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The purpose of this work is to optimize the rigid or compliant behavior of a new type of
parallel-actuated robot architecture developed for exoskeleton robot applications. This is
done in an effort to provide those that utilize the architecture with the means to maximize,
minimize, or simply adjust its stiffness property so as to optimize it for particular tasks, such
as augmented lifting or impact absorption. This research even provides the means to
produce non-homogeneous stiffness properties for applications that may require non-
homogeneous dynamic behavior. In this work, the new architecture is demonstrated in the
form of a shoulder exoskeleton. An analytical stiffness model for the shoulder exoskeleton
is created and validated experimentally. The model is then used, along with a method of
bounded nonlinear multi-objective optimization to configure the parallel substructures for
desired rigidity, compliance or nonhomogeneous stiffness behavior. The stiffness model
and its optimization can be applied beyond the shoulder to any embodiment of the new
parallel architecture, including hip, wrist and ankle robot applications. In order to exemplify
this, we present the rigidity optimization for a theoretical hip exoskeleton.

Keywords: Parallel actuation, parallel mechanism, exoskeleton robotics, shoulder exoskeleton, stiffness
optimization, compliant optimization

1 INTRODUCTION

In the field of exoskeleton robotics, parallel actuation can offer many advantages over more
commonly used serial actuation. Despite having complex kinematics and a typically small
workspace, parallel actuation has numerous useful properties including low end-effector inertia,
high acceleration, high position accuracy, and the potential for high stiffness (Li and Bone, 2001;
Merlet, 2012; Taghirad, 2013). Furthermore, certain types of parallel architectures, such as the 3-SPS
(spherical-prismatic-spherical) (Alici and Shirinzadeh, 2004), 3-RRR (revolute-revolute-revolute)
(Wu et al., 2011) and 3-UPU (universal-prismatic-universal) (Di Gregorio, 2003), can operate
without occupying the center of rotation, which is particularly useful when interfacing with multiple
degrees-of-freedom (DoF) biological joints such as the ankle, hip, shoulder and wrist.

Parallel actuation has been utilized for a number of exoskeleton applications. These include
devices for the wrist, ankle, hip and shoulder. The wrist exoskeleton RiceWrist (Gupta et al., 2008),
uses a 3-RPS (revolute-prismatic-spherical) architecture with an additional serial revolute joint to
generate 4-DoF. These DoF include the rotation of the forearm, wrist height and 2-DoF in rotation of
the end-effector platform. Since the introduction of the RiceWrist, several other exoskeleton research
prototypes have adopted the 3-RPS architecture (Fan and Yin, 2009; Nurahmi et al., 2017). The ankle
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exoskeleton Anklebot (Roy et al., 2009) uses a 2-SPS-1S
(spherical-prismatic-spherical, spherical) manipulator in
conjunction with the ankle joint to achieve semi-spherical
motion. The shoulder exoskeleton BONES (Klein et al., 2010)
uses a RRPS (revolute-revolute-prismatic-spherical) manipulator
to achieve spherical motion. Because all of these architectures,
along with the previously mentioned 3-SPS, 3-RRR and 3-UPU,
generate spherical motion through parallel actuation, they can
further be categorized as spherical parallel manipulators.

Spherical parallel manipulators (SPMs) are the most
popular choice for exoskeleton applications, primarily
because they offer a greater workspace than parallel
architectures with a high degree of actuation, like the
Stewart-Gough Platform (Stewart, 1965). This is a result of
SPMs typically having two to three actuated substructures
instead of the four, five or six of typical of higher DoF
parallel manipulators. This means that SPMs have less
mechanical interference between substructures. However,
fewer active DoF also means that SPMs typically have lower
stiffness performance than higher active DoF parallel
manipulators (Gosselin and Angeles, 1989; Jiang and
Gosselin, 2009; Walter et al., 2009). This can be
problematic, particularly for augmentative exoskeleton
systems that require high rigidity.

