 2015, 2017; Haarnoja et al., 2018) require millions of steps to find the best
policy, which is acceptable in simulators but impractical in a real-world application. Data-efficiency
is an important consideration when applying machine learning techniques in a real robot
(Chatzilygeroudis et al., 2020). Unlike applications in video games or images processing, it is
unrealistic to train a robot in the real world withmillions of trials, since implementation in real-world
can suffer from mechanical wearing and prohibitive wall-clock time.

Safety is another consideration when it comes to some applications, such as self-driving cars,
surgical robots, or assistive robots. In these applications, the loss is not only a number like in a

Edited by:
Sheri Marina Markose,

University of Essex, United Kingdom

Reviewed by:
Dimitri Ognibene,

University of Milano-Bicocca, Italy
Rabie A. Ramadan,

Cairo University, Egypt

*Correspondence:
Andre Rosendo

arosendo@shanghaitech.edu.cn

Specialty section:
This article was submitted to

Computational Intelligence in Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 15 October 2020
Accepted: 14 January 2021
Published: 11 March 2021

Citation:
Yu C and Rosendo A (2021) Risk-

Aware Model-Based Control.
Front. Robot. AI 8:617839.

doi: 10.3389/frobt.2021.617839

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178391

ORIGINAL RESEARCH
published: 11 March 2021

doi: 10.3389/frobt.2021.617839

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.617839&domain=pdf&date_stamp=2021-03-11
https://www.frontiersin.org/articles/10.3389/frobt.2021.617839/full
http://creativecommons.org/licenses/by/4.0/
mailto:arosendo@shanghaitech.edu.cn
https://doi.org/10.3389/frobt.2021.617839
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.617839

simulator but a clear threat to human life. The finance literature
differentiates between three risk-related types of behavior,
namely risk-neutral, risk-averse and risk-seeking. Decision
making by RL agents typically involves the optimization of a
risk-neutral performance objective, namely the expected total
discounted reward. This approach neither takes into account the
variability of the cost or the modeling errors and hence becomes
another barrier for the application of machine learning on
robotics. Furthermore, the gap between implementation and
mathematical theories shown by Engstrom et al. (Engstrom
et al., 2020) reveals the unreliability of using RL in risk-
sensitive problems, which implies that decision-making
algorithms should be more conservative when they are
designed for real-world applications.

The current state-of-the-art for robotic control is vastly
model-based and human-designed, with simulators being used
to calculate paths and find solutions before deployment (Mouret
and Chatzilygeroudis, 2017). Unlike some applications such as
playing video games, it is very difficult for an RL agent to produce
better performance than human experts. While most of the
successful learning-based controllers still produce peculiar
locomotion gaits on legged robots, the most impressive works
in robot control do not include machine learning algorithms for
control design (Fabisch et al., 2019; Kim et al., 2020). We claim
that the learning-based controllers can be essential and
outperform human-designed controllers when the agent faces
an unknown environment, where even humans would not know
the optimum, instead of learning trivial control tasks.

The motivation behind this work is to take a step towards
narrowing the gap between academic advances and industrial
applications by handling the aforementioned problems. First, we
focus on model-based reinforcement learning (MBRL) with a
probabilistic dynamics model, as incorporating uncertainties into
our dynamics model usually prevents overfitting with insufficient
data. Second, we consider the risk based on this uncertainty to
protect real-world applications from dramatic loss due to model
uncertainty. Prior works on Robust Markov Decision Processes
have traditionally dealt with risk due to uncertainty in the
transition and reward parameters (Givan et al., 2000; Mannor
et al., 2012). However, most of these works assume inherent
stochasticity of the environment, while model uncertainty due to
lack of data should, in fact, be regarded as a bigger issue from an
engineering standpoint. Finally, we expect that the RL
environment in our simulator can equally evaluate the
performance of the agent in real-world applications, even
dealing with some unknown problems.

Our primary contribution is a novel MBRL algorithm called
Risk-Aware Model-Based Control (RAMCO). We employ model-
free solvers to produce warm-up data, train a Bayesian dynamics
model based on these data, and do the planning based on
Conditional Value at Risk (CVaR) measurement. The overall
results are shown to be competitive when compared to other
successful state-of-the-art RL algorithms. In addition, to better
evaluate and compare the performances of different RL algorithms,
we propose a real-world-inspired walking robot model called AntX
and a novel pseudo-environment method called Eidos that can
emulate an RL environment with any complexity.

2 RELATED WORK

Reinforcement Learning has contributed to the machine learning
community with a wide variety of applications, ranging from
robotics to finance. It is a computational approach for solving
goal-oriented decision-making problems (Sutton and Barto,
2018), described as a process of interaction between an agent
and an environment (Figure 1).

Most current research on RL is built on the theoretical
framework of Markov Decision Process (MDPs) (Puterman,
1994), which is a general formalism for the study of decision-
making problem. In this classic theoretical framework, an agent
takes actions typically in a discrete-time sequence. In each time
step, it is said that the agent is in a state, representing the
information needed from the environment. Then according to
a policy, an agent would take a specific action in each state. After
that, the agent would be transited into the next state and receive a
reward signal. The unknown function that map a tuple (state,
action) to the next state is usually called the transition function.
Some algorithms try to model this transition function as a
dynamics model and hence are called model-based method.

2.1 Model-free Reinforcement Learning
Popular RL algorithms, such as Deep Q learning and Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015),
do not assume any transition model on the environment, and
hence they can also be called model-free methods. These methods
have shown great promise as a general-purpose solver for
complex learning problems. We take some other popular
advanced model-free algorithms as examples: Distributed
Distributional Deterministic Policy Gradients (D4PG) (Barth-
Maron et al., 2018) is a variant of DDPG, and it uses multiple
actors to collect samples in parallel and store the collected data
into a shared replay buffer. A distributional value function is used
in the Critic part, while experiment shows that this trick improves
the performance. Twin Delayed Deep Deterministic policy
gradient (TD3) (Fujimoto et al., 2018) is another variant of
DDPG, using two critic networks to overcome the
overestimation bias. Instead of using Q function Q(s, a) in the
Critic part as DDPG, D4PG or TD3, the method of Advantage
Actor-Critic (A2C) (Wu et al., 2017) uses a Value function V(s)
in the Critic. A distributed version of A2C called Asynchronous
Advantage Actor-Critic (A3C) improves both the performance
and training speed. Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) also uses a Value function V(s) in the
Critic. However, although TRPO could be considered as having
an Actor-Critic structure, the Actor is not updated according to
the gradient from the Critic as other Actor-Critic methods
mentioned before but updated like other policy-based
methods. It utilizes the Critic component for calculating an
Advantage function and uses KL-divergence metrics to control
the update rate of the policy. Proximal Policy Optimization
Algorithms (PPO) (Schulman et al., 2017) is a simplified
version of TRPO, replacing the KL-divergence function as a
clipping function to also control the update rate. Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) is another model-free Actor-
Critic method, adding entropy of the policy as part of its objective

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178392

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

function. This allows for a better exploration of the training
process. Overall, model-free methods are popular because of their
scalability, which makes it a promising tool for many high-
dimensional tasks (Osiński et al., 2020; Schoettler et al., 2020;
Ye et al., 2020). However, as we will discuss in Section 7.1, data
inefficiency is a common problem for model-free methods.

2.2 Model-Based Reinforcement Learning
Compared with model-free approaches, MBRL algorithms are
generally considered as being more data-efficient since they are
able to model the transition function and hence train on the
modeled environment. Once the transition function is learned,
the reinforcement learning problem indeed becomes a
Dynamic Programming function. MBRL methods could be
categorized based on whether an explicit policy exists. The
method of Probabilistic Ensembles with Trajectory Sampling
(PETS) (Chua et al., 2018) is a recent successful example for
the ones without a policy. It uses a deep neural network with
ensembles (Lakshminarayanan et al., 2017) to model the
environment dynamics taking the uncertainty in
consideration, and does open-loop planning on this model.
The PETS method is also successfully applied to real robots in
(Nagabandi et al., 2019). The model-based control method
introduced in (Nagabandi et al., 2018) is similar, but with a
deterministic dynamics model. Deep Planning Network
(PlaNet) (Hafner et al., 2019) is another successful method
without policy. It uses a recurrent state-space model and shows
its advantage of image-based control. As for MBRL with an
explicit policy, Probabilistic Inference for Learning Control
(PILCO) (Deisenroth and Rasmussen, 2011) is one of the most
popular methods. It uses Gaussian Process to model the
transition function of the environment and lowers the
model bias by taking the uncertainty of the input into
consideration, leading to a more accurate long-term
prediction. Cutler et al. successfully applied the PILCO
method to an inverted pendulum model (Cutler and How,
2015) and Englert et al. applied it to an imitation learning
problem (Englert et al., 2013). Nonetheless, PILCO relies on
Gaussian Process, which limits its applicability for complex

problems that need more trials to be solved. Furthermore,
ignorance of the temporal correlation in model uncertainty
between successive states can lead to underestimation of state
uncertainty at future time steps (Deisenroth et al., 2015). Deep
PILCO (Gal et al., 2016) is proposed to make up for these
drawbacks by replacing the Gaussian Process component with
a Bayesian neural network dynamics model but still suffers
from lack of scalability.

