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This paper introduces a new genetic fuzzy based paradigm for developing scalable set

of decentralized homogenous robots for a collaborative task. In this work, the number of

robots in the team can be changed without any additional training. The dynamic problem

considered in this work involves multiple stationary robots that are assigned with the goal

of bringing a common effector, which is physically connected to each of these robots

through cables, to any arbitrary target position within the workspace of the robots. The

robots do not communicate with each other. This means that each robot has no explicit

knowledge of the actions of the other robots in the team. At any instant, the robots only

have information related to the common effector and the target. Genetic Fuzzy System

(GFS) framework is used to train controllers for the robots to achieve the common goal.

The same GFS model is shared among all robots. This way, we take advantage of the

homogeneity of the robots to reduce the training parameters. This also provides the

capability to scale to any team size without any additional training. This paper shows the

effectiveness of this methodology by testing the system on an extensive set of cases

involving teams with different number of robots. Although the robots are stationary, the

GFS framework presented in this paper does not put any restriction on the placement of

the robots. This paper describes the scalable GFS framework and its applicability across

a wide set of cases involving a variety of team sizes and robot locations. We also show

results in the case of moving targets.

Keywords: collaborative control, genetic fuzzy system, decentralized control, intelligent systems, machine

learning, cable robot

1. INTRODUCTION

We introduce a new scalable framework of Genetic Fuzzy System (GFS) for training a distributed
system of robots to work collaboratively to achieve a common goal. The system needs to be
trained such inter-robot communication about their actions are not required. This reduces the
communication overhead of the system. Also, the team of robots should be able to achieve the goal
regardless of the number of robots in the team. Thus, the trained robots are expected to collaborate
regardless of the size of the team. This is extremely important in fault scenarios where a robot
can breakdown and become inactive in the system, as well as in scenarios where more robots are
added to provide more strength and efficiency. This work builds on our previous research (Sathyan
and Ma, 2019) that was limited to teams consisting only upto 5 robots that were located only in a
symmetric topology.
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Collaborative robotics technology is being applied in
numerous applications, such as moving objects (Tuci et al.,
2018), observing moving targets (Khan et al., 2016), helping
human workers in collaborative tasks (Realmuto et al., 2017;
Roveda et al., 2019), coordinated search activities (Baranzadeh
and Savkin, 2017; Chamanbaz et al., 2017), etc. Unlike many
existing multi-robot control strategies, our work described in
this paper involves a decentralized team of robots. This means
that the robots are all independently controlled without relying
on any centralized controller. The major advantage with a
decentralized system is that it is more fault tolerant. Any fault
in a centralized controller affects the entire system, whereas in
a decentralized system, faults in individual robots are localized
and does not necessarily affect the entire system (Zhang and
Mehrjerdi, 2013). Moreover, such faults can easily be rectified by
removing or replacing the faulty robot in the team.

Recently, decentralized strategies are being explored in
robotics. Such strategies have been used for training each leg of
a hexapod robot to achieve stability when standing (Sartoretti
et al., 2019a). Each agent in the system controls one leg of the
hexapod system. Another work involves a robot team consisting
of two robots where the robots are able to understand each others
intentions without explicit communication (Losey et al., 2020).
This is achieved by defining a role for each of the robots. In
our system, in addition to the robots being decentralized, they
are not required to communicate with each other, reducing the
communication overhead. Our framework is also scalable in that
the number of robots in the system can be increased or decreased
without having to retrain the robots.

Most of the robots used in industrial applications today are
pre-programmed for the specific task and do not provide the
flexibility to modify the system to work for other tasks (Villani
et al., 2018). Machine learning architectures can be used as
decision making models for robots to provide more flexibility
while also enabling other benefits including robustness to
uncertainties, adaptability to different applications and improved
efficiency. They also provide the ability to fuse information
coming in from different sources to make better decisions for
performing tasks in an informed, efficient manner. Learning
decentralized controllers for large network of mobile robots with
sparse communication links have been presented in a recent
work (Tolstaya et al., 2020). Training decentralized controllers
that can be used on different team sizes for scalability have been
presented for a construction problem. This work presented a
neural network based methodology for a construction related
task where the robots were trained on a team of four robots
and later tested on larger teams up to 20 robots (Sartoretti et al.,
2019b).