In order to improve the workspace/stiffness tradeoff of SPMs,
the authors introduced a new type of SPM architecture (Hunt
et al., 2017). The architecture utilizes a new design method that
the authors refer to as modular motion coupling (MMC). The
method involves coupling multiple DoF of each actuated
substructure in order to maintain a high level of actuation
while still maintaining a relatively low number of
substructures. The authors developed a shoulder exoskeleton
prototype that utilized this new architecture and performed a
stiffness analysis on it (Hunt et al., 2018). Many approaches to
analyzing the stiffness of parallel manipulators have been
proposed over the years. One popular method utilizes the
Jacobian matrix to calculate the stiffness matrix (Gosselin,
1990). While this method provides a reasonable
approximation of stiffness, it does not take into account
linkage flexibility, which is critical for an accurate end-effector
stiffness estimate. Another method utilizes strain energy to
develop a model of stiffness (Yan et al., 2016). While
promising, this strain energy method is quite new and
therefore less proven than other solutions. Additional methods
include a lumped parameter approach (Pashkevich et al., 2009)
and a more traditional FEA approach (El-Khasawneh and
Ferreira, 1999). After considering each of these, the authors
opted for a different method that utilized matrix structural
analysis techniques that have been used extensively in civil
engineering and have been proven to provide accurate
estimates of end-effector stiffness for parallel manipulators
with both passive and active DoF and flexible linkages
(Deblaise et al., 2006). The results of the stiffness analysis
identified some non-homogeneous stiffness behavior for
certain end-effector orientations of the MMC design. This was
determined to be a result of each substructure not having an
actuated roll DoF. In addition, the MMC architecture was non-

backdrivable, which limited its number of practical applications.
Having identified these limitations, the authors developed a
second-generation SPM that resolved these issues (Hunt and
Lee, 2018; Hunt and Lee, 2019).

The second-generation SPM developed by the authors
utilized a system of 4-bar (4B) mechanisms to rotate a
mobile platform about a center point. The advantage of this
new 4B-SPM design is that the 4-bar system achieves similar
arc motion to the previous design while utilizing a far more
simplistic construction and maintaining back-drivability.
Furthermore, the 4B-SPM utilizes three additional motors
to actuate the roll DoF of each substructure, eliminating the
primary issues of the MMC design.

An additional property of the 4B-SPM architecture is
flexibility of actuator placement. The three substructures
that comprise the device can be placed in any position
about a center point. Placement is critical, as the stiffness of
the 4B-SPM will be highly dependent on the configuration
chosen. Therefore, a stiffness model with substructure
placement as an input and end effector stiffness as an
output would be useful for achieving desired dynamic
behavior. Several examples of this include:

(1) Maximizing stiffness for applications such as lifting or crush
protection.

(2) Maximizing compliance for applications requiring a high
degree of unpredictable human-robot interaction or collision
protection.

(3) Designing custom non-homogeneous stiffness ellipsoids for
applications that may require non-homogeneous dynamic
behavior.

With a stiffness model, the 4B-SPM could have widespread
application for exoskeleton devices, as it has been shown to 1)
interface well the shoulder, hip, wrist and ankle, 2) not require
any complex mechanical components, 3) have very flexible
actuator placement, and 4) not require the human joint for a
singular kinematic solution (Hunt and Lee, 2018). For this reason,
a 4B-SPM stiffness model is developed and presented in this
work. It should be noted that, as previously mentioned, the
authors have developed stiffness models for past parallel
architectures. However, the ability of the 4B-SPM to interface
well with different biological joints, along with its economic
design, makes it a major improvement over past parallel
architectures development by the authors. Therefore, a
separate stiffness analysis of this architecture is justified as it
would offer other researchers and members of the robotics
community a complete and flexible parallel actuated solution
that could be customized to fit many different exoskeleton design
requirements.

