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The potential of large elastic deformations in control applications, e.g., robotic
manipulation, is not yet fully exploited, especially in dynamic contexts. Mainly because
essential geometrically exact continuum models are necessary to express these arbitrarily
large deformation dynamics, they typically result in a set of nonlinear, coupled, partial
differential equations that are unsuited for control applications. Due to this lack of
appropriate models, current approaches that try to exploit elastic properties are limited
to either small deflection assumptions or quasistatic considerations only. To promote
further exploration of this exciting research field of large elastic deflection control, we
propose a geometrically exact, but yet concise a beam model for a planar, shear-, and
torsion-free case without elongation. The model is derived by reducing the general
geometrically exact the 3D Simo–Reissner beam model to this special case, where the
assumption of inextensibility allows expressing the couple of planar Cartesian parameters
in terms of the curve tangent angle of the beam center line alone. We further elaborate on
how the necessary coupling between position-related boundary conditions (i.e., clamped
and hinged ends) and the tangent angle parametrization of the beam model can be
incorporated in a finite element method formulation and verify all derived expressions by
comparison to analytic initial value solutions and an energy analysis of a dynamic simulation
result. The presented beam model opens the possibility of designing online feedback
control structures for accessing the full potential that elasticity in planar beam dynamics
has to offer.

Keywords: Kirchhoff–Love beam, elastic deformation, large deformation, planar deflection, geometrically exact,
PDE, FEM

1 INTRODUCTION

Dynamic robotic manipulation of highly deformable objects is still a rarely considered field in
literature due to a lack of appropriate dynamic models. Elastic objects in robotic manipulation are
usually either considered only quasistatically (Bretl and McCarthy, 2014) or dynamically under the
assumption of small deflections which in return results in applications where elasticity is often
treated as an undesired property that needs to be avoided or compensated (Tavasoli, 2015). There are
some approaches that suggest exploiting elasticity instead, e.g., in terms of safety (Bicchi and Tonietti,
2004; Haddadin et al., 2009), payload estimation (Malzahn et al., 2015), or energy storage
(Tantanawat and Kota, 2007; Haddadin et al., 2011). Some authors exploit elasticity also for
quasistatic manipulation (McCarragher, 2000) or even to design new strategies for dynamic
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manipulation, e.g., Pekarovskiy et al. (2014) or Pham and Pham
(2017). Nonetheless, we propose that elastic dynamics have even
more potential that can be exploited when large deflections are
considered.

Models that allow taking advantage of such arbitrarily large
deformations need to fulfill two main criteria. They have to

1. describe the dynamics geometrically exact, i.e., independently
of the magnitude of deformation

2. be concise and simple enough to allow the design of online
feedback control

However, such models are not yet available in literature. In this
study, we start filling this gap for the case of a planar elastic beam
undergoing pure bending, by proposing a single-dimensional
dynamic continuum model.

1.1 Related Work
Large deflection dynamics are typically treated with one of two
approaches—discretized approximations using a finite element
method (FEM) or continuum models expressed as partial
differential equations (PDEs). The FEM-based descriptions, for
which recent literature such as the study of Duriez (2013) reaches
real-time capable control, are limited to quasistatic deformable
structures, as the computational cost of FEM descriptions for true
dynamic large deformation online feedback control is still out of
reach. Whereas, the geometrically exact continuummodels result
in multivariate and highly coupled nonlinear PDE systems, and
control approaches are thus limited to oscillation damping (Ito,
2001; Hegarty and Taylor, 2012). Unlike existing control methods
for linear beam models (Krstic et al., 2006a; Krstic et al., 2006b),
the literature body on theory of nonlinear PDE systems is still too
limited in its applicability for the complex expressions arising in
these mechanical system models (Padhi and Ali, 2009). From a
control point of view, however, it is well known that continuum
models, unlike discretized approximations, do not face so called
spillover phenomena that can lead to instabilities due to
unmodeled high frequency dynamics (Meirovitch and Baruh,
1983). For these reasons, as a first contribution toward filling the
discussed gap in literature, this work proposes a geometrically
exact model of planar Euler–Bernoulli beam dynamics for
arbitrarily large deflections that admit a surprisingly concise
PDE formulation.

Although there are special purpose models for large deflection
models, such as bullwhip dynamics by Bernstein et al. (1958) and
McMillen and Goriely (2003) or dynamics of a fly fishing line by
Spolek (1986), we are interested in more general beam dynamics
that admit rope and cable dynamics as a special case of very low
elastic stiffness. A vast literature body exists on 1D analytic beam
theories alone. Therefore, because of the considerable
computational advantage of 1D beam theories over 3D
continuum mechanics theories, the latter will not be
considered in this concise literature review. Starting with the
first mathematical treatment of static elasticity by Galileo already
in 1638, Hooke’s treatise of linear elasticity is followed in 1678.
The first precise definition of the elastica (a thin strip of elastic
material) problem was carried out by Jakob Bernoulli (1691), and

he published its first solution in Bernoulli (1694). His nephew
Daniel Bernoulli (1742) did not himself solve the problem, but he
suggested Euler the use of variational analysis, who delivers a
closed-form solution of the elastica in the study by Euler (1744).
A more detailed and insightful mathematical historical overview
of the elastica can be found in the study by Levien (2008). While
Euler’s early work already predicts slender beam deformations
with astounding precision, many authors built on this work to
include further effects to account for more general conditions as
well as geometries. It is said that Rayleigh (1877) added rotary
inertia effects, and Timoshenko (1921) further enhanced the
theory to account for shear effects. However, Elishakoff (2020)
discusses original authors and naming of linear beam theories.
He, e.g., mentioned that Bresse (1859) already included rotary
inertia effects before Rayleigh, though the works were developed
independently. Furthermore, a beam theory including shear
effects was originally published in Timoshenko (1916), an
earlier book in Russian language, where Timoshenko mentions
to have developed the theory together with P. Ehrenfest.
Elishakoff, therefore, suggests the historically justifiable name
Bresse–Rayleigh–Timoshenko–Ehrenfest beam theory.