2.3 Combination of Model-free and
Model-Based Methods
Many previous works also try to combine advantages from both
model-free and model-based RL. A control pipeline proposed in
the work (Nagabandi et al., 2018) uses random-shooting and
model predictive control (MPC) method to find an optimal
action at each state based on a dynamics model and then
produces multiple sub-optimum rollouts. These rollouts are
severed as training data for a neural network to learn a
closed-loop policy, using a DAGGER (Ross et al., 2011)
method. Finally, the weights of this network are used as the
initialization of the policy network in a TRPO method. It is
shown that this framework can improve the data efficiency of
pure model-free methods. Another way for hybridizing model-
based and model-free methods is Dyna algorithm, which uses a
model to generate synthetic samples for model-free policy
optimiser. The original Dyna-Q algorithm (Sutton, 1990) use
a model to have a better Q function estimation based on
Q-learning method. Recently proposed Dyna-style methods
including Model-Based Acceleration (MBA) (Gu et al., 2016),
Model-Based Value Expansion (MVE) (Feinberg et al., 2018),
Model-Based Policy Optimization (MBPO) (Janner et al., 2019)
and so on. These methods usually differ from whether the
training is based on real-world rollout or predicted rollout,
or whether using predicted rollouts to estimate target value or to
train the whole Q function. The experiment of the MBPO
method shows that it can obtain better sample efficiency
than prior model-based methods and asymptotic
performance of the state-of-the-art model-free algorithms.

FIGURE 1 | An illustration of the interaction within an RL agent and its environment.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178393

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

2.4 Risk-Sensitive Reinforcement Learning
There is another aspect we can evaluate an RL method: whether
or not it is risk-aware. All the works we have mentioned above are
risk-neutral. There are also works applying reinforcement
learning to robust MDP setting, which has traditionally dealt
with risk due to uncertainty in the transition and reward
parameters. Tamar et al. (Tamar et al., 2014) use approximate
dynamic programming (ADP) to scale up the robust MDP
paradigm with larger state space. Roy et al. (Roy et al., 2017)
propose a robust counterpart to Q-Learning, which is robust to
model misspecification, while Derman et al. (Derman et al., 2019)
propose a robust version of DQN for higher dimensional
domains. Tessler et al. (Tessler et al., 2019) propose a robust
variant of DDPG, training two deterministic policy networks, the
Actor and the Adversary. The Adversary is a potentially
adversarial policy. Similar to DDPG, a critic is trained to
update the joint-policy. It is shown that robust-oriented RL
can do better in generalization, although it is still not clear
how the connection between robustness and generalization
holds in RL (Tessler et al., 2019). While the works mentioned
above are dealing with uncertainty due to inherent stochasticity of
the environment, a. k.a. aleatory uncertainty, it is usually not the
most important source of risk occurs in engineering. It is because
systems in engineering are nearly deterministic, and most
uncertainty is due to the lack of information about the
environment (Eriksson and Dimitrakakis, 2020). Therefore,
Depeweg et al. (Depeweg et al., 2017) focus on decomposition
in aleatory and epistemic risk. They employ a Bayesian neural
network to model the underlying dynamics and utility function to
do a trade-off between expected return and each risk. The work by
Eriksson et al. (Eriksson and Dimitrakakis, 2020) is also
developed in a Bayesian framework, using policy gradient and
utility function to leverage preferences between risk and expected
return based on a model-free setting.

3 PRELIMINARIES

We formularize our control problem as a continuous state space
Markov Decision Process, written as a tupleM � (S,A, r,P, c, d0),
where S ∈ Rds and A ∈ Rda are the sets of states and actions;
rt(st , at) is a deterministic cost, which describes the task and hence
previously known. P(·|st , at) is the transition probability
distribution, from which each next state is sampled:
st+1 ∼ P(·|st , at). c ∈ [0, 1) is a discounting factor and d0 is the
distribution of the initial state s0. The goal of our RL algorithm is to
learn a policy that maximizes the total rewards within a given time
period. At each time step t, the agent is in state st ∈ S, takes action
at ∈ A, receives reward rt(st , at) , and is transited to next state st+1,
following an unknown transition probability distribution
P(·|st , at). The objective at each time step is to execute any
action that maximizes the discounted sum of future rewards Vt .

In MBRL, the transition function is usually expressed as a
dynamics model. Throughout this paper, we consider a dynamics
model f̂ (·) as in the equation:

ŝt+1 � st + f̂ (st , at). (1)

The dynamics model does not directly output the predicted
successive state ŝt+1 because this can be challenging when the states
st and the corresponding next states st+1 are too similar (Nagabandi
et al., 2018).We further define the transition function as a Gaussian
Process, and consider that this can capture both aleatoric
uncertainty and epistemic uncertainty. It means that we can not
only take into account uncertainty caused by a noisy environment
but also uncertainty arises from the fact that data is not sufficient to
determine the underlying parametrization of a model uniquely.
Furthermore, we consider risk-averse reinforcement learning,
whose risk is assumed to come from these uncertainties. We
regard the negative of total discounted future reward as loss
and use the risk-measure method Conditional Value at Risk
(CVaR) (Righi and Ceretta, 2016). It is a variant of Value at
Risk (VaR) (Mansour and Abdel-Rahman, 1984) and also recently
identified as suitable for measuring risk in robotics (Majumdar and
Pavone, 2020). For a specific random variable Z and a confidence
level α, the CVaR is the expected loss in the worst α cases,
illustrated as Figure 2. It is calculated according to Eq. 2 for a
random normal variable X ∼ N(μh, σ2h).

CVaRh,α(X) � α−1φ(Φ− 1(α))σh−μh, (2)

In Eq. 2, φ(z) denotes the standard Gaussian probability
density function and Φ−1(α) is the α quantile of the standard
Gaussian distribution. In each action at at time step t, we do
moment-matching over the distribution of the accumulated
future reward and calculate the corresponding CVaR with this
equation.

Overall, we want to find an (implicit) policy π that can
maximize the cumulative reward starting from the first state s0
towards a final state sT :

Jπ � argmaxπ ∑
T

t�0
r(st , at). (3)

The transformation of this objective function to relate it with the
risk evaluation functions would be discussed in the next section.

4 RISK-AWARE MODEL-BASED CONTROL

In this work, we propose a model-based method with a
probabilistic dynamics model, and our main objective is to
learn a safe and scalable policy efficiently. We combine it with
an MPC, taking a CVaR into consideration, to perform planning
using this dynamics model. Overall, the core contribution of this
work is a risk-sensitive model-based control framework, which
uses a Bayesian neural network to capture aleatoric and epistemic
uncertainty and uses CVaR to trade between risk and return. The
overview of our method is illustrated in Figure 3. We now detail
our control framework.

4.1 Dynamics Model: Transition Function as
a Gaussian Process
First, predicting the next state. Any MBRL algorithm has to select
some mechanism to model the environment dynamics. This

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178394

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

selection is generally of significance for an MBRL algorithm, since
even small error can considerably affect the quality of the
corresponding controlled results (Abbeel et al., 2006). There are
lots of choices for the function f̂ (·) in Eq. 1. However, common
deterministic approximators such as deep neural network are not
enough for our application. For our data-efficiency and robustness
expectations, we regard the function as a Bayesian neural network,
which is a probabilistic model that places the flexibility of deep
neural network in a Bayesian framework (Blundell et al., 2015),
where the weight of each hidden unit is represented by a distribution.
In practice, there are various ways for the approximation of this
structure, since the accurate form is too complex to be tractable in a
computer (Blundell et al., 2015). In this work, we adopt the Monte
Carlo dropout method (Gal and Ghahramani, 2016) for an
approximation of this structure. Since our dynamics model f̂ can

be explained as a Gaussian process, the problem can be described as:
given a training dataset consisting of N state-action pairs
{(st , at)1, . . . , (st , at)N} and their corresponding outputs
{(Δst+1)1, . . . , (Δst+1)N}, we are trying to search for a function y �
f̂ (·) which is prone to have generated these observations. According
to (Gal and Ghahramani, 2015), this objective can be approximated
as Eq. 4 with K times sampling, where M1, M2, and m are weights
with dropout probability p1 and p2.

JVI ∝ − k∑
K

n�1

∣∣∣∣∣∣∣∣Δst+1,n − Δŝt+1,n
∣∣∣∣∣∣∣∣22−

p1
2
‖M1‖22 −

p2
2
‖M2‖22 −

1
2
‖m‖22.

(4)

This means that we can implement this stochastic dynamics
model based on a structure of deep neural networks, with dropout

FIGURE2 | An example to illustrate three risk metrics: Value at Risk (VaR), Conditional Value at Risk (CVaR), and the worst case. Intuitively, Var is the (1 − α) quantile
of the cost distribution, and CVaR is the expected value of the cost distribution’s upper (1 − α) tail.

FIGURE 3 | Block diagram of our model-based reinforcement learning method on run time. For each state st at time step t, we obtain a list of candidate actions
sequence At from the CMA-ES optimiser. We choose the best actions sequence A+

t from this list by calculating the CVaR value of each choice. To obtain this CVaR
value, we use a Bayesian neural network (BNN) to predict a sufficient number of trajectories for modeling distribution of accumulated rewards. After the best actions
sequenceA+

t is found, the first action in this actions sequence is truly performed by the agent (model predictive control, MDP). Training of the BNN dynamicsmodel
is ignored in this block diagram for simplicity. A more detailed description of the system can be seen in the pseudocode Algorithm 1.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178395

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

layers. Compared to common deterministic neural networks, all
the dropout layers are not only activated during the back-
propagation phase but also when making an inference.