The rest of this paper presents the steps taken to optimize
the rigid or compliant behavior of the 4B-SPM for a given
workspace. The sections are organized as follows: Section 2
includes 1) a brief overview of the of the 4B-SPM architecture,
2) the model used to characterize stiffness, 3) the experimental
setup to validate the stiffness model, and 4) the optimization
techniques used to maximize the rigid, compliant or
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nonhomogeneous stiffness behavior of the 4B-SPM. Section 3
details 1) the results of the stiffness model validation
experiment, 2) the optimal actuator placement for
maximum rigid, compliant or nonhomogeneous stiffness
behavior of a 4B-SPM shoulder exoskeleton embodiment,
and 3) the maximum rigid stiffness of a 4B-SPM hip
exoskeleton embodiment. Finally, Section 4 concludes the
paper with a discussion and summary of the contribution.

2 METHODS

4B-Spherical Parallel Manipulator Design
Overview
The previously developed 4B-SPM architecture is presented in
Figure 1 (Hunt and Lee, 2018). The 4B-SPM uses three
parallelogram 4-bar substructures. Each substructure has
two actuated DoF: pitch and roll. The roll DoF axis of each
substructure intersects with the others at a singular point
which represents the virtual center of a spherical workspace.
The top linkage in each 4-bar substructure is extended to reach
a mobile platform that moves tangential to the spherical
workspace. Each top linkage is coupled to the mobile
platform using a spherical joint. Shown in Figure 2 are four
different embodiments of the 4B-SPM architecture that the
authors have developed forward and inverse kinematic models
for (Hunt and Lee, 2018). In preparation for the dynamic
analysis performed in this work, the authors developed a
shoulder exoskeleton prototype of the 4B-SPM architecture
(Hunt and Lee, 2019). This prototype is shown in Figure 3. A

video of the shoulder exoskeleton is included as an attachment
to this work.

4B-Spherical Parallel Manipulator Stiffness
Model
For the purpose of determining end effector stiffness of the 4B-
SPM for different substructure configurations, an analytical
model was created. The model is based off of a matrix
structural analysis method commonly used for calculating
stiffness of complex truss networks typically found in bridges.
The concept of applying this method to parallel manipulators was
first introduced by Dominique Debase. For brevity, the reader will
be referred back to Debase’s prior work for some of the more
derivative or expansive steps required in the development of this
model. With the model, it is possible to generate the end effector
rotational stiffness ellipsoids that will govern how the 4B-SPM
responds to externally applied torques. θkθkθk.

To start, each actuated substructure k (k � 1, 2, 3) is
represented by a nodal system that corresponds to
characteristic points. Shown in Figure 4 are the node
locations for each substructure. It should be noted that a
simplification has been made to the nodal diagram with
regards to the 4-bar mechanism. In the prototype shown
in Figure 3, there are actually four parallel vertical bars
connecting the top and bottom linkage of the 4-bar
mechanism, whereas the nodal diagram shown in Figure 4
reduces this down to two. This is done to simplify the analysis
and is justified by the fact that only one of the four parallel
vertical bars is actually connected to the servo motor and

FIGURE 1 | 4-Bar Spherical Parallel Manipulator (4B-SPM) architecture. The 4B-SPM uses three parallelogram 4-bar substructures. Each substructure has two
actuated DoF: pitch and roll. The roll DoF axis of each substructure intersects with the others at a singular point which represents the virtual center of a spherical
workspace. The top linkage in each 4-bar substructure is extended to reach a mobile platform that moves tangential to the spherical workspace. Each top linkage is
coupled to the mobile platform using a spherical joint (Hunt et al., 2017).
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therefore grounded, similar to Figure 4. Thus, pitch and roll
stiffness of the substructure will not be affected by this
simplification. The yaw may be slightly affected, although
it is not considered to be of the same contributing magnitude
to the overall stiffness model as pitch and roll. Nevertheless,
to mitigate this error, the authors make an adjustment to the
geometric properties of the two vertical bars within the model
to more accurately reflect the actual prototype.