For large deflections, also referred to as finite strain,
geometrically nonlinear models are necessary. Kirchhoff
(1859) is a spatial generalization of the Euler–Bernoulli beam
and allows modeling of 3D deformations through bending and
torsion. The theory was later extended by Love (1892) to further
account for axial tensions and is referred to as Kirchhoff–Love
beam theory. Reissner (1972) added further measures to
Kirchhoff’s theory, accounting for shear deformations in
planar curves and later for space curves in Reissner (1981).
Simo (1985) enhanced Reissner’s work in terms of
approximations to what is nowadays known as Simo–Reissner
beam theory or geometrically exact beam theory. To complete the
overview, it is also worth mentioning that reduced versions of
these two well-known theories have been proposed that neglect
torsion modes, e.g., the study by Meier et al. (2015) for the
Kirchhoff–Love and Romero et al. (2014) for the Simo–Reissner
case. Meier et al. (2019) gave a more in-depth overview and
analysis of these nonlinear beam theories. Table 1 shows how
our proposed model fills the current literature gap of a concise
model for geometrically exact descriptions.

1.2 Contribution
The main contribution of this work is twofold. We provide

• the first single-dimensional, geometrically exact, dynamic
beam model, and

• a method for incorporating boundary conditions in a FEM
formulation, for cases where the FEM model has only
descriptive variables of higher-order derivatives than the
boundary condition itself

1.3 Outline
In Section 2, we derive the model via step-by-step reduction,
starting from the general Simo–Reissner beam theory,
extracting first the Kirchhoff–Love beam theory, followed
by special case assumptions — isotropic, torsion-free,
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inextensible, and planar bending. The translation into a FEM
description is explained in Section 3, including our proposal
for incorporating position-level boundary conditions into the
tangent angle PDE system. This FEM description is applied for
the simulation verification in Section 4. The work is concluded
in the final Section 5.

2 MODELING

This section outlines themodel derivation, starting from a general
3D theory. After reducing the model by gradually introducing
assumptions, we couple the Cartesian coordinates to achieve an
expression in a single PDE.

2.1 Nomenclature
This work follows the convention of using lowercase bold
variables for vectors and uppercase bold variables for
matrices. All nonbold variables are scalars. Furthermore,
subscript annotations are reserved for index notation of
multidimensional variables as well as expressing partial
derivatives, whereas superscript annotations are part of the
variable specification. Also, note that we omit explicit listing
of function parameters whenever it is clear from the context to
not unnecessarily clutter the notation. A list of the most
frequently used variables at the end of this work is given.

2.2 Model Reduction
The presented geometrically exact model for a planar
Euler–Bernoulli beam is found via reduction of the general
3D Simo–Reissner beam theory. We gradually introduce
further assumptions to simplify the dynamic governing
equations of the beam. Please note that we only define the
individual components of the equations once necessary to
keep the derivation clear and easy to follow. The resulting
model forms a special case of a planar Kirchhoff–Love beam
theory parametrized solely in the curve tangent angle, in an
analog to Euler’s elastica (Euler, 1744). A more in-detail
analysis and discussion of the general Simo–Reissner and
Kirchhoff–Love beam theories, including the special cases of
isotropic cross-sections and torsion-free formulations, can be
found in Meier et al. (2019).

General Simo–Reissner Beam Theory
The first theory that accounts for very general 3D beam
deformations including spatial bending, torsion, axial tension,
and shear deformation was published by Simo (1985). The
consideration of shear effects makes it an adequate theory for
thick rod dynamics. It is also been denoted by geometrically exact
beam theory because the description is consistent at the deformed
state regardless of the magnitude of displacements, rotations, and
strains, cf. Crisfield and Jelenić (1999). Simo himself also used the
term finite strain beam formulation.

The strong form of the Simo–Reissner beam theory, cf. Simo
(1985), is a system of six coupled PDEs and can be stated with the
equilibrium equations

(f internal)
l
+ f ext + f inertia � 0, (1a)(minternal)

l
+ (r)l × f internal +mext +minertia � 0, (1b)

where the internal force f internal andmoment vector f internal results
form internal stresses acting on the beam cross-section area at
point r of the beam center line. The quantities f ext and mext

account for externally imposed forces, and f intertia andmintertia are
the components due to inertia effects. The detailed constitutive
equations that relate f internal and minternal to the first
Piola–Kirchhoff stress tensor require an introduction into 3D
continuum mechanics and is omitted in this work. Instead, we
point the interested reader to related text books such as by Gurtin
(1982) and define the expressions only after reduction to the
specified special cases.

In the following, all objective deformation measures are
chosen to be work conjugated to the material stress resultants

TABLE 1 | Comparison of this work to the most commonly used beam theories. While the proposed model is limited to planar bending, it offers a geometrically exact
description in a single-dimensional equation.

Beam model PDEs Lateral
Bending

Rotary
Inertia

Shear
Deformation

Axial
Torsion

Axial
Tension

Geometrically exact Simo–Reissner Six Spatial ✓ ✓ (✓) ✓
Kirchhoff–Love Four Spatial 7 7 (✓) ✓
Kirchhoff Four Spatial 7 7 (✓) 7

Proposed model One Planar 7 7 7 7

Linearized Timoshenko Two Planar ✓ ✓ 7 7

Rayleigh One Planar ✓ 7 7 7

Euler–Bernoulli One Planar 7 7 7 7

FIGURE 1 | Illustration of the used variables to describe beam
deformation.
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in Eq. 1. We further assume a hyperelastic constitutive relation
between these kinetic and kinematic quantities.

Assumption: Vanishing Shear Strains (Kirchhoff–Love
Beam Theory)
Neglecting shear deformations and assuming that the cross-
section is always perpendicular to the center line of the beam,
the change in internal forces ( f internal)l can be split up into
a parallel component ‖( f internal)l and

⊥( f internal)l , a
component perpendicular to the center line. Furthermore,
the moment balance Eq. 1b reduces to the projection onto
the center line tangential base vector ĝ1, Figure 1 for an
illustration. The Kirchhoff–Love beam equations are thus
given with

‖(f internal)
l
+ ( (r)l���(r)l���22 × ((minternal)

l
+mext +minertia))

l︸︷︷︸
⊥( f internal)

l

+ f ext + f inertia � 0,

(2a)

ĝT1 ((minternal)
l
+mext +minertia) � 0, (2b)

where Eq. 2b is now a scalar expression, and the beam model is
thus reduced to 4 PDEs.

Assumption: Initially Straight and Isotropic
If now an initially straight beam with an isotropic cross-section is
assumed for the hyperelastic beam, the components of Eq. 2 are
given with

‖(f internal)
l
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (r)l���(r)l���22 ×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ EI(κ)l︸︷︷︸
(minternal)l

+mext +minertia
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l

+ f ext−ρA(r)tt︸︷︷︸
f inertia

� 0

(3a)

2GI(κ1)l +mext
1 − 2ρI(ω1)t � 0, (3b)

with the Young modulus E, inertia I, density ρ, cross-section area
A, and the curvature vector

κ :� (r)l × (r)ll���(r)l���22 . (4)

The components κ1, mext
1 , and ω1 in Eq. 3b relate to the

curvature, externally imposed moment, and angular velocity
along the tangential direction of the beam.

