AUTHOR=Perry Joel C. , Brower Jacob R. , Carne Robert H. R. , Bogert Melissa A. TITLE=3D Scanning of the Forearm for Orthosis and HMI Applications JOURNAL=Frontiers in Robotics and AI VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.576783 DOI=10.3389/frobt.2021.576783 ISSN=2296-9144 ABSTRACT=
The rise of rehabilitation robotics has ignited a global investigation into the human machine interface (HMI) between device and user. Previous research on wearable robotics has primarily focused on robotic kinematics and controls but rarely on the actual design of the physical HMI (pHMI). This paper presents a data-driven statistical forearm surface model for designing a forearm orthosis in exoskeleton applications. The forearms of 6 subjects were 3D scanned in a custom-built jig to capture data in extreme pronation and supination poses, creating 3D point clouds of the forearm surface. Resulting data was characterized into a series of ellipses from 20 to 100% of the forearm length. Key ellipse parameters in the model include: normalized major and minor axis length, normalized center point location, tilt angle, and circularity ratio. Single-subject (SS) ellipse parameters were normalized with respect to forearm radiale-stylion (RS) length and circumference and then averaged over the 6 subjects. Averaged parameter profiles were fit with 3rd-order polynomials to create combined-subjects (CS) elliptical models of the forearm. CS models were created in the jig as-is (CS1) and after alignment to ellipse centers at 20 and 100% of the forearm length (CS2). Normalized curve fits of ellipse major and minor axes in model CS2 achieve