The nodes shown in Figure 4 are coupled by either a flexible
beam or passive revolute joint. Each beam n is fixed at its ends
by one or two nodes, depending on if the beam is considered

rigidly fixed at one end. Therefore, each beam is represented by
either a 6 × 6 or the 12 × 12 beam stiffness matrix Kn,k as
defined in Euler–Bernoulli beam theory. Each of these beam
stiffness matrices must be oriented through multiplication of
matrix Pn,k comprised of rotational submatrices Rn,k along its
diagonal. The rotated beam stiffness matrix K′n,k can be
expressed as:

K ’n,k � Pn,k
− 1Kn,kPn,k (1)

Where rotation matrix Pn,k can be determined by:

FIGURE 2 | Four embodiments of the 4B-SPM architecture for which the authors have solved the kinematics for include: ankle, shoulder, wrist and hip
exoskeletons (Hunt et al., 2017).
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Pn,k � ⎡⎢⎢⎢⎢⎢⎣Rn,k 0 /
0 Rn,k /
« « 1

⎤⎥⎥⎥⎥⎥⎦

The n number of rotated beam stiffness matricesK ’n,k can then be
assemble into a singular substructure stiffness matrix KT,k. This
assembly can be done using recognized stiffness matrix assembly
methods.

The substructure stiffness matrix KT,k represents substructure
stiffness before the addition of passive joints shown in Figure 4.

Each passive joint will be defined by a kinematic relationship
matrix An,k, which can be expressed as:

An,k � [ I3x3 03x3
02x3 rn,k

] (2)

Where rn,k is comprised of the rotation matrix vectors orthogonal
to the rotation axis unit vector of the passive joint. One of these
rotation matrix vectors should also be parallel to the adjacent
beam. The An,k matrices can then be assembled into a singular
substructure kinematic matrix AT ,k, similar toKT ,k. The
kinematically adjusted substructure stiffness matrix, with the
inclusion of passive joints, is derived using the minimum total
potential energy principle (Deblaise et al., 2006). It can be
expressed as:

KG,k � [KT ,k AT ,k
T

AT ,k 0
] (3)

At this point, it is necessary to permutated KG,k in order to move
the last node submatrix to the end of the KG,k so that it can be
redefined as the endpoint substructure stiffness matrix Keq,k.

In order to determine the global stiffness of the 4B-SPM
architecture, the substructure end point stiffness matrices
Keq,k�1,2,3 must be assembled to the end effector node 7
shown in Figure 5. The shoulder plate that connects
Keq,k�1,2,3 is considered rigid and therefore cannot be modeled
using Euler–Bernoulli beam theory. Instead, it will be modeled as
series of rigid beams with infinite stiffness. This rigid beammodel
will be defined by the kinematic relationship matrix Bn, which can
be expressed as:

Bn � [ 03x3 I3x3
I3x3 L̂Wn

] (4)

Where L̂Wn is the symmetric skew matrix defined by the rigid
beam direction vectorWn � [Lx Ly Lz]nT . With the kinematic

FIGURE 3 | 4B-SPM shoulder exoskeleton prototype mounted to a stationary platform with a human subject in the seated position. The subject is coupled to the
device through the use of an upper arm cuff. To maintain good contact between the subject and device, a blood pressure cuff is used at the contact point. The pitch, roll
and yaw axes are represented by the orthogonal red, green and blue axes, respectively.

FIGURE 4 | (Top) 4-bar substructure equivalent nodal diagram
(Bottom) shoulder plate end effector equivalent nodal diagram.
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relationship matrix Bn defined, the kinematic relation matrix AT

of the shoulder plate can be constructed in a similar manner to
AT ,k. The shoulder plate stiffness matrix KT . Can also be
constructed in a similar to KT ,k. The kinematically adjusted
shoulder plate stiffness matrix, with the inclusion of passive
joints and rigid beams, is once again derived using the
minimum total potential energy principle:

Keq,T � [KT AT
T

AT 0
] (5)

Similar to KG,k, it is necessary to permutated Keq,T in order to
move the last node submatrix to the end so that it can be redefined
as the 6 × 6 end-effector stiffness matrixKee, which represents the
stiffness at node 7 in Figure 4.