Assumption: Torsion-Free
Assuming pure bending and no torsional effects, the inertia
moment and the moment balance Eq. 3b vanish completely.
Moreover, only the perpendicular component of the external
moment affects the force balance equation

(EAϵĝ1)l︸︷︷︸
‖(f internal)l

+ ( (r)l���(r)l���22 × (EI(κ)l + ⊥mext))
l

+ f ext − ρA(r)tt � 0,

(5)

with the axial tension parameter ε :� ���(r)l���2 − 1, which considers
that the relation ��������zrundefzl

��������2 � 1, (6)

of the undeformed beam, does not in general hold for the
deformed case �������zrzl

�������2 ≠ 1, (7)

due to possible elongations in the beam structure.

Assumption: Inextensible Beam
If it is assumed that the beam does not undergo axial elongations,
the gradient Eq. 7 does always equals 1. Hence, the axial tension
parameter ϵ evaluates to

ε(l) ≡
�������zrzl

�������2 − 1 ≡ 0, (8a)

and thus, ‖( f internal)l vanishes. The beam model Eq. 5
consequently further simplifies to

((r)l × (EI((r)l × (r)ll)l + ⊥mext))
l
+ f ext − ρA(r)tt � 0. (8b)

However, unlike the previous assumptions that can be
incorporated implicitly with an adequate choice of
parametrization variables, it is in general difficult to find
such a set of variables that fulfill the inextensibility
constraint Eq. 8a by construction. A common practice to
enforce the equality constraint Eq. 8a on the simulation
result in a weak sense, i.e., in an integral form instead of
point-wise, is by means of extending the weak form of the
model Eq. 8b with a Lagrange multiplier potential, cf. Meier
et al. (2019).

The following assumption of pure planar bending,
however, does again permit a parametrization that fulfills
this constraint directly in the strong sense, i.e., for every point
along the beam.

Assumption: Pure Planar Bending
The last step in the model reduction is the restriction to pure planar
bending. For the remainder of this section, we will switch to a
component-wise notation in Cartesian coordinates. The beam
model from Eq. 8b reduces to two coupled PDEs and is fully
described by

⎡⎣ (y)l(EI((x)l(y)ll − (y)l(x)ll)l + ⊥mext
z )

−(x)l(EI((x)l(y)ll − (y)l(x)ll)l + ⊥mext
z ) ⎤⎦

l

+[ f extx

f exty
] − ρA[ x

y
]
tt

� 0, (9a)

and the additional inextensibility constraint���������[ (x)l(y)l ]
���������2 − 1 ≡ 0 (9b)

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 7 | Article 6094784

Huber et al. Concise Geometrically Exact Beam Model

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


because the third row of the vector equation Eq. 8b vanishes
for the purely planar problem. Thus, the remaining external
inputs are forces f ext in the xy-plane, as well as the external
moment ⊥mext

z is perpendicular to this plane.
With the curve tangent angle φ defined as the angle between

the tangent vector of the deformed beam center line ĝ1 and its
undeformed counterpart ê1, the beam curvature Eq. 4 can be
expressed as

κplanar :� ⎡⎢⎢⎢⎢⎢⎣ 0
0(φ)l

⎤⎥⎥⎥⎥⎥⎦, (10)

for the shear-free, planar, inextensible case. Furthermore, it
allows stating the geometric identities

(x)l � cos(φ), (11a)(y)l ≡ sin(φ). (11b)

The planar beam model Eq. 9 can thus be stated as

⎡⎣ sin(φ)(EI(φ)ll + ⊥mext
z )

−cos(φ)(EI(φ)ll + ⊥mext
z ) ⎤⎦

l

+ [ f extx

f exty
] − ρA[ x

y
]
tt

� 0, (12)

a beam model in a mixed form containing Cartesian
coordinates as well as the curve tangent angle as describing
variables. In the remainder of this Section, Eq. 12 is the
starting point to first develop the static case followed by the
general dynamic case, both entirely expressed in the curve
tangent angle.

2.2.1 Static Beam Model Expressed in the Curve
Tangent Angle
Only considering solutions in a static equilibrium, the Cartesian
acceleration terms in Eq. 12 vanish and

⎡⎣ sin(φ)(EI(φ)ll + ⊥mext
z )

−cos(φ)(EI(φ)ll + ⊥mext
z ) ⎤⎦

l

+ [ f extx

f exty
] � 0 (13)

remains. By computing all derivatives,

⎡⎣ cos(φ)(φ)l(EI(φ)ll + ⊥mext
z ) + sin(φ)(EI(φ)lll + (⊥mext

z )l)
sin(φ)(φ)l(EI(φ)ll + ⊥mext

z ) − cos(φ)(EI(φ)lll + (⊥mext
z )l) ⎤⎦

+[ f extx

f exty
] � 0, (14)

and rotating the equations from their Cartesian xy coordinate
system by φ around the z-axis, by premultiplying Eq. 14 with the
rotation matrix

Rz(φ) :� [ cos(φ) sin(φ)
−sin(φ) cos(φ) ], (15)

which allows extracting the components perpendicular ⊥ and
parallel ‖ to the beam center line

⎡⎣ (φ)l(EI(φ)ll + ⊥mext
z )

−(φ)l(EI(φ)lll + (⊥mext
z )l) ⎤⎦ + [ ‖f ext

⊥f ext
] � 0. (16)

The fact that no Cartesian xy parameter of the beam
description remains but is rather described in the curve
tangent angle cta alone means that the geometric identities Eq. 11
and the planar inextensibility constraint Eq. 9b are now implicitly
fulfilled by construction. No further treatment such as Lagrangian
multipliers are thus necessary, in contrast to the above beam models
(Eq. 8b and Eq. 9). In case of an absent external force f ext, the static
beam model Eq. 16 even admits a simple analytic solution. If a
nontrivial curvature (φ)l ≠ 0 is assumed, Eq. 16 reduces to

(φ)ll � − 1
EI

⊥mext
z , (17)

which can be integrated twice and yields a unique solution if
boundary conditions are applied.