4.2 Training the Dynamics Model
4.2.1 Training Data Collection and Pre-processing
Initially, we collect warm-up training data by having agents take
actions from a sampled initial state s0, following a given policy
πwarm−up. This can be a random policy or a policy with an off-the-
shelf model-free agent runs from scratch. Theoretically, Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm would be
a good choice since it will maximize a trade-off between expected
return and entropy, producing better-explored data for feeding
our dynamics model. We also employ Proximal Policy
Optimization (PPO) as the warm-up policy in the experiment,
which is one of the most successful model-free Policy Gradient
methods. And then the resulting trajectories by πwarm−up or the
data generated by the training process of it are recorded, and
denoted as trajectories τT � (s0, s0, s1, s1,/, sT−1, sT) with
episode length T. These data are then used for training
dynamics model. We then slice the collected trajectories τT
into state-action pair (st , at) at each time step t and their
corresponding output label (st+1 − st). We then normalize the
data to ensure the loss function weights different dimensions of
the state equally. Zero-mean Gaussian noisy signal can also be
added to the training dataset to increase the robustness of the
model. We denote the training dataset as D.

4.2.2 Model Training
To optimize the objective function (4), we build a network with
three dense layers and dropout layers. In the l-th pair of layers, we
have wl many units of W sampled from ml many units of M,
according to a unified Bernoulli distribution with probability pl
(a.k.a. dropout probability). Finally, we add the L2 regularization
terms of each layer in the loss function, weighted by some weight
decay lambda λ, leading to a sum of squared errors (SSE) loss
function:

ε � ∑
N

n�1
Δ���st+1,n − Δŝt+1,n

���2
2−λ1||M1||22 − λ2||M2||22 − λ3||m||22. (5)

Note that the optimization objective of our network, which is
just the minimization objective of the loss function Eq. 5 and Eq.
4 would both converge to the same limit. We minimize the loss
function using an Adam optimiser.

4.2.3 Model Validation
For validation, similar to some other supervised learning method
in machine learning, we can calculate the mean square error
(MSE) between the expectation of the predicted result and the
true data given by a validation data set:

εval � 1
Nval

∑
Nval

n�1

����st+1,n − E(st+1,n)
����22, (6)

where Nval denotes for the size of validation dataset, which is
made up of trajectories not existed in the training dataset. We use

Monte Carlo sampling for the calculation of the expectation term.
The problem of this error evaluation is that it only takes one-step
error calculation, whilst our goal is to predict a multi-step
trajectory toward the future. Hence instead of calculating step-
wize error, we evaluate the sequence-wize error through
propagating the learnt dynamic model forward Tval many
times. Given a random actions sequence (at ,/, at+Tval−1) from
validation data set, we compare the corresponding ground-truth
states sequence (st+1,/, st+Tval) with multi-step predictions
results (ŝt+1,/, ŝt+Tval) from the dynamics model, formulated as:

εval � 1
Nval

∑
Nval

n�1

1
Tval

∑
Tval

t′�1

∣∣∣∣∣∣∣∣st+t′ ,n − E(ŝt+t′ ,n)
∣∣∣∣∣∣∣∣22, (7)

where the expectation of state E(ŝt+t′) is calculated by K times
Monte Carlo sampling:

E(ŝt+t’) � 1
K

∑
K

k�1
(E(ŝt+t′−1) + f̂ (E(ŝt+t′−1), at+t′−1)). (8)

4.3 Policy Evaluation
Then, evaluating the predicted consequences. While this is a
stochastic dynamic model, in each state, we are able to
generate K next state samples, moment-match these samples
as a Gaussian distribution, and sample from this distribution.
Previous works show that this moment-matching could benefit
data efficiency by penalizing multi-modal distributions through
smoothing of the loss surface (Deisenroth and Rasmussen, 2011).
The step-wize prediction can hence be expressed as

E(ŝt) � 1
K

∑
K

k�1
(E(ŝt−1) + f̂ (E(ŝt−1), at−1)). (9)

Given a sequence of actions starting from step t: At �
(at ,/, at+H−1) with horizon H, the dynamics model could
generate a trajectory by recursively repeat this prediction
process. With a given reward function, the accumulated
rewards over horizon H is calculated, denoted as VAt

t,m. At each
time step t, we sample M-many such trajectories. In our
implementation, this trajectories sampling procedure is done
in parallel. We then do a moment-matching again on these
M-many VAt

t,m, force them to become a Gaussian distribution,
and calculate the corresponding CVaR on this distribution.
According to Eq. 2, the objective function Eq. 3 could then be
rewritten as:

JAt � argminAt
(α−1φ(Φ−1(α)))(σVAt

M
− μVAt

M
) (10)

with standard deviation σVAt
M
and mean μVAt

M
. Then, we want to find

an optimal action sequenceAt at each time step t that canminimize
the CVaR of the total rewards predicted by our dynamics model.
The parameter α in Eq. 10 represents the risk sensitiveness or risk
preference of the agent. If the α is set to 0, it is equivalent to
comparing the worst-case results among candidate actions,
whereas the agent would be risk-neutral with an α of 1. In this
work, we set the α as 0.05 as a trade-off between risk and return.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178396

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

4.4 Optimization
Finding the best action. The calculation of the exact optimum of
Eq. 10 can be challenging, as the transition and reward functions
are both nonlinear. In this work, we use an evolutionary
algorithm called Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) (Hansen, 2006). In each generation, it
samples N-many candidate solutions from a multivariate
Gaussian distribution N with mean vector m, covariance
matrix C, and update step-size σ. For generation number g �
0, 1, 2,/, the sampling process can be written as:

At ∼ N(g)(m(g), (σ(g))2C(g)). (11)

Each candidate solution is evaluated according to the objective
function (10). Parameters mean vector m and covariance matrix
C are then updated to find a distribution N(g+1) that generates
samples yield lower CVaR. In addition, the initialization method
of the mean vectorm depends on the choice of warm-up policy. If
the policy πwarm−up in the data-collection phase is a random
policy, all m, σ, and C are initialized arbitrarily. While the policy
πwarm−up is by a model-free agent, we use this sub-optimum policy
to produce a reference action sequence and use it to initialize the
mean vectorm. It means that each valuemi in the mean vectorm,
which corresponds to each action at’ in the candidate action
sequence At , is calculated by

mi � at′ � πwarm−up(E(st′)), (12)

where the component E(st′) is calculated according to Eq. 9
recursively from st′ � st .

It was shown previously that CMA-ES could be served as an
efficient tool for solving ill-conditioned functions and optimal
control problems (Maki et al., 2020). For instance, to solve a
quadratic function, it is proven that it can approximate the
inverse Hessian empirically (Hansen and Auger, 2014) and
theoretically (Akimoto, 2012). However, the problem of this
method is that it would be computationally expensive for
solving high-dimensional problems (10). Therefore, a variant
of CMA-ES is used in our work. Inspired by VkD-CMA
(Akimoto and Hansen, 2016b) which involves a simplification
of the covariance matrix and an online-adapting simplification
rule (Akimoto and Hansen, 2016a), we simplify the evolutionary
path for computational efficiency.

Overall, we use a variant of CMA-ES as a black-box optimiser
for the objective (10). For each generation, we sampleN candidate
solutions from a Gaussian distribution, calculate the CVaR of
each candidate solutions, update the distribution and repeat.

4.5 Model-Based Control
We have shown how to solve Eqn. 10 and find an approximately
optimal solution A+

t at time step t. Then, rather than having our
agent take these sequential actions in open loop, we employ the
MPC method: the agent executes only the first action at for each
optimized action sequence A+

t . After receiving the next state
signal st+1, it begins to re-plans for the next A+

t until an episode
ends. Finally, the rollouts produced by the MPC controllers
would be merged into the training data set for retraining the

dynamics model. In other words, the predictive model is also
updated after the warm-up phase. This feedback of the dynamics
model training process can narrow the gap between the states’
distribution of the training data and the true dynamics, and hence
improve the performance of the dynamics model. When the new
data set obtained, based on which the warm-up policy πwarm−up
can then be updated. The pseudocode of our whole system in run
time is shown as Algorithm 1. In the pseudocode, the best action
over each iteration t in episode length T is taken for each time
step. After C episodes, (i.e. rollouts) are completed, we update the
training data set and warm-up policy πwarm−up. This
hyperparameter C can tune the update rate of the system to
meet the users’ requirements of robustness.

5 EXPERIMENTAL SETUP

5.1 AntX: A Real-World-Inspired Robot
Model
The main robot model we use to test our RAMCO algorithm is
AntX model, which is modified from the MuJoCo Ant-v2
benchmark model in OpenAI gym library. The original model
contains a state space of 111 dimensions and action space of eight
dimensions, while our model contains 29 dimensions of state
space and also eight dimensions of action space. The modification
is based on two reasons: First, we assume that the reward function
r(s, a) is provided by the user before training and should be able
to calculate from state s and a directly, which is a reasonable
assumption in practice. Second is that some state dimensions
defined in the original model are unavailable for a real-world
robot. Finally, we tune down the control frequency to a ΔT of 0.2s
and shorten each episode length T to 100 steps, both for practical
consideration. It shares a similar reward function with Ant-v2
(ignoring the outer-force cost) and the same action space. Its state
space is shown in Table 1.