Genetic Fuzzy System (GFS) is a machine learning framework
that can be used to model intelligent robot controllers. In
a GFS, the parameters of the Fuzzy Logic System (FLS) are
optimized for the specific task using Genetic Algorithm (GA).
Such GFSs have proven to be extremely successful in various
applications including task assignment and planning (Sathyan
et al., 2016), simulated air-to-air combat (Ernest et al., 2016),
athlete movement prediction (Sathyan et al., 2019b), etc. GFS
framework was also used for our previous work on a problem

where the robots were placed along a regular polygon with the
same objective of bringing the common effector to any arbitrarily
defined position within the polygon (Sathyan andMa, 2018, 2019;
Sathyan et al., 2018, 2019a).

The linguistic rulebase of GFSs make it more interpretable
compared to other machine learning techniques. GFSs are tuned
using GA and hence the cost function does not necessarily
have to be differentiable. Through the operations of crossover
and mutation, the individuals in GA are modified over several
generations to search for the optimal set of GFS parameters—
membership functions and rules—that minimize the defined cost
function. This makes it a form of reinforcement learning as the
robots are trained to take the optimal control actions tomaximize
a reward or in this case, minimize the cost function. The cost
function acts as reinforcements for training the robot agents. It is
important to note that the cost function in our GFS framework
is different from the reward function defined for Q-learning
(Watkins and Dayan, 1992). The cost function in GA takes into
account the overall performance of the system during a training
episode, whereas the rewards in Q-learning are usually calculated
for each individual action.

FLSs provide designers the ability to model the relationship
between the inputs and outputs using linguistic IF-THEN rules.
When this relationship is known apriori, such expert knowledge
can be incorporated using the rulebase of the FLS. This approach
has been used in several robotics applications. This will usually
involve minimal tuning of the FLS parameters using trial and
error. FLSs have been used for controllingmobile robots that have
to navigate within dynamically changing cluttered workspace
(Omrane et al., 2016), path planning for navigating nano-
robots through blood vessels for drug delivery (Mobadersany
et al., 2015), assisting human operators in heavy industrial tasks
(Roveda et al., 2019).

Even though expert knowledge can be used to design FLSs, it is
highly useful to have an efficient process for tuning FLS paramters
automatically. The manual design becomes increasingly difficult
as the number of inputs and outputs increase. The ability
to automatically tune the FLS parameters is also useful for
applications where the relationship between the input and output
variables is not well-known. The ANFIS (Adaptive Network
based Fuzzy Inference System) (Jang, 1993) framework, that uses
a combination of the backpropagation algorithm and recursive
least squares, has been a popular approach for training Sugeno-
FLSs. However, ANFIS is a supervised learning methodology and
would require a dataset of state-action pairs for training. On the
other hand, GA can be used for training FLSs without any state-
action ground truth data. The GFS can be trained based on the
cost function designed for the application.

In this paper, we extend on our previous work (Sathyan
and Ma, 2019) to design a scalable GFS framework for a
reinforcement learning problem involving a team of stationary,
homogenous robots. Mamdani FLS is considered in this work.
The problem involves training a team of robots that are
connected to a common effector through elastic cables. The
objective is to bring the common effector to any desired position
within the workspace of the multi-robot system. In our previous
works, the robots were positioned along the vertices of regular
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FIGURE 1 | A team game that requires the participants to work together for success. The participants are tasked with the objective of bringing the common effector

to the target position by controlling the elastic cables connected to the effector.

polygons and the results were shown only for 3- and 5-robot
cases. It was noticed that training for the 5-robot system is much
more complex compared to the 3-robot system. In this paper, we
introduce a scalable GFS framework that allows the system to
scale to any number of robots without any additional training.
We also extend the capability to general scenarios where the
robots are placed at arbitrary positions.

In this work, each GFS is trained to model the control actions
of a robot in the team at each instant, such that the series of
collaborative actions taken by the robot in the team helps with
bringing the common effector to the desired target position
quickly. The same GFS model is shared across all robots in the
team. This makes the training process very efficient and also
provides much needed scalability to the system, as the same
GFS can be used when adding more agents to the team without
additional training.