2.2.2 Dynamic Beam Model Expressed in the Curve
Tangent Angle
To also fully state the dynamic planar beam model in terms of
the curve tangent angle, the Cartesian xy acceleration terms in
Eq. 12 remain to be expressed in terms of the curve tangent
angle φ. This is achieved by differentiating the system of
equations Eq. 12 w.r.t. the beam parameter l. Assuming no
buckling of the object, x and y have continuous derivatives, and
thus, Schwarz’s theorem allows changing the order of the
derivations. Applying the geometric identities (Eq. 11) now
also to the acceleration terms, leads to

[ sin(φ)(ϕ)ll−cos(φ)(ϕ)ll ]ll

+ [ f extx

f exty
]
l

− ρA[ cos(φ)
sin(φ) ]

tt

� 0, (18a)

with the auxiliary variable

(ϕ)ll :� EI(φ)ll + ⊥mext
z , (18b)

a PDE system entirely expressed in terms of the curve tangent
angle φ. As for the static case (Eq. 16), the geometric identities
fulfill the inextensibility constraint Eq. 9b by construction;
thus, no special consideration is necessary. Expanding all
partial derivatives and grouping the trigonometric terms,
Eq. 18a yields

⎡⎣ cos(φ)(2(φ)l(ϕ)lll + ρA(φ)2t ) − sin(φ)((φ)2l (ϕ)ll − (ϕ)llll − ρA(φ)tt) + (f extx )l
sin(φ)(2(φ)l(ϕ)lll + ρA(φ)2t ) + cos(φ)((φ)2l (ϕ)ll − (ϕ)llll − ρA(φ)tt) + (f extx )l ⎤⎦ � 0.

(19)

Similar to the static case, premultiplying the entire system with
the rotation matrix Rz(φ) from Eq. 15 again extracts the
components parallel and perpendicular to the beam center
line. The only acceleration term (φ)tt , however, appears solely
in the perpendicular direction

EI((φ)2l (φ)ll − (φ)llll) + ((φ)2l ⊥mext
z − (⊥mext

z )ll) + (⊥f ext)l
− ρA(φ)tt � 0, (20)

which in the case of no external inputs admits the very concise
strong form

(φ)tt � c((φ)2l (φ)ll − (φ)llll) with c :� EI
ρA

, (21)
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as a single PDE governing the beam dynamics in a single
parameter φ.

While this reduced model is relevant for PDE controller
development, it is not directly applicable for use in
simulations. We therefore present in the following section
a respective approximation with a system of ordinary
differential equations (ODEs), in terms of a FEM
formulation.

3 FEM FORMULATION

In this section, we outline the development of a FEM
simulation procedure, starting from the development of
the weak form of the beam model (Eq. 21), without
considering external forces. After transforming the
integrodifferential weak form into a system of nonlinear
ODEs of thee second order in time via a Bubnov–Galerkin
approximation, a finite element discretization leads to a
simulation procedure.

3.1 Weak Form of Large Deformation in the
Curve Tangent Angle
The weak form of Eq. 21 is found by multiplying the equation with
the test function δφ and integrate over the beam length l � [0, L]:

1
c

∫L

0
(φ)ttδφ dl � ∫L

0
(φ)2l (φ)llδφ dl − ∫L

0
(φ)llllδφ dl. (22)

A sequence of integrations by parts will lead to the final weak
form. In the first intermediate step,

∫L

0
(φ)2l (φ)ll dl � (φ)3l ∣∣∣∣∣∣∣∣L0 � ∫L

0
2(φ)2l (φ)ll dl

allows to solve the integral

∫L

0
(φ)2l (φ)ll dl � 1

3
(φ)3l ∣∣∣∣∣∣∣L0 .

Using this result, the terms on the right-hand side of Eq. 22
result in

∫L

0
((φ)2l (φ)ll)δφ dl � 1

3
(φ)3l δφ∣∣∣∣∣∣∣L0 − 1

3
∫L

0
(φ)3l (δφ)l dl (23a)

and

∫L

0
(φ)llllδφ dl � (φ)lllδφ∣∣∣∣∣∣∣∣L0 − ∫L

0
(φ)lll(δφ)l dl

� (φ)lllδφ∣∣∣∣∣∣∣∣L0 − (φ)ll(δφ)l∣∣∣∣∣∣∣∣L0 + ∫L

0
(φ)ll(δφ)ll dl,

(23b)

which lead to the final dynamic equations in a weak form

1
c

∫L

0
(φ)ttδφ dl � [ − (φ)lllδφ + (φ)ll(δφ)l + 1

3
(φ)3l δφ]L

0

− ∫L

0
(φ)ll(δφ)ll + 1

3
(φ)3l (δφ)l dl (24)

that builds the basis for the following FEM formulation. The
function φ as well as the variation δφ have to be the members
of the Sobolev space H2, where

Hk :� {w ∣∣∣∣∣∣∣∣∣ w ∈ L2,
zw
zx

∈ L2, . . . ,
zkw
zxk

∈ L2},
with the function space of square integrable functions

L2 :�
⎧⎪⎨⎪⎩w |∫1

0
w2 dx <∞

⎫⎪⎬⎪⎭,

such that they are twice continuously differentiable in l, cf.
Reddy (2013). A common method to choose candidates for φ
and its variation δφ is given by the
Bubnov–Galerkin approximation and eventually leads to a
system of ODEs.

3.2 Bubnov–Galerkin Approximation
In the sense of the Bubnov–Galerkin method, the
function φ as well as the test function δφ will be
approximated by

φ(l, t) ≈ φh(l, t) � ∑n
i�1

aφi (t)ψi(l), (25a)

δφ(l, t) ≈ δφh(l, t) � ∑n
j�1

bφj (t)ψj(l), (25b)

using the same set of n weighted orthogonal spatial
basis functions ψ1...n ∈ H2, together with n time-
dependent scaling coefficients aφi for the
approximation of the curve tangent angle and bφj for the
test function. The weak formulation (Eq. 24) thus reads

1
c

∑
j

bφj ∑
i

(aφi )tt ∫L
0

ψiψj dl

� ∑
j

bφj
⎡⎢⎢⎢⎢⎢⎣ − ∑

i

aφi
⎛⎜⎜⎝ ∫L

0

(ψi)ll(ψj)ll dl + (ψi)lllψj

∣∣∣∣∣∣∣∣L0 − (ψi)ll(ψj)l∣∣∣∣∣∣∣∣L0⎞⎟⎟⎠
− 1
3

∫L
0

⎛⎝∑
i

aφi (ψi)l⎞⎠3(ψj)l dl − 1
3
⎛⎝∑

i

aφi (ψi)l⎞⎠3

ψj

∣∣∣∣∣∣∣∣L0⎤⎥⎥⎥⎥⎥⎦.
(26)