5.2 Eidos: A Pseudo Experimental RL
Environment
As we claim that RL should show its advantage over solving
unknown problems, we propose a novel experimental platform
using a pseudo environment, named Eidos (a term coined by
Plato as a permanent reality that defines a thing as what it is). We
use Eidos to simulate an MDP with arbitrary state and action
dimensionality. In this pseudo environment, we use a deep neural
network with randomly initialized weights to represent the

TABLE 1 | State space of our model AntX.

Dimension Representation

0, 1, 2 Position (x, y, z) of the torso
3, 4, 5, 6 Orientation (x, y, z, w) of the torso
7, 8, 9, 10, 11, 12, 13, 14 Joint angels of all 8 joints
15, 16, 17 Directional velocity of the torso
18, 19, 20 Angular velocity of the torso
21, 22, 23, 24, 25, 26, 27, 28 Angular velocity of joints

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178397

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 4 | Block diagram of our Eidos environment. Two randomly initialized deep neural networks represent the dynamics model and reward model of an
environment, making it flexible to vary the complexity of the corresponding MDP.

Algorithm 1 | Our algorithm RAMCO.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178398

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

ground-truth dynamics function fEidos(s), and another neural
network with randomly initialized weights to represent the
reward function rEidos(s, a). Besides, this environment could
also represent a POMDP problem, where observations are a
sub-set of states.

When the number of observation dimensions do is chosen
different from the of state dimensions ds, a sub-space of do
dimensions would be sampled randomly without repeat from
the state space. Furthermore, to emulate a noisy MDP, we
consider reward, state and observation as signals and an
additive white Gaussian noise (AWGN) is added to each with
a Signal to Noise ratio (SNR) SNRr , SNRs, and SNRo respectively.
The Eidos environment can be visualized in Figure 4. To the best
of our knowledge, this is the first time that such an environment is
proposed. We perform a case study on PPO to show its
effectiveness on the evaluation of RL algorithms and show the
results in Section 6. In the following experiments, we fix the
action dimension to 10, and only the state is noisy with 60 SNR.

6 EXPERIMENTAL RESULTS

In this section, we aim to answer the following questions:

• Can the dynamics model predict trajectories precisely?
• Is the Eidos environment effective as an evaluation method?
• How is the overall performance of RAMCO in terms of

accumulated reward?

Our initial experiments aimed to test the trajectories from the
dynamics model. Then, we stack up RAMCO against other state-
of-the-art algorithms on a simulation of a walking robot. Finally,
we briefly introduce our novel RL testing environment called
Eidos and perform another comparison.

6.1 Dynamics Model
We first train the dynamics model on 11 benchmark
environments and a simulated walking robot AntX (improved

FIGURE 5 | Learning curves of the dynamics model based on different warm-up data (Average of three trials), where the metric of loss is the sum of squared errors
(SSE) with L2 regularization. In most cases, model-free methods significantly improve the dynamics model learning.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6178399

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

from Ant-v2) with the simulators MuJoCo (Todorov et al., 2012),
PyBullet (Coumans and Bai, 2020), and Box2D (Catto, 2010),
which are introduced in the supplementary material.

To estimate the effectiveness of using different policies as
the back-end to generate training data, we compare training
curves based on 105 steps of warm-up data produced by
different warm-up policies πwarm−up. Training loss described
in Eq. 5 during the training process of the dynamics model is
recorded. There are three different types of warm-up data sets
for training the dynamics model: one generated by a random
policy, one generated by SAC policy, and one generated by
PPO policy. The two model-free policies are trained from
scratch during the warm-up phase to generate the training data
set, whose creation cost is also part of the cost of the warm-up for
the whole RAMCO pipeline. As shown in Figure 5, we plot the
training curves of the dynamics model based on different warm-up
data. All the results data are the average results of three trials. We
can obtain that for environments InvertedDoublePendulum-v2,
HalfCheetah-v2, Hopper-v2, Walker2d-v2, BipedalWalker-v3,

LunarLanderContinuous-v2, MinitaurBulletEnv-v0, and AntX, a
model-free policy can produce warm-up data that reach a better
training for the dynamics model compared to using random
samples. We can also see that between two model-free policies,
SAC showed a remarkable behavior inmanywarm-up trials, which
agrees with the nature of SAC, a method that tries to maximize the
entropy of the policy.

Based on the trained dynamics model, we then estimate
the prediction performance of the model. We plot the output
from the trained model with random warm-up data and with
different training iterations (20, 60, 200). For visualization
purposes, we average over all the dimensions of a state to a
scalar. We generate a random sequence of actions and predict
each state recursively with the dynamics model for 1,000
times. Some visualization results are shown in Figure 6 and
the others are shown in the supplementary material. We can
see a strong prediction from our algorithm with the baseline
dots approaching the average prediction even when
stretching the prediction horizon to 90 steps.

FIGURE 6 | Predicted trajectories with RAMCO, with all dimensions of a state averaged over to a scalar. After a randomwarm-up we predict states recursively with
the dynamics model. Each prediction and predictions average are in light and dark colors, and the baseline in dots. Through this visualization of predictive trajectories, we
claim that this dynamics model meets the requirements of our control framework and can support our system to produce risk-aware control.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783910

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

It is usually not good for a dynamics model if only the
average output is close to the baseline but with high variance.
This variance of prediction is unavoidable in real-world
applications because of aleatory and epistemic uncertainty.
For example, it is easy to observe from the case of
BipedalWalker-v3 in Figure 6 that high prediction
variance occurs when the prediction horizon is longer than
60 steps. However, our control framework can still deal with
this variance in a risk-aware way. It is because we can observe

from the figure that our sample-based dynamics model can
always produce at least one accurate prediction. If this
accurately predicted trajectory is dangerous, (i.e. with a
very low return), our CVaR-based optimiser will take this
into consideration and avoid performing the corresponding
dangerous actions in the real world. In this case, our system
can successfully detect and avoid the worst cases using CVaR,
statistically eliminating risks and reducing losses, even
though the predictions are noisy. Therefore, we claim that

FIGURE 7 | Dynamics model multi-step prediction error, with different RL environments (introduced in the supplementary material) and training epochs (20, 60,
200). We calculate the validation loss in Eq. 7 for one step, five steps, 10 steps, 50 steps, and 100 steps of prediction length. The smaller the value is, the more accurate
the prediction makes, and the lighter color is shown. All the results are averaged after three trials.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783911

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

this dynamics model meets the requirements of our control
framework and can support our system to produce risk-aware
control.

In order to estimate the prediction accuracy quantitively
and hence verify the effectiveness of our prediction, we then
calculate the exact validation loss according to Eq. 7 for 1-
step, 5-steps, 10-steps, 50-steps, and 100-steps prediction
length Tval . This estimation is based on a dynamics model
trained by a random warm-up data set, whose purposes are to
1) estimate the performance of the dynamics model
numerically and 2) provide references for choosing an
appropriate MPC horizon H. All the results are averaged
from three trials and shown in Figure 7. As expected, long-
horizon predictions concatenate more errors and training
through more epochs reduce prediction errors. For some
simple environments, such as Half Cheetah, the dynamics
can even predict the state 100 steps ahead with an error
lower than 1, while for complex environments, such as the
Bipedal Walker, the error begins to surge beyond 50 steps.
These results of static analysis of the prediction accuracy
encouraged us to adopt a 10-step prediction as our control
horizon H. With appropriate training parameters, this
prediction accuracy will increase for each iteration C
denoted in Algorithm 1 on the run, since the data
distribution of training data set D will continuously become
closer to the real-world trajectories distribution.

6.2 RAMCO on AntX
We test our RAMCOmethod with different warm-up policies (SAC,
PPO and random) on our AntX model with the hyperparameters

shown in the supplementary material, and these results are shown
in Figure 8. All the result data are an average of three runs. We
compare our results with RL algorithms listed below:

• Proximal Policy Optimization (PPO) (Schulman et al.,
2017): PPO is one of the most popular and successful
model-free RL algorithms. As introduced in Section 2,
essentially it is a policy-gradient-based RL method.

• Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015): DDPG is another model-free RL algorithm with
an actor-critic structure.

• Soft Actor-Critic (SAC) (Haarnoja et al., 2018): SAC adds
entropy as part of its objective function for better
exploration. It reports better data efficiency than DDPG
on MuJoCo benchmarks.

• Model-Based Model-Free hybrid (MBMF) (Nagabandi et al.,
2018): The model-based part of the method MBMF is
implemented. It is an deterministic model-based method
using random shooting method as the optimiser.

• Model-Based Policy Optimization (MBPO) (Nagabandi
et al., 2018): MBPO uses a probabilistic dynamics model to
generate additional data to a replay buffer for training a
SAC-based model-free agent. It is reported that this can
highly improve data efficiency.