2. PROBLEM STATEMENT

A sample dynamics problem is considered in this work to
test the applicability of the proposed GFS framework. It
takes its inspiration from a fun collaborative activity that
involves people pulling on cables to control the position of
the commonly connected effector in order to bring it toward
a target position, as shown in Figure 1. The participants do
not communicate with each other. Each participant pulls or
releases the cable to control the common effector. They have
to work collaboratively to bring the effector to the target
position. This activity highlights the ability of human teams
to learn and devise strategies that allows for the successful
and efficient completion of the collaborative task. So, it is an
appropriate choice of a challenging task to test the proposed
GFS framework to train a decentralized system of robots to
work collaboratively toward the common goal of bringing the

effector to the target. Although this collaborative activity may
be rather easy for humans, it would be quite challenging
for robots.

The objective of the multi-robot team is to devise a strategy
to work collaboratively while remaining decentralized to bring
the effector to any target position. Each robot controls its own
cable. An added constraint is that the robots do not communicate
with each other. This means that each robot do not use any
information on the states of its partner robots to make its
decisions. During the training process, the performance of the
system as a whole will be considered to evolve the team of
robots. Thus, even though there is no communication between
the robots, there will be some implicit understanding between the
robots that results from the general strategy they use to achieve
the goal.

Each robot is assumed to have a DC motor that is attached
to a spool for winding its cable. The cables are pulled or
released by controlling the voltage of the DC motor. The GFS
controller of each robot controls the voltage of its DC motor
which in turn controls the cable. Together as a group, each
robot action affects the position of the common effector. It
is understood that the workspace of the robots is the convex
hull connecting the robot positions. This makes sense as the
effector cannot be at equilibrium at any point outside of
this polygon.

3. FUZZY LOGIC SYSTEMS (FLS)

Unlike Boolean logic, fuzzy logic deals with degrees of truth
rather than a binary True or False. This can be generalized to
degrees of membership to different sets or membership values.
This gives a fuzzy boundary between different sets rather than
a crisp division. This process of converting a crisp value to
fuzzy membership values that represent the membership level of
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FIGURE 2 | Centroid and MOM defuzzification outputs. The x-axis is the

output variable.

an input value to each of the fuzzy sets is called fuzzification.
Fuzzification happens based on how the membership sets are
defined for each of the input and output variables. Another
important aspect of an FLS is the rulebase which is a set
of linguistic rules that gives an intuitive relationship between
the inputs and outputs. An example for an FLS rule used for
calculating tip is If Food is Good and Service is Good then Tip
is Good.

In order to convert the output of an FLS back to a crisp value,
each rule in the rulebase of the FIS needs to be evaluated and
then the resultant aggregate solution should be defuzzified. The
aggregate solution after rule evaluation will be a region defined
in membership space of the output variable, similar to the one
shown in Figure 2. There are different defuzzification strategies
used (Yager and Zadeh, 2012), the most popular of which is
the centroid defuzzification. Centroid defuzzification gives the x-
value of the centroid of the area which seldom reaches close to the
extremities. This issue can be resolved by increasing the range of
the output membership functions. Mean of maximum (MOM)
defuzzification can also be used to obtain defuzzifed values that
span the width of the output range. MOMdefuzzification outputs
the mean of the x-values that have the highest membership value,
as shown in Figure 2.

For small-scale FLSs, the rulebase could possibly be defined
using expert knowledge. But, this becomes difficult for larger
FLSs. It is also difficult when the relation between the inputs and
outputs is not known and needs to be learned. It is necessary to
augment the FLS with learning capabilities for such applications.
GA is a very effective tool for training FLSs for the specific
application. These GFSs can learn from the training scenarios
based on the cost function defined to ensure that all the design
requirements are satisfied.

In the GFS framework, the set of parameters to be tuned
include the boundaries of the membership functions and the

set of rules in the rulebase. For some applications, GA is also
used to tune the shape of the membership functions although
in most cases, it is safe to assume triangular and trapezoidal
membership functions. GFS framework can be used to tune
different types of membership functions depending on how they
are defined. Triangular membership functions are defined using
the x-coordinates of the three vertices. Symmetric triangular
membership functions can be defined using the center of the base
of the triangle and its width. Gaussian membership functions are
defined using the mean (center) and standard deviation. In this
work, we consider only triangular membership functions.