As the coefficients bφj from the variation Eq. 25b are
arbitrary, the weak formulation result in the system of n
equations
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∑
i

(aφi )tt ∫L

0
ψiψj dl

� c
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − ∑

i

aφi
⎛⎜⎜⎝ ∫L

0
(ψi)ll(ψj)ll dl + (ψi)lllψj

∣∣∣∣∣∣∣∣L0 − (ψi)ll(ψj)l∣∣∣∣∣∣∣∣L0⎞⎟⎟⎠

− 1
3

⎛⎜⎜⎝∫L

0

⎛⎝∑
i

aφi (ψi)l⎞⎠3(ψj)l dl − ⎛⎝∑
i

aφi (ψi)l⎞⎠3

ψj

∣∣∣∣∣∣∣∣
L

0

⎞⎠⎤⎦,
(27)

for j � [1, n]. Reorganizing the terms and using a matrix
representation finally leads to

M(aφ)tt � −c(Faφ + 1
3
f 3(aφ)), (28a)

with the component-wise definitions

Mij :� ∫L

0
ψiψj dl, (28b)

Fji :� ∫L

0
(ψi)ll(ψj)ll dl + (ψi)lllψj

∣∣∣∣∣∣L0 − (ψi)ll(ψj)l∣∣∣∣∣∣L0 , (28c)

f 3j (aφ) :� ∫L

0

⎛⎝∑
i

aφi (ψi)l⎞⎠3(ψj)l dl − ⎛⎝∑
i

aφi (ψi)l⎞⎠3

ψj

∣∣∣∣∣∣∣∣∣∣
L

0

. (28d)

Note the index order of the matrix component definitions
Mji and Fji that is important for the vector notation in Eq.
28a. In the context of FEM formulations, a particular choice
of piecewise orthogonal basis functions ψ is used.

3.3 Finite Element Discretization
The core idea of the FEM is to discretize the continuous body into
a finite number of N elements e ∈ [1,N], connected at the N + 1
node locations N 0...N , and choose a special set of piecewise
function elements ψ1...N that form the global spline
approximation φh(l) of Eq. 25a.

For the weak formulation (Eq. 24), the orthogonal basis
functions need to be at least of class H2, such that the
integral-containing second derivatives can be evaluated. In
this work, we use, for demonstration purposes, the prominent
choice of a Hermite cubic splines with cubic elements ψ1...n,
constructed by the Hermite local cubic polynomial basis
functions:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ1(λ)
ξ2(λ)
ξ3(λ)
ξ4(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ :�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0 1
1 −2 1 0

−2 3 0 0
1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ3

λ2

λ1

λ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, λ ∈ [0, 1]. (29)

They have the special property that those coefficients that
build the spline element,

ψe(λ) :� [ξe1(λ) ξe2(λ) ξe3(λ) ξe4(λ)]︸︷︷︸
�:ξTe (λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ(N e−1)

(φ)l(N e−1)
φ(N e)

(φ)l(N e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

�:aφe

, (30)

directly correspond to the function value φ and its derivative (φ)l at
the node locationsN e−1 andN e. Figure 2 illustrates the interplay of
the local element basis functions and the function values at the node
locations to approximate the full curve tangent angle function.
Although the full dynamics are encoded in the resulting system
of ODEs, what are missing for a well-posed problem are the
boundary conditions of a particular simulation case.

3.4 Boundary Conditions Expressed in the
Curve Tangent Angle
Incorporate the boundary conditions on the curve tangent
angle φ, and its derivatives follow standard procedures, e.g.,
Hughes (2012). Because treating position-based boundary
conditions is not directly possible in the curve tangent angle
beam model (Eq. 21), this chapter focuses on the
development of a strategy to express boundary conditions
in terms of higher order derivatives only. Without loss of
generality, we consider for our beam model a fixed end,

x(l � 0, t) � 0, (31a)

y(l � 0, t) � 0, (31b)

and, respectively, its dynamic counterpart

(x)tt(l � 0, t) � 0, (32a)(y)tt(l � 0, t) � 0. (32b)

Fixing an elastic beam in its position at one end introduces
point-wise reaction forces from the mounting onto the beam
in x and/or y directions. While these boundary conditions are
straight forward to be incorporated in a FEM formulation for
a model in the parameters x and y, e.g., Eq. 9a, the FEM
description of the reduced model (Eq. 28a) directly acts on
the tangent angle function φ and its derivatives, thus not
offering any parameter to incorporate position boundary
conditions. However, except for the a-priori known
position at the boundary condition itself, the curve tangent
angle dynamics Eq. 21 do not require any position
parameters to govern the beam profile.

We thus propose to transform the position boundary
condition at node N 0, which cannot be incorporated
directly, into a dynamic boundary condition for the
neighboring node N 1 entirely expressed in curve tangent
coefficients aφ. To define this substitutional boundary
condition, we first derive another FEM formulation for
the beam model parametrized in Cartesian coordinates
(Eq. 9a). Not considering external forces for simplicity
and recalling the geometric identities Eq. 11, the beam
equation Eq. 9a reduces to
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[ (x)tt(y)tt ] � c[ sin(φ)(φ)ll−cos(φ)(φ)ll ]l

. (33)

Formulating the weak forms and applying another integration
by parts reads

1
c

∫L

0
(x)ttδx dl � −∫L

0
sin(φ)(φ)ll(δx)l dl + sin(φ)(φ)llδx∣∣∣∣L0 ,

(34a)

1
c

∫L

0
(y)ttδy dl � ∫L

0
cos(φ)(φ)ll(δy)l dl − cos(φ)(φ)llδy∣∣∣∣L0 ,

(34b)

and the Bubnov–Galerkin approximation

x(t, l) ≈ x(t, l)h � ∑3
i�1

axi (t)ψi(l), δx(t, l) ≈ δx(t, l)h � ∑3
i�1

bxi (t)δψi(l),

y(t, l) ≈ y(t, l)h � ∑3
i�1

ayi (t)ψi(l), δy(t, l) ≈ δy(t, l)h � ∑3
i�1

byi (t)δψi(l),

(35)

with the same set of orthogonal functions ψ that leads to the
systems of equations

1
c
M(ax)tt � f x(ax), (36a)

1
c
M(ay)tt � f y(ay), (36b)

with the components

Mji � ∫L

0
ψjψi dl, (37a)

f xj � −∫L

0
sin(φ)(φ)ll(δψj)l dl, (37b)

f yj � ∫L

0
cos(φ)(φ)ll(δψj)l dl. (37c)

Note that for both systems of equations in Eq. 36, the matrices
M are the same as for the FEM in the curve tangent angle φ from
Eq. 28a.