• Probabilistic Ensembles with Trajectory Sampling
(PETS) (Chua et al., 2018): PETS is a recent pure model-
based method. It uses deep neural networks with ensembles
to model the environment dynamics taking the uncertainty
in consideration, and does open-loop planning based on
this model.

FIGURE 8 | Accumulated rewards from each episode of AntX for different algorithms. RAMCO (SAC) and RAMCO (PPO) stand for using SAC and PPO as training
data generators in our RAMCO control framework, respectively. These two model-free agents are trained from scratch. RAMCO (Random) means RAMCOwith random
data for training of the dynamicsmodel. Although our method uses 2 × 104 steps to warm-up, it can outperform all other methods (except PETS) in its very first controlled
iteration. The use of SAC as the warm-up policy can further enhance the quality of results when compared to PPO warm-ups. Our methods also show their
advantage of low variance.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783912

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

In addition, the first four methods use the implementation
from TF2RL package (Kei Ohta, 2020) with all default
hyperparameters. MBPO uses its official implementation and
PETS uses the implementation from (Vuong, 2020). We run all
these methods for 8 × 104 time steps. It can be obtained from the
figure that although our method uses 2 × 104 steps to warm-up
(generates training data for the dynamics model without risk-

awareness), they can produce very competitive results in this case
in terms of both average and variance. RAMCO based on random
warm-up data and SAC warm-up policy outperform all other
methods (except PETS) in its very first risk-aware controlled
iteration. The SAC-based RAMCO shows a lower variance
compared to PETS, while the random-based RAMCO shows a
competitive average. The PPO-based RAMCO method has a very

FIGURE 9 | A histogram showing the distribution of final returns among different algorithms. Data of the warm-up phase of RAMCO and the corresponding period
of other methods are dropped.We can see from the figure that not only the average of our returns is outstanding, but also the variance. While the random-based RAMCO
has shown an exceptional average return, the PPO-based RAMCO shows the lowest variance among all the algorithms, which could be a very useful property in risk-
sensitive applications. The SAC-based RAMCO has a variance between the two.

FIGURE 10 | Training curves for Eidos with 10 state dimensionality. The PPO-version of RAMCO outperforms all other methods after 6 × 104 steps of warm-up.
Among model-free algorithms, DDPG produces the closest result to ours but has a very unrobust training behavior and worse final return. Our RAMCO method (PPO-
warm-up version) surpasses all other model-based methods including PETS and especially show overwhelming superiority to MBMF.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783913

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

stable performance after the warm-up phase, which could be a very
useful property in risk-sensitive applications. It also shows a higher
return compared to all the model-free methods (PPO, DDPG, and
SAC) and the model-based method MBMF. In addition, the returns
from DDPG algorithm are unstable, with sudden learning drops

which could lead to fatal behaviors in real-world applications, but the
algorithm surpasses our solution after 4.5 × 105 (as shown in the
full-sized figure at the supplementary material).

It is noticed that some specially designed risk-sensitive
metric is not used in the comparison but the final returns are

FIGURE 11 | Training curves for Eidos with 100 state dimensionality. The PPO-version of RAMCO continuous to show its advantages over all other model-based
and model-free methods. In this case, model-free methods begin to show its advantages on scalability while other model-based methods start to show their shortage.
However, RAMCO based on PPO-generated training data still outperforms other state-of-the-art model-free methods including PPO, DDPG and SAC andmodel-based
methods including PETS, MBMF and MBPO after the warm-up phase.

FIGURE 12 | Training curves for Eidos with 1,000 state dimensionality. RAMCO (Random) shows performance similar to PETS, which are still better than the
model-based method MBMF and hybrid method MBPO. The PPO-warm-up version of RAMCO reached its highest returns during the warm-up phase, and its
performance degrades afterwards. Therefore, PPO-warm-up RAMCO excels while dealing with scalability with its flexible control framework in real-world applications
where the back-end warm-up policy can be adopted directly.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783914

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

shown since this is fairer for other algorithms. Furthermore, we
consider that users will focus more on the final performance in
their applications and this also meets with our assumption in
Section 3 that the negative of total discounted future reward is
equivalent to the value of loss. In order to highlight the superior
of our risk-aware framework, we plot a histogram showing the
distribution of final returns (after the warm-up phase of
RAMCO and the corresponding period of other methods)
among different algorithms in Figure 9. It can be obtained
from the figure that not only the average of our returns is
outstanding, but also the variance. While the random-based
RAMCO has shown an exceptional average return, the PPO-
based RAMCO shows the lowest variance among all the
methods. RAMCO based on SAC warm-up policy produces a
variance between the two.

Compared to another state-of-the-art model-based
method PETS, it is observed from Figures 8, 9 that our
methods are highly competitive with respects to the
average and variance. While the random-based RAMCO
shows a similar average return to PETS, the use of SAC
and PPO as the warm-up policy can further reduce the
variance and hence risk. This means that the choice of the
back-end warm-up policy can be used for trading between
risk and return. This feature comes from our risk-awareness
nature and more flexible framework compared to PETS. On
the one hand, our CVaR decision-making mechanism tends
to perform conservative strategies; on the other hand, we can
choose the back-end warm-up policy (random policy, SAC,
or PPO) to meet users’ requirement of performance and
robustness. We will discuss more on the differences
between our method and PETS in Section 7.1 and our
advantages on generalization and risk aversion over PETS
in sections 7.2 and 7.3.

6.3 RAMCO on Eidos
Based on the fact that Eidos is a very efficient method to evaluate
RL algorithms, which is shown in the supplementary material,
we benchmark different algorithms on Eidos with state
dimensions of 10, 102, and 103. All the algorithms run for 8 ×
104 steps, and all the result data are an average of three trials. In
the 10 dimensions case (Figure 10), the returns of RAMCO based
on PPO warm-up policy surpasses that of all other methods after
6 × 104 steps of warm-up. Among model-free algorithms, DDPG
produces the closest result to ours but has a very unrobust
training behavior and worse final return. Our RAMCO
method (PPO-warm-up version) also surpasses all other
model-based methods including PETS and especially show
overwhelming superiority to MBMF.

In the 100 dimensions case (Figure 11), PPO-version of
RAMCO still shows advantages over all other model-based
and model-free methods. In this case, model-free methods
such as PPO begin to show its advantages on scalability while
other model-based methods start to show their limit of
applications. However, RAMCO based on PPO-generated
training data still shows a jump in its training curve after the
warm-up phase, which makes it outperforms other state-of-the-
art model-free methods including PPO, DDPG and SAC and

model-based methods including PETS, MBMF and MBPO. The
random-based RAMCO seems to have a lower return than the
one based on PPO, while still produces a competitive result
compared to SAC, PETS, and MBMF.

As for the cases with 1,000 dimensions (Figure 12), RAMCO
(Random) shows performance similar to PETS, which are still better
than the model-based methodMBMF andMBPO. The PPO-warm-
up version of RAMCO reached its highest returns during the
warm-up phase, and its performance degrades afterwards. While
RAMCO excels in low dimensionality data efficiency, even when the
warm-up is taken into consideration, it still suffers from the curse of
dimensionality. Nonetheless, its flexible control framework makes it
a good candidate for real-world applications by directly deploying
the underneath warm-up policy for solving problems.

Overall, in the 10-dimension case, our RAMCOmethod (with
a back-end PPO policy) shows its advantages on both
performance and robustness over all other model-based and
model-free methods. In the case with 102 dimensionalities,
RAMCO based on PPO warm-up data still produces
competitive results, especially compared with all other model-
based methods, which are all suffering through scalability. While
the state dimensionality is increased to 103, the PPO-warm-up
RAMCO is still a promising tool in a real-world application,
where the back-end warm-up policy can be adopted. Based on
these results, we will further discuss the value of our methods in
respect of data efficiency, generalization (robustness and
scalability), and risk aversion in the next section.

7 DISCUSSION

This paper proposes a novel algorithm called RAMCO. It uses a
probabilistic dynamics model to model the transition function
whose initial training data can be produced by a random policy or
model-free agents. Within this method, we use CVaR as a metric
to evaluate the predicted trajectories, and once the optimum
action sequence is found by CMA-ES, the first action of the
sequence is taken to interact with the environment. To be
consistent with our comparisons, we also propose a novel RL
environment called Eidos. In short, Eidos is a pseudo
environment consisting of two randomly initialized deep
neural networks: one representing the ground-truth dynamics
model and one regarded as a reward function. After showing the
effectiveness of this Eidos environment, we show that our method
achieves a remarkable trade-off between data efficiency,
generalization, and risk aversion.

7.1 Data Efficiency
Data inefficiency can lead to a heavy human workload during
real-world applications, which ironically contradicts the original
motivation behind using learning algorithms. However, such
inefficiency can still be found in most model-free algorithms
(Chatzilygeroudis, 2018). As we show in Figures 8,10, all the
model-free algorithms, including PPO, DDPG, and SAC, do not
perform well in these two cases, mostly because of their data-
inefficiency: 8 × 104 iterations are not enough for a model-free
algorithm to find an convergent solution in such

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783915

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

dimensionalities. MBPO can be regarded as an SAC algorithm
with a dynamics model added to it, and hence an evident
advantage over SAC and other model-free methods.