4. MULTI-ROBOT PROBLEM

This section extends the dynamics analysis from our previous
work (Sathyan and Ma, 2019) to asymmetric multi-robot
topologies. For the sake of uniformity, we will follow the same
notation system as in Sathyan and Ma (2019).

Let rrrEi be the vector connecting the effector to robot i, and
let pi be the length of the cable wound around the spool of this
robot. Thus, the total length of the cable attached to robot i will
be rEi+ pi. Let l0 be the equilibrium length of all the elastic cables
and k be their spring constant.

Figure 3 shows a visual representation of the different vectors
involved for an asymmetric topology, where the robots are placed
along the vertices of an irregular polygon. The tension on the
elastic cable attached to robot-i will act along the unit vector, r̂̂r̂rEi,
and is given by,

TTTi = k(rEi + pi − l0)r̂̂r̂rEi = k[(pi − l0)r̂̂r̂rEi + rrrEi] (1)

TTTi can be rewritten as,

TTTi = k[(pi − l0)r̂̂r̂rEi + rrri − rrrE] (2)

Assuming the effector has massm leads to the following relation.

n∑
i

TTTi = mr̈̈r̈rE (3)

Since the robots are not located along a regular polygon,
∑

i rrri 6=
0. Substituting Equation (2) into Equation (3) gives the following
governing equation for the effector under equilibrium condition.
Here, n refers to the number of robots in the system.

k

n∑
i

((pi − l0)r̂̂r̂rEi + rrri)− nrrrE = mr̈̈r̈rE

where r̂̂r̂rEi =
rrri − rrrE

|rrri − rrrE|

(4)

Equation (4) is a vector equation of motion of the common
effector, E. The motion of the effector relates to the pull on the
cables connecting the robots to the effector. As noted earlier,
the objective of the robots is to control the effector through
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FIGURE 3 | Schematic showing the vector notations. The 5 robots are placed arbitrarily. The common effector that is connected to each robot is denoted as E. This

representation can be generalized for an n-robot system.

their cables to bring the effector to the target position. Thus, the
objective of the system can be written as

minimize J =

∫ T

0
dist(t)dt

subject to k

n∑
i

((pi − l0)r̂̂r̂rEi)− nrrrE = mr̈̈r̈rE

(5)

Here, dist(t) refers to the distance between the common effector
and the target at time t. Since we are assuming the robots to be
fixed to a location and actuated using DC motors, each robot
has only one joint driven by its DC motor. For the simulations,
the specifications of an actual DC motor were used to define the
range of the different motor variables, such as torque and angular
velocity. The GFS controller of each robot models its DC motor
will be trained to determine the optimal control voltage, Vi(t)
at each time step t for achieving the common goal of the robot
team. The electro-mechanical equations corresponding to theDC
motors are given below.

pi = rsθi (6)

KTIi − Tirs − bθ̇Gi = Jθ̈Gi (7)

L
dIi

dt
+ IiR = Vi − Keθ̇Gi (8)

I =
KT

Gr
TGi (9)

Equations (6)–(9) provide the relation between the motor
voltages, V, and the length of the cables, p. The motors inside the
different robots are assumed to be the same and hence share the

same specifications. The variables and parameters related to the
motor include the gear ratio (Gr), torque constant of the motor
(KT), back-emf constant (Ke), torque output to the spool (TG),
the motor current (I), and voltage (V). The term bθ̇G refers to
the damping torque. The variables related to the spool include
its angular velocity (θG), radius (rs) and moment of inertia (J).
Equations (4)–(9) give the relationship between the voltages of
the motors associated with the different robots, as determined by
the corresponding GFS, and the motion of the common effector.
Each robot action is thus affected by the voltage decided by its
GFS, which in turn affects the motion of the effector. Thus, these
robots can be trained to work as team such that their individual
actions result in achieving the goal of bringing the effector to
the target.