Again using Hermite cubic spline basis functions (Eq. 30),
the equations of interest in the two systems of N equations
(Eq. 36) are the ones relating to the position basis function of
N 1, i.e., j � 3:

1
c

∑
i

∫N 2

N 0

ψ3ψi dl(axi )tt � −∫N 2

N 0

sin(φ)(φ)ll(ψ3)l dl, (38a)

1
c

∑
i

∫N 2

N 2

ψ3ψi dl(ayi )tt � ∫N 2

N 0

cos(φ)(φ)ll(ψ3)l dl. (38b)

As illustrated in Figure 2, this requires an integration fromN 0

until N 2 to fully account for all associated local basis functions
and thus involves the first six coefficients of the acceleration
vectors,

(ax1..6)tt :�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(x)tt(N 0)
(x)ltt(N 0)
(x)tt(N 1)
(x)ltt(N 1)
(x)tt(N 2)
(x)ltt(N 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and (ay1..6)tt :�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y)tt(N 0)(y)ltt(N 0)(y)tt(N 1)(y)ltt(N 1)(y)tt(N 2)(y)ltt(N 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(39)

relating to the function values and first derivatives at the first three
nodes.While the right hand side of the FEM formulations (Eq. 36) is
already defined in the curve tangent angle φ, what remains is to also
rewrite coefficient vectors (ax1..6)tt and (ay1..6)tt in terms of φ instead
of x and y. Starting again from the geometric identities (x)l ≡ cos(φ)
and (y)l ≡ sin(φ), the coefficients in Eq. 39 can be expressed as

(x)ltt(l, t) :� −sin(φ(l, t))(φ(l, t))tt − cos(φ(l, t))(φ(l, t))2t ,
(40a)

(x)tt(l, t) :� (x)tt(0, t) − ∫l

0
sin(φ(s, t))(φ(s, t))tt ds

− ∫l

0
cos(φ(s, t))(φ(s, t))2t ds, (40b)

FIGURE 2 | FEM nodes and elements. The local basis functions (Eq. 29) of a unit element are shown on the left. The right plot shows the assembly ofN � 6 elements to an
approximate curve tangent profile φh. It further illustrates the role of the local element basis functions ξe1..4 scaled by function values φ and (φ)l at the node locations N 0..6.
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(y)ltt(l, t) :� cos(φ(l, t))(φ(s, t))tt ds − sin(φ(l, t))(φ(l, t))2t ,
(40c)

(y)tt(l, t) :� (y)tt(0, t) + ∫l

0
cos(φ(s, t))(φ(s, t))tt ds

−∫l

0
sin(φ(s, t))(φ(s, t))2t ds, (40d)

containingVolterra integrals with an upper limit l. Recalling the spline
approximation φh from Eq. 30 and using it for the acceleration terms,

(φ)tt � ∑
e

(ψe)tt � ∑
e

ξTe (aφe )tt , (41)

allows to express the entire FEM balance equations (Eq. 38) in terms
of φh with the additional boundary values (x)tt(0, t) and (y)tt(0, t)
which are, however, known a-priori from the position boundary
condition we are incorporating. Eventually, Eq. 38 can be evaluated
entirely in φ with the left hand sides

M3,1..6(ax3,1..6)tt

� M3,1..6○

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−sin(φ(N0 ,t))(ξ0)Ttt(λ�0,t)
− ∫N 1

0

sin(φ(l,t))(ξ0)Ttt(l,t) ds
−sin(φ(N1 ,t))(ξ1)Ttt(λ�0,t)

− ∫N 1

0

sin(φ(l,t))(ξ1)Ttt(l,t) dl−∫N 2

N 1

sin(φ(l,t))(ξ2)Ttt(l−N1 ,t) dl
−sin(φ(N2 ,t))(ξ2)Ttt(λ�0,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸︷︷︸
�:Mx

3,1..6

T

(aφ1..6)tt ,

(42a)

and

M3,1..6(ay3,1..6)tt

� M3,1..6○

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

cos(φ(N0 ,t))(ξ0)Ttt(λ�0,t)
∫N 1

0

cos(φ(l,t))(ξ0)Ttt(l,t) ds
cos(φ(N1 ,t))(ξ1)Ttt(λ�0,t)

∫N 1

0

cos(φ(l,t))(ξ1)Ttt(l,t) dl ∫N 2

N 1

cos(φ(l,t))(ξ2)Ttt(l−N1 ,t) dl
cos(φ(N2 ,t))(ξ2)Ttt(λ�0,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

︸︷︷︸
�:My

3,1..6

(aφ1..6)tt ,

(42b)

where ○, denotes an element-wise product, considering the
piecewise function element definitions (ψe)tt from Eq. 30 and
the local Hermite cubic base functions ξe(λ, t) expressed in the
global arc length coordinate ξe(l, t) :� ξe(λ � l/N , t). Note that
only the first six columns of M affect the position value at N 1,
and all remaining entries of the third row of M are thus zero.
The right hand side load value in x direction ofN 1 expressed in
φ reads

f x3 (φ) :� −∫N2

N0

sin(φ) +M3,1..6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(x)tt(0, t)
cos(φ(N0, t))(φ)t(N0, t)2
∫N1

0

cos(φ(s, t))(φ(s, t))2t ds
cos(φ(N1, t))(φ)t(N1, t)2
∫N2

0

cos(φ(s, t))(φ(s, t))2t ds
cos(φ(N2, t))(φ)t(N2, t)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(42c)

and the load value in y direction reads

f y3 (φ) :� ∫N2

N0

cos(φ) +M3,1..6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(y)tt(0, t)
sin(φ(N0, t))(φ)t(N0, t)2
∫N1

0

sin(φ(s, t))(φ(s, t))2t ds
sin(φ(N1, t))(φ)t(N1, t)2
∫N2

0

sin(φ(s, t))(φ(s, t))2t ds
sin(φ(N2, t))(φ)t(N2, t)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(42d)

These expressions are used to incorporate the position
boundary conditions into the FEM formulation of the curve
tangent angle beam equation.