The model-based method PETS benefits from its probabilistic
dynamics model and shows a competitive result when compared
to our RAMCO method. This success presented by PETS can be
explained from its nonconsideration of risk. First, PETS does not
distinguish the warm-up phase and application phase and has a
higher update frequency of the dynamics model, which makes the
improvement of policies more aggressive. However, this also
leads to a higher risk of being constrained to a local optimum,
which can be proven by the results of the 10-dimensional case,
where the returns of our methods surpass the ones from PETS.
The second reason for the advantage of PETS in the AntX case is
that its evaluation only takes into consideration the average
returns. Compared to the conservative policy of RAMCO,
PETS performs a risky strategy which outputs higher mean
returns but also a higher variance. We will further discuss the
negative impact of this trade-off in Section 7.3. As for another
model-based method MBMF, the random-shooting optimiser
used for the MPC is not enough to find an optimum solution
effectively in all cases. Overall, our method shows its advantage in
data efficiency as an MBRL algorithm, which makes it
competitive on the AntX and 10-dimensional Eidos
environments.

7.2 Generalization
The generalization of an RL algorithm can be characterized in two
aspects: robustness and scalability, both of which attract less
attention from the MBRL communities, but still crucial for real-
world application. When in situations where humans themselves
cannot predict what the best policies/actions are, RL algorithms
require a certain degree of insensitivity to hyperparametric
choices and environment complexity. In this sense, our
proposed Eidos environment is an efficient tool to evaluate the
generalization of RL algorithms, and RAMCO still proves to be
efficient following this metric.

As it can be seen from Figures 11, 12, model-free RL
algorithms have natural advantages on scalability. For
instance, DDPG begins to show a higher return than
RAMCO on the 100-dimensional Eidos environment and
all the model-free methods achieve higher returns than
RAMCO based on random rollouts on the 1000-
dimensional Eidos. Conversely, scalability is a common
problem for model-based methods focusing on data
efficiency. Since it is challenging to learn a precise
dynamics model in a complex environment even with
neural networks, the model bias can often lead to failed
decision making. This can be proven by the last two cases,
where the problem dimensionality expands to 100 and 1,000.
As we can see, while the dimensionality of the environment
increases, model-based methods (including PETS and
MBMF, and hybrid methods like MBPO) begin to suffer
from model bias and hence produce much worse results
than model-free methods. Other model-based methods,
such as black-box optimisers (Hansen et al., 2015) to find
a closed-loop policy (Chatzilygeroudis et al., 2017) or using

policy gradient to find an optimum policy with respect to a
Bayesian neural network (Gal et al., 2016), suffer from time
complexity, so they mostly focus on simple tasks like cart-
pole-swing-up or double-pendulum swing-up with lower
dimensionalities (typically less than 10). As mentioned in
Section 2, modeling the transition function with Gaussian
Process (Deisenroth and Rasmussen, 2011; Kamthe and
Deisenroth, 2018) is also a barrier for applying some
MBRL methods to more complex environments.

As for RAMCO, we solve this problem with the flexibility of the
warm-up policy. In the case of 100-dimensional Eidos, the RAMCO
method based on PPO rollouts can still produce successful results
compared with other methods, supported by our MC-dropout-
based probabilistic dynamics model. In the case of 1000-
dimensional Eidos, although our methods also suffer from model
bias, in practice, we can directly adopt the warm-up policy to make
up for this generalization problem of model-based methods.
Therefore, the PPO-rollouts version is recommended for all
environments with any dimensionality.

7.3 Risk Aversion
When compared to other methods, RAMCO is the only one taking
calculated risks on its trials and hence producing much smoother
training curves in most cases. By preventing drastic fluctuations,
such as shown by the training returns produced by DDPG in the
AntX case, it shows its excellence towards real-world application to
avoid catastrophic loss. Compared to PETS on the AntX
environment, although the PPO-version of our strategies causes a
lowermean return, it shows a lower variance in the controlled phase,
which is also meaningful for risk-sensitive real-world applications
where expectable output is required.

In term of risk-sensitive control, most of the prior works are
based on assuming a stochastic MDP (Tamar et al., 2014; Roy
et al., 2017; Derman et al., 2019) and trying to reduce risk due to
aleatory uncertainty, as we have introduced in Section 2. Since we
believe that the risk assessment should take into consideration the
epistemic uncertainty within an engineering application, we focus
on the epistemic risk and maintain a regular environment setting.
Depeweg et al. (Depeweg et al., 2017) decompose aleatory and
epistemic uncertainty and propose a risk-sensitive RL algorithm
to attain a balance between expected reward and risk. However,
their consideration of risk is solely with respect to individual
rewards, instead of the total return of each episode. Work with a
very similar risk-control objective to ours can be found in
(Eriksson and Dimitrakakis, 2020). There, the goal is to
control the epistemic risk by a model-free RL algorithm and
utility function. However, they only show experimental results on
Gridworld and option pricing but not locomotion control. In
addition, since it is based on a model-free structure, the data
inefficiency limits its real-world application, which is inconsistent
with the motivation of using a risk-sensitive model. In order to
solve the problem of data inefficiency, there are also works on
risk-sensitive batch-RL algorithms (Thomas et al., 2015; Levine
et al., 2020), which return incremental policies based on historical
data with probabilistic guarantees about the quality of generated
policies. Their problem setting is closer to applications such as
marketing and therapies.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783916

Yu and Rosendo RAMCO

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

It can be seen that there exists a broad diversity within the field
of risk-sensitive RL. Therefore, specific settings and
improvements of our Eidos environment should be our further
work when building upon a general benchmark for risk-aware RL.
At the same time, instead of using a constant α parameter for the
CVaR component at RAMCO, an alternative path for our future
work is to study the effects of this variable on the risk-sensitive
performance on different Eidos settings. Furthermore, based on
the flexibility of the Eidos environment, interesting and valuable
experiments involving concepts of epistemic value, epistemic
action, and active perception can be further designed in future
work. The epistemic cost in these experiments can be further
evaluated on both warm-up and application phases, which could
be a significant metric in real-world risk-sensitive applications.

8 CONCLUSION

In this work, we propose anMBRL algorithm called RAMCOand an
RL environment called Eidos, both motivated by the need from real-
world applications to quickly converge to an optimal solution
without incurring in catastrophic failures. While RAMCO is a
risk-sensitive and data-efficient algorithm, Eidos is an
environment which allows us to simulate a multitude of
unknown/multi-dimensional problems which could be faced by
an RL agent in the real-world. Compared to other works in
MBRL methods (Deisenroth and Rasmussen, 2011; Nagabandi
et al., 2018; Chua et al., 2018), we assign more attention to risk-
awareness, robustness, and scalability; while compared to other
works in robust MDP (Tamar et al., 2014; Roy et al., 2017;
Derman et al., 2019), we innovate by considering epistemic
uncertainty and data efficiency. We empirically show that the
dynamics model in our RAMCO method can meet the
requirements of our setting and the overall performance is
competitive to state-of-the-art model-based and model-free RL
algorithms. The results are encouraging as a step towards
bringing RL into safe industrial applications.

9 BROADER IMPACT

Robots in our daily life are gradually transitioning from a utopic
“sci-fi” concept to a concrete reality, and the capacity to adapt
within very few trials to disturbances and malfunctions is
crucial. Our work concentrates on risk-awareness and data

efficiency, specifically, to address this problem. Unlike other
works which rely on the abundance of data to find solutions (big
data approaches), our solution deviates from this trend to follow
a micro data approach. The reason for this is because trials can
be very expensive, and failures can result in property damage
(robotics) or loss of lives (therapeutics).

Our proposed algorithm excels on problems with less than
100 dimensions, finding excellent solutions right in its first
trial after finishing its warming up phase. Although it has a
higher computational cost per episode than its counterparts
(which is convenient, in juxtaposition to the very nature of
problems that it aims to solve, as “expensive trials” shouldn’t
be quickly repeated), the exponential advances in computer
architectures and cloud computing will make such strategies
more preferable in the long run, quickly taking in
consideration real-world inputs to output better strategies
to physical machines directly.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CY and AR conceived of the presented idea. CY developed the
theory and carried out the experiment. AR verified the proposed
methods and supervised the findings of this work. Both authors
discussed the results and contributed to the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China, project number 61850410527, and the
Shanghai Young Oriental Scholars, project number 0830000081.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.617839/
full#supplementary-material.

REFERENCES

Abbeel, P., Quigley, M., and Ng, A. Y. (2006). Using inaccurate models in
reinforcement learning. Proceedings of the 23rd international conference on
Machine learning, Pittsburgh, PA, United States, January 2006, 1–8. doi:10.
1145/1143844.1143845

Akimoto, Y. (2012). Analysis of a natural gradient algorithm on monotonic
convex-quadratic-composite functions. Proceedings of the 14th international
conference on Genetic and evolutionary computation conference—GECCO,
Philadelphia, PA, United States, 7-11 July 2012 12. doi:10.1145/2330163.
2330343

Akimoto, Y., and Hansen, N. (2016a). “Online model selection for restricted
covariance matrix adaptation,” Parallel problem solving from nature – PPSN
XIV. Editors J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and
B. Paechter (Cham, Switzerland: Springer International Publishing), 3–13.