5. GFS FRAMEWORK FOR SCALABILITY

This section describes the methodology of applying GFS for
developing systems of scalable robots. The system will be trained
for a team of 5 robots and then tested on a generalized system of n
robots without any additional training. The robots are assumed to
be located at arbitrary positions and can interact with the effector
only through the elastic cable connecting the common effector to
each robot.

In this work, GFS controllers directly control the voltage of
the joint motor of each robot which in turn pulls or releases the
attached cable accordingly. Thus, the system of robots can work
together to control the effector to bring it to the desired position
on the table. Equations (4), (7), and (8) provide the governing
equations of the dynamic system.
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The GFS controller has four inputs: (1) the difference between
the effector-robot distance and the target-robot distance, (2)
the angle between the effector-robot vector and the target-robot
vector, (3) velocity of the effector along the x-axis, and (4) velocity
of the effector along the y-axis. In order to have the ability to
be scalable in terms of the size of the robot team, all robots are
modeled to have the same internal GFS controller. This means if
the same inputs are provided to the robots, the robot actions will
be the same. However, since the inputs to the GFS are relative to
the robot frame of reference, the output actions suggested by the
GFSs can be different for the same effector states.

The use of the same GFS model across all robots helps with
adding more robots to a system without changing any of the
internal robot controller parameters. To train the multi-robot
team for this task of bringing the effector to any target position,
the robots are first trained on scenarios involving 5 robots. Here,
the number 5 is simply arbitrarily chosen.

The use of the same GFS controller for all homogenous robots
provides several advantages to this system:

1. This provides scalability to the system. Since the internal
control logic is the same, more robots can be added to the
system or removed from the system without any retraining.

2. The number of parameters that need to be tuned is much
less compared to a system of different controllers with same
number of robots. The training for a 5-robot system was done
within 2 h.

3. Since the inputs to the controllers are relative to the robot
reference frame, the robots are able to make their own
distinct decisions.

Although this approach has several such advantages, it is limited
to homogenous system of robots. In heterogenous systems where
individual robots have different capabilities, the GFSs provide
an advantage in that the rulebase and membership functions
can be tuned separately. In heterogenous systems, the robots
will have different capabilities, however, the rules governing
their actions can be the same. Thus, we propose to share the
same rulebase across all individual robots. The membership
functions will be different. This means, for heterogenous systems,
only the membership functions need to be tuned as more
robots are added to the team. We plan to explore this in our
future work.

In order for the robots to achieve the common goal of bringing
the effector to any arbitrarily defined target position, the system
of robots need to be trained first on a set of chosen scenarios.
Each scenario is defined using the locations of the robots and
the position of the target. A set of validation scenarios can
also be defined to check for overfitting. After each generation
of GA, the GFS can be validated by using the best GFS on
the validation scenarios in order to spot any overfitting. These
validation scenarios are separate from the training scenarios
and similar performance in both the training and validation
set is a sign that the GFS is learning properly rather than
fitting just to the training scenarios. Each scenario is run for a
maximum of 20s.

The following function is defined as the cost function. This
trains the team of robots to reduce the distance between the

effector and the target quickly while also satisfying the physical
constraints of the system.

C =

∫ Tmax

0
dist(t)dt + P(Tmax − tstop) (10)

Tmax refers to the maximum time, set as 20s, and tstop refers to
the time at which an episode of the simulation is forced to stop.
The simulation can stop either when the time reaches maximum
time,Tmax, or when atleast one of the physical constraints defined
for the system is not satisfied. These physical constraints include
(1) the length of the cable to be <2 m, (2) the angular velocity
of the motor should be <195 rpm, and (3) the torque on the
motor to be <1.6 Nm. The P(T − tstop) term is used to penalize
cases where any of these constraints are violated. This ensures the
trained system inherently understands the physical constraints of
the system. P acts as a penalization factor. It can be a large positive
value. In this work, we have set P = 50. dist(t) is the distance
between the effector and the target at any instant t. Since the
training is done on several scenarios, GA will try to the minimize
the mean of the cost values across these training scenarios.

The training process is shown in Figure 4. GA involves a
population of individuals. At the beginning, the population
is randomly generated. Each individual is a vector of tunable
parameter values of the GFS. These include the membership
function boundaries and the consequents of the rules in the
rulebase of the GFS. The rulebase will include all combinations
of the different membership functions. Each individual in GA
relates to a GFS and since the same GFS is shared across
all robots, each individual in the population refers to an
entire team of robots. Thus, each individual can be used to
simulate the dynamics and evaluate the cost function on the
training scenarios.