The resulting system of nonlinear ODEs is used to verify the
proposed beam model as well as the presented strategy for
incorporating position boundary conditions.

4 SIMULATION VERIFICATION

The proposed beam model of Section 2 together with the
method for incorporating boundary conditions on lower level
derivatives than the descriptive variables of the FEM
formulation from Section 3.2 is verified in simulation. First,
the developed FEM strategy is tested in two different initial
value problems and demonstrated for different magnitudes of
external forces and momenta. The second part verifies a
dynamic simulation in terms of energy consistency of the
beam profile. For both cases, we consider the case of a
clamped end at l � 0 and a free end at l � L. This is
expressed in the following boundary conditions:

x(l � 0, t) � 0, (43a)

y(l � 0, t) � 0, (43b)

φ(l � 0, t) � 0, (43c)(φ)λ(l � L, t) � 0, (43d)(φ)λλ(l � L, t) � 0. (43e)

While the essential boundary condition Eq. 43c and natural
boundary conditions Eq. 43d and Eq. 43e are directly considered
in the FEM formulation with conventional techniques, conditions
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Eq. 43a and Eq. 43b are incorporated with the expressions
developed in Section 3.4. All simulations have been conducted
in MATLAB R2020a.

4.1 Initial Value Problem
The static solutions of the FEM formulation (Eq. 28a) with
external nodal forces f ext,

0 � −c(Faφ + 1
3
f 3(aφ) + f ext), (44)

are verified in two scenarios. First, the analytic solution of
Eq. 17 is replicated with an external moment at the free end,
and in the second example, an external nodal force f ext is
applied to the middle of the beam. The initial value problem
for both cases is formulated as the nonlinear least-squares
problem

min
aφ

�����������������
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−c(Faφ + 1

3
f 3(aφ) + f ext)
f x3

f y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�����������������

2

2

, (45)

where the last two rows impose the boundary conditions Eq. 43a
and Eq. 43b using the expressions from Eq. 42a and Eq. 42b. The
results show that stem from MATLAB’s nonlinear least-squares
solver lsqnonlin() for a nominal beam of L � 1m and material

parameter c � 1, with a FEM discretization into 10 beam
elements.

4.1.1 External Moment
Applying an external nodal moment at the free end of the beam
results in (φ)ll � 0, (46)

and thus a constant curvature (φ)l along the entire beam,
according to the analytic solution (Eq. 17). This is also
consistent with analytical solutions known in literature
Antman (2005). To verify the proposed formulation with
this test case, various external momenta proportional to
the material parameters ⊥mz

ext(l � L) ∈ {0.5, 1, 2, 4}π/EI in
N m are applied to the free end of the nominal beam.
They are incorporated directly as boundary condition
(φ)l(l � L) � ⊥mz

ext, substituting Eq. 43d. The results are
shown in Figure 3 and depict segments of a perfect circle
due to the constant curvature (φ)l . While (x)l and (y)l
components show a FEM approximation of cos(·) and
sin(·) functions, respectively, the according angle φ is a
purely linear function in this special case and thus can be
approximated with arbitrary accuracy, even for a low
number of elements. Note that the analytical
trigonometric solution is not visually distinguishable
from the simulation result and thus is not shown in
Figure 3.

FIGURE 3 | Results of the initial value problem, simulated in the beam tangent angle φ for different external momenta at the free end l � L. The results of the actual
initial value calculation of φ profiles are shown on the left. Additionally, the middle and right columns show the resulting x and y profiles (dashed lines). The large red dots
mark the imposed boundary conditions on the curve tangent angle profile and their respective impact in x and y direction. Note that the x and y profiles, as well as the 2D
visualization on the top left, are evaluated during postprocessing of the actual simulation results in the curve tangent angle φ, applying the geometric identities
Eq. 11 and respective derivatives.
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4.1.2 External Force
This second example shows the beam deflection under
different external nodal forces f ext(l � L

2) ∈ {1, 10, 50, 100}N
applied to the middle node of the nominal beam. Physically,
this expresses an external force perpendicular to the beam
center line, cf. Eq. 20. Results are depicted in Figure 4. While
for the two smaller deflections, the beam profiles in y
direction correspond to results of a common linearized
Euler–Bernoulli Beam model, the geometrical
nonlinearities show the full effect for the two larger
deflection cases. Note that the initial curvature at the
clamped end l � 0, which is proportional to (φ)l , is the
result of the imposed position boundary condition
discussed in Section 3.2. This verifies the effect of the
proposed strategy on the equilibrium configuration.

4.2 Dynamic Simulation
For the dynamic case, the FEM formulation (Eq. 28a) is again
extended by external nodal forces

M(aφ)tt � −c(Faφ + 1
3
f 3(aφ) + f ext), (47)

which allow external perturbation of the system. Assuming
that the initial beam configuration φ(l, t � 0) complies with
the boundary conditions (Eq. 45), the expressions for
(x)tt(l � 0, t) and (y)tt(l � 0, t), as developed in Section 3.4,
are imposed on the beam, using a Lagrangian multipliers
technique. The full system reads

[ M (BBC)T
BBC 0

]︸︷︷︸
MLag

[ (aφ)tt
λ

] � −c⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ Faφ + 1
3
f 3(aφ) + f ext

gBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (48)

where the position boundary conditions from Eq. 42a are
encoded in

BBC :� [Mx
3,1..6 0T

My
3.1..6 0T

] and gBC :� [ f x3
f y3

], (49)

with the first six columns of BBC containing the components
from Eqs. 42. The matrix MLag is invertible and thus allows
solving

[ (aφ)tt
λ

] � −cM−1
Lag

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ Faφ + 1
3
f 3(aφ) + f ext

gBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (50)

The resulting acceleration vector of curve tangent angle
coefficients (aφ)tt is then integrated to simulate the time-
varying trajectories. The results of Figure 4 are computed
using MATLAB’s ode45 solver. In a postprocessing step, the
energy distribution in the beam is evaluated w.r.t. time t.