The end-effector stiffness matrix Kee can be visualized by
plotting its translational and rotational stiffness ellipsoids. As
defined in the work of Mussa-Ivaldi, these ellipsoids are created

by first decomposing Kee into its symmetric K s and an
antisymmetric Ka component. Assume that Kee is defined by
the following four submatrices:

K ee � [Kxx Kxy

Kyx Kyy
] (6)

Then K s and Ka can be written as:

K s �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kxx
Kxy + Kyx

2
Kyx + Kxy

2
Kyy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Ka �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
Kxy − Kyx

2
Kyx − Kxy

2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

whereKee � K s + Ka. The first three eigenvalues and eigenvectors
of K s represent the direction and magnitude of the three pairwise
perpendicular axes of symmetry for the translational stiffness
matrices. The last three correspond to the perpendicular axes of
symmetry of the rotational stiffness ellipsoid.

Stiffness Model Testing
An experiment was performed to test the validity of the stiffness
model through a comparison of the theoretical 4B-SPM stiffness
to that of the prototype. The shoulder exoskeleton was oriented at
90° flexion and coupled to one end of a 6-axis force/torque sensor
(Delta IP65, ATI, NC). To provide an accurate displacement of
the load cell, a 7-DoF research robotic arm (LBR iiwa R820,
KUKA, Germany) was connected to the other end of the sensor.
This robot was chosen for its ability to perform these sensitive
experiments. In addition to a rated payload that exceeds to forces
exerted during these tests, the device has highly repeatable
position control (±0.015 mm), which is necessary for accurate
stiffness estimates (KUKA Robot Group, 2015). The 7-DoF
robotic arm was in turn bolted to a steel structural support
column. The experimental setup is shown in Figure 6.

The roll (ψ), pitch (θ) and yaw (ϕ) angles of the shoulder
exoskeleton were perturbed ±3° by the 7-DoF robotic arm. A
sinusoidal perturbation profile commanded over 3,000 ms was
used. The corresponding forces were recorded by the 6-axis load
cell at 1 kHz. All the collected measurements were filtered using a
zero-phase 2nd order Butterworth filter with a 20 Hz cutoff
frequency. With measurements of corresponding displacement
Δθ and force F, it is possible to calculate the stiffness k of the
prototype using Fθ � kΔθ. Peak displacement and the
corresponding force were used for calculating stiffness. It
should be noted that the theoretical stiffness model is a
function of the kinematic relationship matrix AT and stiffness
matrix KT . These matrices are sensitive to change, so if it were
incorrect, then significant differences from the theoretical
stiffness model and prototype would be expected.

For the simulation, all flexible beams were modeled as 1,045
carbon steel, except for the top linkage that was modeled as 2024
aluminum. This is representative of the materials used for the

FIGURE 5 | (A) Shown at top is the generalized maximum stiffness
configuration for the 4B-SPM shoulder exoskeleton substructures along with
point clouds of the best solutions found throughout the workspace. Shown at
bottom are projections of the generalized maximum stiffness ellipsoid.
(B) Shown at top is the generalized minimum stiffness configuration for the
4B-SPM substructures along with point clouds of the best solutions found
throughout the workspace. Shown at bottom are projections of the
generalized minimum stiffness ellipsoid. (C) Shown at top is the generalized
maximum desired nonhomogeneous stiffness configuration for the 4B-SPM
substructures along with point clouds of the best solutions found throughout
the workspace. Shown at bottom are projections of the generalized maximum
nonhomogeneous stiffness ellipsoid. For all three figures, the origin of each
frame is at the center-of-rotation of the human shoulder.
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prototype. All critical dimensions used in the simulation match
those of the prototype. The only exception to this was the flexible
beam connecting nodes 4 and 5 of the 4-bar mechanism shown in
Figure 4. For the reasons mentioned in the beginning of this
Section, the cross-sectional area of this beamwas doubled tomore
accurately reflect the duel beam design used in the prototype.