The cost function would be representative of the ability of the
system in achieving the goal. The lower the cost value, the better.
The individuals with better cost values have higher likelihood
of getting selected into the next generation. The individuals
with high cost values have higher chance of getting eliminated
from the population. This process of evolution continues for
a predefined maximum number of generations. After each
generation, the best GFS is also evaluated on the validation set
to check for overfitting. Once GA converges, the best individual
that performs well on both the training and validation cost is
chosen to design the multi-robot system. This trained system is
then tested on a series of test scenarios to check its generalization
capability to ensure that the system works on a wide variety of
scenarios. These new scenarios will includes changes to the size
of the team, the location of the robots as well as the targets.

The input and output variables of the GFSs are modeled using
triangular membership functions. For the input variables, GA
is used to tune the three membership function boundaries for
each input variable. These points are marked in blue as shown in
Figure 5. The membership functions, mf1 and mf3, are assumed
to peak at the two extremes of each variable. Five triangular
membership functions are used to define the output variable,
and the x-values of all the vertices of each triangle are tuned
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FIGURE 4 | Schematic showing the training process in GFS. The GFS is trained on scenarios with 5 robots. The same GFS is used to control all robots, R1–R5.

FIGURE 5 | The format of the input membership functions of the GFS. The

blue dots are tuned using GA. GA also tunes the membership function

boundaries of the output as well as the rulebase of the GFS.

using GA. This means that GA tunes 15 parameters of the output
membership functions for each robot.

Regarding rulebase of the GFS, since each of the four inputs
are defined using three membership functions, there will be
34 = 81 rules to represent all possible combinations of the
membership functions across all inputs. Since the same GFS
controller is copied across all robots, the training process involves
tuning a total of 116 parameters. Each individual in GA will be a
116-element vector.

TABLE 1 | GA options.

Options Value

Number of generations 100

Population size 50

Stall generation limit 20

Number of variables 116

Crossover function Scattered

Mutation function Gaussian

Selection function Stochastic uniform

GA is setup in MATLAB with the options shown in Table 1.
The crossover, mutation and selection functions are set to their
default values in MATLAB. The GA with these options train the
GFS to be capable of achieving the common goal for a wide range
of scenarios, as described in the next section.

6. RESULTS AND DISCUSSION

The robots are trained to bring the effector to the target position.
Each robot is controlled by its trained GFS module. MOM
defuzzification is used by the GFSs.

The system was trained on 5-robot scenarios. The results
presented in this section shows the effectiveness of the
methodology by applying the trained GFS on various cases with
different number of robots in the team. The results are both
symmetric and asymmetric topologies.

6.1. Symmetric Topology
In the symmetric topology, the robots are placed along the
vertices of a regular polygon. The robots, after training on the
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FIGURE 6 | Multi-robot systems with robots following a symmetric topology. (A) 3-robot case: Effector’s path toward the target. (B) 3-robot case: Distance plot. (C)

5-robot case: Effector’s path toward the target. (D) 5-robot case: Distance plot. (E) 10-robot case: Effector’s path toward the target. (F) 10-robot case: Distance plot.

(G) 25-robot case: Effector’s path toward the target. (H) 25-robot case: Distance plot.
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5-robot cases, are able to bring the effector to the corresponding
target positions regardless of the size of the team. Figure 6 shows
the performance of the system for 3, 5, 10, and 25-robot cases.
As can be seen, the system is able to bring the effector very
efficiently and quickly to the target region. The target region is
defined as a circle of 2 cm radius around a target position. This
is a very important result, as it shows that multi-robot systems
for homogenous robots can be trained on cases with smaller
sized teams, and then later be scaled to more complicated cases
involving larger teams.

In our previous work (Sathyan and Ma, 2019), we had
described some limitations, such as increased complexity of
training as the number of robots are increased. Moreover, in the
previous work, the GFSs had to be trained again when adding
more robots. These limitations have been solved in this work by
sharing the same GFS across all robots in the team. This also
ensures that robots can be added or removed from the team
without any additional training.