4.2.1 Energy Analysis
The dynamic simulation result is verified by confirming energy
consistency of the simulation result. This is achieved by
calculating the total energy,

Etotal(t) � Epot(t) + Ekin(t) + Eext(t), (51)

FIGURE 4 |Results of the initial value problem simulated in the beam tangent angle φ for different external nodal forces at l � 0.5. The results of the actual initial value
calculation of φ profiles are shown on the left. A detailed explanation of the illustration is given in the caption of Figure 3.
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consisting of the potential energy Epot, the kinetic energy Ekin,
and the externally injected energy Eext. While the potential
energy is directly proportional to the curvature of the beam
center line,

Epot � 1
2

∫L

0
EI(φ)2l dl, (52)

It can be directly evaluated from the simulation results. The
kinetic energy

Ekin � 1
2

∫L

0
ρA((x)2t + (y)2t ) dl, (53)

however, needs to be rewritten in terms of φ first. The
geometric identities (x)l ≡ cos(φ) and (y)l ≡ sin(φ) together
with Schwarz’s theorem on changing the order of derivatives
again allow to rewrite the Cartesian components at an arc length
l of the beam center line, with the Volterra integrals

(x)t � −∫l

0
sin(φ(s, t))(φ(s, t))t ds, (54a)

(y)t � ∫l

0
cos(φ(s, t))(φ(s, t))t ds, (54b)

and thus, the kinetic energy of the entire beam can be
evaluated with

Ekin � 1
2

∫L

0
ρA⎛⎜⎜⎜⎜⎝⎛⎜⎜⎝ ∫l

0
sin(φ(s, t))(φ(s, t))t ds⎞⎟⎟⎠

2

+⎛⎜⎜⎝ ∫l

0
cos(φ(s, t))(φ(s, t))t ds⎞⎟⎟⎠

2⎞⎟⎟⎟⎟⎠ dl. (55)

Note that the rotational component of the kinetic energy is
not considered, due to the Euler–Bernoulli assumption of
slender beams.

4.2.2 Simulation Results
For the dynamic case, an initially unloaded beam with a normalized
beammaterial parameter c � 1 and unit length L � 1m is perturbed
by an external nodal force,

f ext(l � L
2
, t) :�

⎧⎪⎪⎨⎪⎪⎩ f extmax sin( t
tmax

π)2

, for t < tmax,

0, else,

(56)

and again at the beam center, with a maximal unit force f extmax � 1
over a perturbation time of tmax � 0.5 s. The result of the
dynamic simulation with 10 beam elements is shown in
Figure 5. While in the first 0.5 s, energy is injected in the
system via the external perturbation, the resulting beam
movement results in an energy exchange between kinetic
and potential along the beam while conserving the total
amount of energy in the system. Note that no dissipative
terms such as damping are considered in the simulated
beam (Eq. 21). The right plot of Figure 5 shows the energy
distribution within the entire beam at t � 1m. The
accumulation of potential energy at the clamped site of the
beam again demonstrates the effectiveness of the position
boundary condition expressions Section 3.4.

5 CONCLUSION

A model for large planar deformation dynamics of
Euler–Bernoulli beams was presented and put into context
with well-known more general beam models. Literature does
already offer various models that account for arbitrarily large
deformations; however, they typically result in a system of
coupled nonlinear PDEs expressions. Whereas, the
presented approach admits a single-dimensional PDE in
one variable, i.e., the curve tangent angle of the beam
center line to describe planar beam dynamics under the
common Euler–Bernoulli assumptions of shear-free
constant cross-sections.

While boundary conditions on the beam profile
derivatives—which is sufficient for sliding and/or free
ends—can be directly encoded in a simulation algorithm of
the curve tangent angle beam model, there is no descriptive
variable available to directly incorporate boundary
conditions on the beam position—needed for clamped
and/or hinged ends. These cases are, however, of course of

FIGURE 5 | Energy conservation during an FEM simulation of the dynamic curve tangent angle model in a clamped-free scenario, where an external torque is
applied to the center of an initially straight beam for 0.5 s. The left plot shows the energy distribution. The right plot shows the energy along the beam at a snapshot taken
at t � 1 s.
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highly practical relevance. To also address these cases, we
additionally outlined a novel method that allows
incorporating boundary conditions in FEM formulations,
using solely descriptive variables of higher order
derivatives. We apply this method to impose position-
based boundary conditions in the FEM formulation of the
presented beam model, but it is not limited to solely use this
case. The strategy is verified in initial value problems, where it
replicates analytical solutions and a time-variant FEM
simulation by evaluating energy conservation. The presented
beam model does not only reduce the computational effort due to
the dimensional reduction to a single parameter, but the beam profiles
are at the same time less complex in this curve tangent angle
parametrization and thus require fewer elements in the FEM
description.

Although being nonlinear, the derived beam model
provides a concise continuum model for future control
theory applications of large deformations, where other
more complex model descriptions are not appropriate for
current model-based PDE controller development. The
model reduction process in this work, however, also
outlines more general beam models considering, e.g.,
shearing, axial torsion, elongation, and/or 3D spatial
deformations. This work is thus also a good source for
extended beam models including these additional effects,
which might be relevant with the advancement of PDE
controller development.
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NOMENCLATURE

Beam parameters
A Area of cross-section surface

E Young’s modulus

G Shear modulus

L Total length

ρ Density

c Constant scaling factor of the PDE c :� EI
ρA

Vectors
ĝ i Base vector of the coordinate system along the deformed beam i ∈ [1, 3]
êi Base vector of the interial coordinate system with i ∈ [1, 3]
κ Curvature with respect to ĝ i

f Force vector

m Moment vector

r Vector from the origin to a point on the deformed beam

Superscripts
(·)ext External quantity

(·)inertia Quantity due to inertia

(·)internal Internal quantity
║( ) Parallel component
┴( ) Perpendicular component

Modeling variables
φ Curve tangent angle between deformed ĝ1 and undeformed beam axis ê1

l Beam parameter along beam axis with range [0, L]
t Time

x First component of the location vector along ê1

y Second component of the location vector along ê1

Edef Potential/kinetic/external/total energy with def ∈ {pot, kin, ext, total},
respectively

ε Axial tension parameter ϵ :� ���(r)l���2 − 1

Finite element description
λ Local length parameter with range [0, 1]
ψi Global orthogonal basis functions in FEM description

ξi Hermite local basis functions in FEM description

N Number of elements

N e Node with range e ∈ [0,N]
e Element number with range [1,N]

Operators
(·)x Partial differentiation of function w.r.t. beam parameter x, i.e., z(·)zx

(·)ijkl Partial differentiation of function w.r.t. parameters i, j, k, l, i.e., z4(·)
zizjzkzl

δ(·) Variation of function, e.g., δφ

‖(·)‖2 Euclidean norm
00000∑
i
(·)2i

√
(·)+(·) Hadamard or element-wise product.
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