Stiffness Optimization
In order to maximize overall rigidity, compliance, or
nonhomogeneous stiffness behavior for a given workspace,

the placement of each substructure (i.e., XYZ mounting
locations of each actuator) needs to be optimized. There
are a couple of parameters applied to this optimization.
First, solutions for each substructure location must be
bounded to a practical region were mechanical interference
between robot-robot and human-robot cannot occur. After
considering the geometry of the human model shown in
Figure 4 and the approximate workspace of the human
shoulder, the regions [−0.3< xt < 0.1, −0.4< yt < 0,
0< zt < 0.3] m [−0.3< xm < 0.1, −0.4< ym < 0, −0.3< zm < 0.1]

FIGURE 6 | Experimental setup for evaluating the 4B-SPM prototype stiffness oriented at 90° flexion. (A) 4B-SPM Shoulder exoskeleton (B) 7-DoF robotic arm
(LBR iiwa R820, KUKA, Germany) (C) 6-axis load cell (Delta IP65, ATI, NC). The shoulder exoskeleton was mechanically coupled to the load cell, which was in turn
coupled to the 7-DoF robotic arm. The roll, pitch and yaw angles of the shoulder exoskeleton about its center-of-rotation O are represented ψ, θ and ϕ, respectively.
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m, and [−0.4< xb < 0.1, −0.4< yb < 0, −0.4< zb < − 0.2] m were
selected for the top, middle and bottom substructure,
respectively, As is convention, the coordinates x-y, y-z and
z-x used here represent the transverse, sagittal and coronal
planes, respectively. Second, in order to optimize the rigidity
or compliance of the 4B-SPM, the stiffness ellipsoid volume
equation O � (4π/3)kakbkc was chosen as the objective
function to maximize or minimize, here ka, kb and kc are
the orthogonal axes of the ellipsoid. These two parameters
make the problem a bounded nonlinear multi-objective (roll,
pitch and yaw axes) optimization problem. Because of the
multiple parameters, a genetic algorithm was chosen as the
optimization method for determining substructure
placement. The genetic algorithm attempts to minimize the
objective function, so in order to maximize rigidity and
compliance, O � −(4π/3)kakbkc and O � (4π/3)kakbkc were
used, respectively. For maximizing nonhomogeneous
stiffness, the objective function O � −(ka − kb − kc) was
used, which drives ka →∞, kb → 0 and kc → 0 as the
objective function is minimized. In this case, maximizing
ka and minimizing kb and kc is the arbitrarily chosen
nonhomogeneous behavior. Alternatively, kb or kc could
also be maximized if desired.

For executing the genetic algorithm, Matlab’s Optimization
Toolbox (Mathworks, MA, USA) was used. The genetic

algorithm function (ga) was given the boundary conditions
and objective functions stated, along with the stiffness model
with shoulder plate orientation as an input and the stiffness
ellipsoid as an output. The shoulder plate orientation was
varied in 10° along the pitch and yaw Euler angles and bounded
by the octant (+x, +y, −z). At each orientation, the genetic
algorithm was executed and the optimal substructure
mounting points were found. The approach generates a
point cloud of best solutions for each substructure
mounting location. The mean of these point clouds is taken
as the generalized best solution.

In addition to maximum, minimum and nonhomogeneous
stiffness models developed for the shoulder, a fourth model is
developed for the hip joint. This is done in an effort to
demonstrate the versatility of the 4B-SPM architecture and the
stiffness analysis used. In this fourth model, the maximum
stiffness ellipsoid is determined along with the corresponding
mounting point positions. This model was developed in the same
manner as the shoulder model. Eachmounting point solution was
restricted to the following geometric volumes in order to produce
a viable solution that interfaces well with the hip [−0.5< xt < − .2,
−0.1< yt < 0.2, 0.2< zt < 0.4] m [−0.2< xm < 0.2, −0.3< ym < −
0.1, 0.2< zm < 0.4] m, and [0.1< xb < 0.4, −0.1< yb < 0.1,
0.2< zb < 0.4] m, The workspace was bounded by the following
three thigh orientations: 90° flexion, 45° adduction and at rest.