It is noticed when the target position is close to the boundary
of the polygon, the team of robots is unable to keep the effector at
the target region for long. In such cases, the effector is brought to
the target and then tends tomove away until a constraint has been
broken. This phenomenon can be seen in Figure 7. This could be
occurring due to the following reasons:

1. When the effector reaches the target position, which is very
close to the boundaries, the tension forces kx along the
different cables produces a lot of imbalance. This is because
the number of tension vectors away from the boundary is
much higher than the ones directed toward the boundary. This
makes it very difficult to maintain equilibrium.

2. The GFSs directly control the voltages of the actuators in the
respective robots, and not the angular velocities of the DC
motor. This produces additional complexity in bringing the
angular velocities of the spools to zero.

3. The elastic cable is modeled only as spring with no damping
capability. The addition of damping parameter to the cables
could reduce the chances of oscillations, which could help with
keeping the effector in such complex positions (close to the
boundary) for longer.

4. The training is performed for a maximum time t = 20s for
each scenario. Increasing this maximum time during training
may ensure that the effector stays at the target position
for longer.

Table 2 summarizes the performance of systems with different
team sizes. Each of the team sizes are run for 100 randomly
defined scenarios and the figures of merit shown in the table
are calculated. The scenarios were ran for a maximum time of
20 s. The mean and maximum refer, respectively to the mean
and maximum over the 100 scenarios. The table shows the mean
and max times to bring the effector to the target region (arrival
time), mean and max cost values evaluated using Equation (10)
and the mean and max of the Steady State Error (SSE). In the
scenarios that were tested, we notice that in rare instances when
the target is too close to the boundary of the control region, it
becomes difficult to settle within the target region. This is why
for some cases, the maximum SSE is >2 cm. However, even in

these cases, the robots managed to bring the effector to the target
region before drifting away. Based on the 100 test scenarios for
each team size, it is noticed that the trained robots were successful
in bringing the effector to the target region in all scenarios.

It can be seen that the mean cost mostly increases as the
number of robots are increased. This can be attributed to the
fact the control region becomes larger as more robots are added.
Hence, the target could be placed further from the starting
position for larger team causing the cost value to increase.

Our previous works (Sathyan and Ma, 2018, 2019; Sathyan
et al., 2018) were limited to a maximum team size of five, and
it was also observed that the training got increasingly difficult
with the size of the team. Successful completion of the task was
achieved only on 90% of the scenarios tested. The proposed GFS
framework, in this work, is shown scalable to any team size
with computing power to simulate the dynamic system being
the only limitation. The robots were able to achieve the goal for
all the scenarios that were tested. This methodology works for
different team sizes without any additional training. Of course,
if heterogenous robots are added to the team some additional
training will be needed. This methodology works even when the
robots are located arbitrarily, as we will see next.

6.2. Asymmetric Topology
Figure 8 shows the performance of the system when robots
assume an asymmetric topology. No additional training is done
for these cases. The effector always starts from the equilibrium
position, which will be centroid of the workspace in all cases. Just
like the symmetric case, the robots are able to achieve the goal of
bringing the effector to the target very efficiently.

Table 3 summarizes the results obtained after testing on 100
random scenarios for each of the team sizes. Each scenario is
run till maximum time of 20 s. Both the robot positions and the
target positions were changed for each scenario. It can be seen
that compared to the results presented in Table 2, the settling
times are slightly higher for the asymmetric cases. The robots
were successful in bringing the effector to the target region in
all the test cases showing the effectiveness of the methodology.
Similar to the asymmetric topology, there are few instances, when
the target is too close to the boundary, where the effector starts to
drift outside of the target region.

The fact that the system works well even when the robots
are positioned arbitrarily means that the system is very robust
to change in position of the robots. This means robots can
be added or removed from the system without affecting its
performance. Thus, the same GFS can be used even in scenarios
where faulty robots need to be removed from the team. Of
course, in such cases, the workspace of the modified system will
be smaller.