Akimoto, Y., and Hansen, N. (2016b). Projection-based restricted covariance
matrix adaptation for high dimension. GECCO. Proceedings of the Genetic
and Evolutionary Computation Conference 2016, Denver, CO, United States,
20–24 July 2016. New York, NY, United States: Association for Computing
Machinery). 16, 197–204. doi:10.1145/2908812.2908863

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., Tb, D.,
et al. (2018). Distributed distributional deterministic policy gradients. ICLR,
2018, Vancouver, BC, Canada, April 30 2018.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783917

Yu and Rosendo RAMCO

https://www.frontiersin.org/articles/10.3389/frobt.2021.617839/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.617839/full#supplementary-material
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/2330163.2330343
https://doi.org/10.1145/2330163.2330343
https://doi.org/10.1145/2908812.2908863
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight
uncertainty in neural networks. ICML’15: Proceedings of the 32nd
International Conference on International Conference on Machine
Learning—Volume, Lille, France, 6-11 July 2015, 37, 1613–1622.

Catto, E. (2010). Box2d: a 2d physics engine for games. Accessed 2020-05-01:
https://box2d.org/. doi:10.1063/1.3460168

Chatzilygeroudis, K. (2018).Micro-data reinforcement learning for adaptive robots.
Nancy, France: Theses, Universite de Lorraine.

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and
Mouret, J. (2017). Black-box data-efficient policy search for robotics. 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September, 2017, 51–58.

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret, J.-B.
(2020). A survey on policy search algorithms for learning robot controllers in
a handful of trials. IEEE Trans. Robot. 36, 328–347. doi:10.1109/tro.2019.
2958211

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). “Deep reinforcement
learning in a handful of trials using probabilistic dynamicsmodels,” in Advances in
neural information processing systems, December 2-8, Quebec, Canada. Editors S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Curran Associates, Inc.), 4754–4765. Available at: https://proceedings.neurips.cc/
paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Coumans, E., and Bai, Y. (2020). Pybullet: a python module for physics simulation
in robotics, games and machine learning. Accessed 2020-05-01: http://www.
pybullet.org/

Cutler, M., and How, J. P. (2015). Efficient reinforcement learning for robots using
informative simulated priors. ICRA. 2015, 2605–2612. doi:10.1109/ICRA.2015.
7139550

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian processes for
data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach.
Intell. 37, 408–423. doi:10.1109/TPAMI.2013.218

Deisenroth, M. P., Neumann, G., and Peters, J. (2011). A survey on policy search
for robotics. FNT in Robotics 2, 1–142. doi:10.1561/2300000021

Deisenroth, M. P., and Rasmussen, C. E. (2011). Pilco: a model-based and data-
efficient approach to policy search. Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11,
Bellevue, DC, United States, 28-2 July, 2011. Madison, WI, United Status:
Omnipress), 465–472.

Depeweg, S., HernÃ¡ndez-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2017).
Decomposition of uncertainty in bayesian deep learning for efficient and risk-
sensitive learning. Proccedings of the 35th International Conference on
Machine Learning, ICML 2017, Stockholm, Sweden, 15 July 2017.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor, S. (2019). “A bayesian
approach to robust reinforcement learning,” in Proceedings of the thirty-fifth
conference on uncertainty in artificial intelligence, UAI 2019, tel aviv, Israel, july
22-25, 2019. Editors A. Globerson and R. Silva (Arlington, VA, United States:
AUAI Press), 228.

Englert, P., Paraschos, A., Peters, J., and Deisenroth, M. P. (2013). Model-based
imitation learning by probabilistic trajectory matching. 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe,
Germany, 6-10 May 2013. doi:10.1109/ICRA.2013.6630832

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., et al.
(2020). Implementation matters in deep rl: a case study on ppo and trpo. Iclr

Eriksson, H., and Dimitrakakis, C. (2020). “Epistemic risk-sensitive reinforcement
learning,” in 28th European symposium on artificial neural networks,
computational intelligence and machine learning, Bruges, Belgium, October
2–4, 2020, 339–344. Available at: https://www.esann.org/sites/default/files/
proceedings/2020/ES2020-84.pdf.

Fabisch, A., Petzoldt, C., Otto, M., and Kirchner, F. (2019). A survey of behavior
learning applications in robotics - state of the art and perspectives. CoRR.
[arXiv. 1906.01868] (Accessed February 4, 2021).

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., and Levine, S. (2018).
Model-based value estimation for efficient model-free reinforcement learning.
CoRR. [arXiv. 1803.00101]. Available at: https://arxiv.org/abs/1803.00101
(Accessed February 4, 2021).

Fujimoto, S., van Hoof, H., and Meger, D. (2018). “Addressing function
approximation error in Actor-Critic Methods,” in Proceedings of the 35th
international conference on machine learning, Stockholm, Sweden, July 10–15.

Editors J. Dy and A. Krause (PMLR), 1587–1596. Available at: http://
proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf.

Gal, Y., and Ghahramani, Z. (2015). Dropout as a Bayesian approximation:
appendix. CoRR. [arXiv. 1506.02157]. Available at: https://arxiv.org/abs/
1506.02157 (Accessed February 4, 2021).

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a bayesian approximation:
representing model uncertainty in deep learning,” in Proceedings of the 33rd
international conference on machine learning, New York, NY, June 20 –22.
Editors M. F. Balcan and K. Q. Weinberger (PMLR), 1050–1059. Available at:
http://proceedings.mlr.press/v48/gal16.pdf.

Gal, Y., McAllister, R., and Rasmussen, C. E. (2016). Improving pilco with bayesian
neural network dynamics models. Data-efficient machine learning workshop, 4.
New York, NY, United States: ICML.

Givan, R., Leach, S., and Dean, T. (2000). Bounded-parameter Markov decision
processes. Artif. Intell. 122, 71–109. doi:10.1016/s0004-3702(00)00047-3

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep q-learning
with model-based acceleration. Proceedings of the 33rd International
Conference on International Conference on Machine Learning—ICML’16,
New York, NY, United States, 19-24 June 2016, 48, 2829–2838.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.PMLR (2018). “Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a stochastic
actor,”. Proceedings of the 35th international conference on machine learning,
ICML 2018. Editors J. G. Dy and A. Krause (Stockholmsmässan, Stockholm,
Sweden: of Proceedings of Machine Learning Research), vol. 80.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., et al. (2019).
“Learning latent dynamics for planning from pixels,” in Proceedings of the 36th
international conference onmachine learning, June 9–15. Editors K. Chaudhuri
and R. Salakhutdinov (PMLR). 2555–2565. Available at: http://proceedings.mlr.
press/v97/hafner19a/hafner19a.pdf.

Hansen, N., Arnold, D. V., and Auger, A. (2015). “Evolution strategies,” in Springer
handbook of computational intelligence. Editors J. Kacprzyk and W. Pedrycz
(Berlin, Germany: Springer Berlin Heidelberg), 871–898. doi:10.1007/978-3-
662-43505-244

Hansen, N., and Auger, A. (2014). “Principled design of continuous stochastic
search: from theory to practice,” Natural Computing Series. Theory and
principled methods for the design of metaheuristics. Editors Y. Borenstein
and A. Moraglio (Berlin, Germany: Springer), 145–180. doi:10.1007/978-3-
642-33206-78

Hansen, N. (2006). “The CMA evolution strategy: a comparing review,” in Towards
a new evolutionary computation—advances in the estimation of distribution
algorithms. Of studies in fuzziness and Soft computing. Editors J. A. Lozano,
P. Larrañaga, I. Inza, and E. Bengoetxea (Berlin, Germany: Springer), vol. 192,
75–102. doi:10.1007/3-540-32494-14

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., et al. (2012). Deep
neural networks for acoustic modeling in speech recognition: the shared views
of four research groups. IEEE Signal Process. Mag. 29, 82–97. doi:10.1109/msp.
2012.2205597

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). “When to trust your model:
model-based policy optimization,” in Advances in neural information processing
systems (Vancouver, CANADA: Curran Associates, Inc.), 12519–12530.

Kamthe, S., and Deisenroth, M. (2018). “Data-efficient reinforcement learning with
probabilistic model predictive control,” in International conference on artificial
intelligence and statistics (Beijing, China: PMLR), 1701–1710.

Kei Ohta, H. (2020). TF2RL. GitHub (Accessed February 4, 2021).
Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., et al. (2020).