FIGURE 7 | Orientation of the shoulder exoskeleton along with projections of the associated theoretical rotational stiffness ellipsoid (Nm/rad) shown in black. The
roll, pitch and yaw stiffness measurements are shown in red for contrast. The origin of the frame is at the center-of-rotation of the human shoulder.
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3 RESULTS

Stiffness Model Testing
A comparison of the theoretical and mean measured stiffness is
shown in Figure 7 for the shoulder plate orientated at 90° flexion.
The mean error along roll-pitch-yaw is 11.8% with a standard
deviation of 8.4. While error does exist, it should be noted that the
size and shape of the theoretical model demonstrates a reasonable
approximation of stiffness based on the global axis
measurements taken.

Several causes for the error have been identified by the authors:
1) Imperfect intersection of the roll axes for the three
substructures. This misalignment could produce increased
resistance to applied torque that may contribute to differing
stiffness results. This could be corrected with higher
manufacturing tolerances. 2) Backlash in the servo motors.
This could potentially cause play in the shoulder plate that
could affect the stiffness measurements. It should be noted
that efforts to minimize backlash were taken by applying
minor tension of the three substructures against the shoulder
plate equal to the measured backlash of the servos. This
minimizes backlash without changing the kinematic solution.
3) Imperfect modeling of the prototype’s geometric and material
properties. Measurements taken from the prototype and
materials utilized vary within tolerance. These tolerances are
not accounted for by the theoretical model and are therefore a
potential source for minor error. 4) Simplification 4-bar
mechanism nodal diagram, as described in Section 2

Stiffness Optimization
For the octant workspace bounded by the +x, +y, and −z axes
defined in Figure 5, the 4B-SPM substructure configurations to
achieve optimal rigid, compliant and nonhomogeneous stiffness
behavior were found. The optimal configurations are shown in
Figure 5, along with a point cloud of best solutions for different
shoulder plate orientations. These solutions were found at 10°

increments along the pitch and yaw Euler angles. The optimal
substructure configuration for each result is taken to be the mean
location of each substructure point cloud. For optimal rigidity, the
virtual center of each point cloud for the top, middle and bottom
substructure, respectively, are At � [−0.23, −0.16, 0.27]T mAm �
[−0.27, −0.21, 0.02]T m and Ab �[−0.21, −0.12, −0.31]T m. For
optimal compliance, the virtual center of each point cloud for the
top, middle and bottom substructure, respectively, are At � [−0.25,
−0.16, 0.11]T mAm � [−0.29, −0.23, 0.01]T m and Ab �[−0.28,
−0.14, −0.24]T m. For the optimal nonhomogeneous stiffness
behavior, the virtual center of each point cloud for the top,
middle and bottom substructure, respectively, are At � [−0.29,
−0.24, 0.29]T m Am �[−0.29, −0.24, −0.10]T m and Ab �[−0.21,
−0.14, −0.26]T m. The generalized rotational stiffness ellipsoid that
represents the average stiffness across the entire workspace for each
solution is shown in Figure 5 as well. Included with them is the
standard deviation for each solution.

The results shown in Figure 5 help identify a few interesting
characteristics of the 4B-SPM. Firstly, a comparison between
maximum rigidity and compliance suggests that stiffness is
largely dependent on the distances between substructures

mounts. This is somewhat intuitive, although the extent of
dependency was not clear until now. Another interesting
feature identified by these findings is how the rigid and

FIGURE 8 | Shown at top is the generalized maximum stiffness
configuration for the 4B-SPM hip exoskeleton substructures along with point
clouds of the best solutions found throughout the workspace. Shown at
bottom are projections of the generalized maximum stiffness ellipsoid.
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compliant results show fairly symmetric solutions corresponding
to relatively homogeneous stiffness ellipsoids. In contrast, the
nonhomogeneous stiffness results shown in Figure 5C
correspond to a highly nonsymmetrical substructure mounting
point solution. These observations would suggest that symmetry
of the 4B-SPM affects its degree of homogeneous stiffness
behavior.