6.3. Moving Target
We also considered cases where the targets are moving. Figure 9
shows two scenarios where the targets aremoving along a circular
path. For both 5 and 10 robot cases shown in Figure 9, the team
is able to keep the effector to follow the target after starting from
the origin (0,0). It can also be noticed that the path followed
in the 10-robot cases is smoother and closer to the target’s path
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FIGURE 7 | Symmetric multi-robot systems with target close to the boundary. (A) 10-robot case: Effector’s path toward the target. (B) 10-robot case: Distance plot.

(C) 25-robot case: Effector’s path toward the target. (D) 25-robot case: Distance plot.

TABLE 2 | Results for different team sizes with symmetric topology.

Team size Mean arrival time (s) Mean cost Mean SSE (m) Max. arrival time (s) Max. cost Max. SSE (m)

3 13.698 1.080 0.012 17.994 3.5782 0.074

5 9.716 1.458 0.009 16.925 3.208 0.021

10 9.584 1.803 0.011 16.110 3.504 0.031

25 9.436 1.742 0.011 16.097 3.521 0.044

than the 5-robot case. This is expected as the 10-robot system has
more degrees of freedom and hence provides more flexibility in
following a moving target.

7. CONCLUSIONS

In our earlier work (Sathyan and Ma, 2019), we applied the GFS
framework to a decentralized system of collaborative robots for

teams consisting up to 5 robots for symmetric topologies. In this
paper, we presented a new scalable GFS framework for the same
application that can be scaled to work regardless of the number
of robots in the team. This works for asymmetric topologies as
well. Due to the homogeneity of the robots, they can each be
modeled using the same GFS controller. This ensures scalability.
Since the inputs to each GFS are measured relative to each robot,
the decisions made by each GFS can be different. The trained
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FIGURE 8 | Multi-robot systems with robots located at arbitrary positions. (A) 3-robot case: Effector’s path toward the target. (B) 3-robot case: Distance plot. (C)

5-robot case: Effector’s path toward the target. (D) 5-robot case: Distance plot. (E) 10-robot case: Effector’s path toward the target. (F) 10-robot case: Distance plot.

(G) 25-robot case: Effector’s path toward the target. (H) 25-robot case: Distance plot.

Frontiers in Robotics and AI | www.frontiersin.org 11 December 2020 | Volume 7 | Article 601243

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Sathyan et al. Scalable Team of Collaborative Robots

TABLE 3 | Results for different sized teams with asymmetric topology.

Team size Mean arrival time (s) Mean cost Mean SSE (m) Max. arrival time (s) Max. cost Max. SSE (m)

3 15.145 0.747 0.008 16.998 2.185 0.019

5 13.66 1.504 0.009 18.996 3.421 0.025

10 10.376 1.713 0.011 16.819 3.461 0.018

25 11.230 1.818 0.010 17.001 3.504 0.037

FIGURE 9 | Multi-robot systems following moving targets. (A) Moving target

case with 5 robots. (B) Moving target case with 10 robots.

system was shown on various scenarios with teams ranging in
size from 3 to 25 robots. The results for cases when the robots are
located in asymmetric fashion were also presented.

Although the system was trained only on cases involving
5 robots distributed in a symmetric topology, the resulting

controllers were shown to work even for asymmetric topologies
with different team sizes. This shows that this GFS framework
can be trained on simpler and smaller teams and then be scaled
to more complex, larger sized teams. It also shows that the system
does not have to be retrained when more robots are added to
or removed from the team. Thus, the system can work, with a
reduced workspace, even when multiple robots malfunction.

After extensive testing a range of testing scenarios, it is noticed
that the trained system of robots is very efficient in bringing
the effector to the target position. The lack of dependence
on centralized controller and inter-robot communication
provides huge advantage in terms of processing and hardware
requirements. This also makes the system more fault tolerant.
The robot team is very successful in achieving the goal even
though several constraints were imposed on the system. These
constraints included physical constraints, such as cable length,
actuator constraints, communication limitations, and the limited
degree of freedom of the robots.

The results obtained for cases where the targets are located
close to the boundary of the workspace were also discussed. We
will look into these cases in more detail. As future work, we also
plan to train such systems using the GFS framework for scenarios
with moving targets. We also plan to use this approach for other
problems, such as team of UAVs collaboratively lifting an object
to a target position.
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