Vision aided dynamic exploration of unstructured terrain with a small-
scale quadruped robot. IEEE International Conference on Robotics and
Automation (ICRA) 2020, 2464–2470. doi:10.1109/ICRA40945.2020.
9196777

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information processing
systems 25. Editors F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (New
York, NY, United States: Curran Associates, Inc.), 1097–1105.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in neural
information processing systems. Editors I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Long Beach, CA: Curran
Associates, Inc.), Vol. 30. 6402–6413.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783918

Yu and Rosendo RAMCO

https://box2d.org/
https://doi.org/10.1063/1.3460168
https://doi.org/10.1109/tro.2019.2958211
https://doi.org/10.1109/tro.2019.2958211
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
http://www.pybullet.org/
http://www.pybullet.org/
https://doi.org/10.1109/ICRA.2015.7139550
https://doi.org/10.1109/ICRA.2015.7139550
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1561/2300000021
https://doi.org/10.1109/ICRA.2013.6630832
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-84.pdf
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-84.pdf
https://arxiv.org/abs/1803.00101
http://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf
http://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf
https://arxiv.org/abs/1506.02157
https://arxiv.org/abs/1506.02157
http://proceedings.mlr.press/v48/gal16.pdf
https://doi.org/10.1016/s0004-3702(00)00047-3
http://proceedings.mlr.press/v97/hafner19a/hafner19a.pdf
http://proceedings.mlr.press/v97/hafner19a/hafner19a.pdf
https://doi.org/10.1007/978-3-662-43505-244
https://doi.org/10.1007/978-3-662-43505-244
https://doi.org/10.1007/978-3-642-33206-78
https://doi.org/10.1007/978-3-642-33206-78
https://doi.org/10.1007/3-540-32494-14
https://doi.org/10.1109/msp.2012.2205597
https://doi.org/10.1109/msp.2012.2205597
https://doi.org/10.1109/ICRA40945.2020.9196777
https://doi.org/10.1109/ICRA40945.2020.9196777
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning:
tutorial, review, and perspectives on open problems. arXiv preprint arXiv:
2005.01643

Li, H., Liu, D., and Wang, D. (2017). Manifold regularized reinforcement learning.
IEEE Trans Neural Netw Learn Syst 2017, 3043–3052. doi:10.1109/TNNLS.
2017.2650943

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. [arXiv. 1509.02971].
Available at: https://arxiv.org/abs/1509.02971 (Accessed February 4, 2021).

Majumdar, A., and Pavone, M. (2020). “How should a robot assess risk? towards an
axiomatic theory of risk in robotics,” in Robotics research. Editors N.M. Amato,
G. Hager, S. Thomas, and M. Torres-Torriti (Cham: Springer International
Publishing), 75–84. doi:10.1007/978-3-030-28619-4_10

Maki, A., Sakamoto, N., Akimoto, Y., Nishikawa, H., and Umeda, N. (2020).
Application of optimal control theory based on the evolution strategy (cma-es)
to automatic berthing. J. Mar. Sci. Technol. 25, 221–233. doi:10.1007/s00773-
019-00642-3

Mannor, S., Mebel, O., and Xu, H. (2012). Lightning does not strike twice: robust
mdps with coupled uncertainty. Proceedings of the 29th International Coference
on International Conference on Machine Learning, ICML, Edinburgh, Scotland,
June 26–July 1, 2012. 12. Madison, WI, United States: Omnipress), 451–458.

Mansour, M., and Abdel-Rahman, T. (1984). Non-linear var optimization using
decomposition and coordination. IEEE Trans. Power Apparatus Syst. 103,
246–255. doi:10.1109/tpas.1984.318223

Puterman, M. L. (1994). Markov decision Processes (Hoboken, NJ, United States:
John Wiley and Sons). doi:10.1002/9780470316887

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi:10.1038/nature14236

Mouret, J.-B., and Chatzilygeroudis, K. (2017). 20 years of reality gap: a few
thoughts about simulators in evolutionary robotics, Proceedings of the genetic
and evolutionary computation conference companion. GECCO’17. (New York,
NY, United States: Association for Computing Machinery). 1121–1124. doi:10.
1145/3067695.3082052

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2018). “Neural network
dynamics for model-based deep reinforcement learning with model-free fine-
tuning,” in 2018 {IEEE} international conference on robotics and Automation,
{ICRA} 2018, Brisbane, Australia, May 21–25, 2018 (IEEE), 7559–7566. doi:10.
1109/ICRA.2018.8463189

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V. (2019). “Deep dynamics
models for learning dexterous manipulation,” 3rd Annual Conference on Robot
Learning, CoRL 2019 (PMLR), Osaka, Japan, October 30—November 1, 2019.
Editors L. P. Kaelbling, D. Kragic, and K. Sugiura, 100, 1101–1112.

Osiński, B., Jakubowski, A., Zięcina, P., Miłoś, P., Galias, C., Homoceanu, S., et al.
(2020). Simulation-based reinforcement learning for real-world autonomous
driving. IEEE International Conference on Robotics and Automation (ICRA)
2020, 6411–6418. doi:10.1109/ICRA40945.2020.9196730

Righi, M. B., and Ceretta, P. S. (2016). Shortfall deviation risk: an alternative for risk
measurement. J. Risk 19, 81–116. doi:10.21314/jor.2016.349

Ross, S., Gordon, G. J., and Bagnell, D. (2011). “A reduction of imitation learning
and structured prediction to no-regret online learning,”. Proceedings of the
14th International Conference on Artificial Intelligence and Statistics AISTATS
2011 of JMLR, Fort Lauderdale, FL, United States, 11-13 April, 2011. Editors
G. J. Gordon, D. B. Dunson, and M. Dudík, 15, 627–635.

Schoettler, G., Nair, A., Luo, J., Bahl, S., Ojea, J. A., Solowjow, E., et al. (2020). “Deep
reinforcement learning for industrial insertion tasks with visual inputs and

natural rewards,” 2in International Conference on Intelligent Robots and
Systems (IROS), October 25–29, Las Vegas, NV (IEEE), 5548–5555.
Available at: https://ras.papercept.net/proceedings/IROS20/1872.pdf.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015). “Trust
region policy optimization,” Proceedings of the 32nd International Conference
on Machine Learning.of JMLR Workshop and Conference, ICML 2015, Lille,
France, 6-11 July 2015. Editors F. R. Bach and D. M. Blei, 37, 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. CoRR. [arXiv. 1707.06347].
Available at: https://arxiv.org/abs/1707.06347 (Accessed February 4, 2021).

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction. 2nd
edn. Cambridge, MA, United States: The MIT Press.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the seventh
international conference on machine learning (Burlington, MA, United States:
Morgan Kaufmann), 216–224.

Tamar, A., Mannor, S., and Xu, H. (2014). “Scaling up robust mdps using function
approximation,” Proceedings of the 31st International Conference on International
Conference on Machine Learning ICML 2014 32, 181–189. doi:10.5555/3044805.
3044913

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement
learning and applications in continuous control. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, Long Beach, CA,
United States, 9-15 June 2019, eds. K. Chaudhuri and R. Salakhutdinov
(PMLR), vol. 97, 6215–6224.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M. (2015). High confidence
policy improvement. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, eds. F. R. Bach and
D. M. Blei. 37, 2380–2388.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: a physics engine for model-based
control. IEEE/RSJ International Conference on Intelligent Robots and Systems 2012,
5026–5033. doi:10.1109/IROS.2012.6386109

Vuong, Q. (2020). handful-of-trials-pytorch. GitHub Reposit.
Wu, Y., Mansimov, E., Liao, S., Grosse, R., and Ba, J. (2017). Scalable trust-region

method for deep reinforcement learning using kronecker-factored
approximation. Proceedings of the 31st international conference on neural
information processing systems, NIPS’17. Red Hook, NY, United States:
Curran Associates Inc.), 5285–5294.

Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., et al. (2020). A deep learning system to
screen novel coronavirus disease 2019 pneumonia. Engineering 6, 1122–1129.
doi:10.1016/j.eng.2020.04.010

Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B., et al. (2020). Towards
playing full moba games with deep reinforcement learning. Proceedings of the
34th international conference on neural information processing systems NIPS’20.
(Vancouver, BC, Canada: Curran Associates Inc.).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yu and Rosendo. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 61783919

Yu and Rosendo RAMCO

https://doi.org/10.1109/TNNLS.2017.2650943
https://doi.org/10.1109/TNNLS.2017.2650943
https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/978-3-030-28619-4_10
https://doi.org/10.1007/s00773-019-00642-3
https://doi.org/10.1007/s00773-019-00642-3
https://doi.org/10.1109/tpas.1984.318223
https://doi.org/10.1002/9780470316887
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/3067695.3082052
https://doi.org/10.1145/3067695.3082052
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1109/ICRA40945.2020.9196730
https://doi.org/10.21314/jor.2016.349
https://ras.papercept.net/proceedings/IROS20/1872.pdf
https://arxiv.org/abs/1707.06347
https://doi.org/10.5555/3044805.3044913
https://doi.org/10.5555/3044805.3044913
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1016/j.eng.2020.04.010
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Risk-Aware Model-Based Control
	1 Introduction
	2 Related Work
	2.1 Model-free Reinforcement Learning
	2.2 Model-Based Reinforcement Learning
	2.3 Combination of Model-free and Model-Based Methods
	2.4 Risk-Sensitive Reinforcement Learning

	3 Preliminaries
	4 Risk-Aware Model-Based Control
	4.1 Dynamics Model: Transition Function as a Gaussian Process
	4.2 Training the Dynamics Model
	4.2.1 Training Data Collection and Pre-processing
	4.2.2 Model Training
	4.2.3 Model Validation

	4.3 Policy Evaluation
	4.4 Optimization
	4.5 Model-Based Control

	5 Experimental Setup
	5.1 AntX: A Real-World-Inspired Robot Model
	5.2 Eidos: A Pseudo Experimental RL Environment

	6 Experimental Results
	6.1 Dynamics Model
	6.2 RAMCO on AntX
	6.3 RAMCO on Eidos

	7 Discussion
	7.1 Data Efficiency
	7.2 Generalization
	7.3 Risk Aversion

	8 Conclusion
	9 BROADER IMPACT
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