The results shown in Figure 5 also provide the opportunity to
compare the stiffness of this new 4B-SPM architecture to that of
the previous motion-coupled SPM architecture developed by the
authors for similar purposes and discussed in the Introduction. In
prior work the authors analyzed the rotational stiffness of this
motion-coupled design across the same workspace used in this
paper for the 4B-SPM (Hunt et al., 2018). For a maximum
stiffness configuration, the motion-coupled design had a mean
stiffness ellipsoid volume of 6.22 · 106(Nm/rad)3. In comparison,
the 4B-SPM has a mean stiffness ellipsoid volume of 3.24 ·
107(Nm/rad)3 for the maximum stiffness configuration. This
increase in stiffness is likely due to 1) the addition of the three
revolute actuators that control the roll of each 4B-SPM
substructure and 2) the simplified 4-bar design that possess
fewer failure modes. Other factors, such as part materials and
geometry may also contribute to the increased stiffness.

In addition to the findings presented for the 4B-SPM shoulder
exoskeleton, the maximum stiffness results of a theoretical hip
exoskeleton are also presented. These results are shown in
Figure 8. For optimal rigidity, the virtual center of each point
cloud from left (red) to right (blue) are At � [−0.37, 0.11, 0.38]T
mAm � [−0.07, −0.18, 0.39]T m and Ab �[0.22, 0.34, 0.4]T m,
respectively. As previously mentioned, this second embodiment
of the 4B-SPM architecture is included here in order to
demonstrate the versatility of the 4B-SPM architecture and the
stiffness analysis used. It should be noted that the choice of a hip
exoskeleton was arbitrary. This second embodiment could have just
as easily been a 4B-SPM exoskeleton wrist or ankle alternative.

4 DISCUSSION

The work performed for this paper was motivated by the need for
exoskeleton architectures that are capable of matching the
workspace of a user while exhibiting desired stiffness
characteristics. Because of limitations in the stiffness or
workspace of typical serial and parallel actuated architectures,
the authors developed the new 4B-SPM architecture in prior work
that was specifically designed for exoskeleton applications
involving complex biological joints like the shoulder, hip, wrist
and ankle. Demonstrated in the form of a shoulder exoskeleton,
the authors performed a dynamic analysis on the 4B-SPM in
order to help validate the derived stiffness model. The model was
then used to optimize the 4B-SPM configuration in order to
achieve rigid, compliant and nonhomogeneous stiffness behavior.

The results of this paper detail a theoretical stiffness model for
the 4B-SPM presented, along with an experiment to validate the
model. An error between the prototype stiffness and theoretical
stiffness of 11.8% with a standard deviation of 8.4 was reported.
Despite some error, the model still proved to be a reasonable

approximation of stiffness. Possible causes for the error are
discussed in Section 3.1

The stiffness model was used in conjunction with a bounded
nonlinear multi-objective optimization method in order determine
the optimal placement of the three actuated substructures to achieve
certain dynamic behavior within a given workspace. The workspace
was chosen to be one octant of a sphere defined by the three arm
orientations: 90° flexion, 90° abduction, and at rest. For this
workspace, the actuator placements for optimal rigid, compliant
and certain nonhomogeneous stiffness behavior were demonstrated.

The main contribution of this work is providing researchers and
members of the robotics community who chose to use the 4B-SPM
architecture a means of adjusting its dynamic performance to fit
many different exoskeleton applications. To reiterate, there aremany
reasons to use the 4B-SPM, the primary ones being: 1) interfaces well
the shoulder, hip, wrist and ankle; 2) does not require any complex
mechanical components; 3) has very flexible actuator placement; and
4) does not require the human joint for a singular kinematic solution.
With the addition of the presented stiffness model, future wearable
4B-SPM devices could be optimized for a variety of tasks and
applications, such as lifting, jumping, running, crush protection
and impact absorption.
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