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Modeling deformable objects is an important preliminary step for performing robotic

manipulation tasks with more autonomy and dexterity. Currently, generalization

capabilities in unstructured environments using analytical approaches are limited, mainly

due to the lack of adaptation to changes in the object shape and properties. Therefore,

this paper proposes the design and implementation of a data-driven approach, which

combines machine learning techniques on graphs to estimate and predict the state and

transition dynamics of deformable objects with initially undefined shape and material

characteristics. The learned object model is trained using RGB-D sensor data and

evaluated in terms of its ability to estimate the current state of the object shape, in addition

to predicting future states with the goal to plan and support the manipulation actions of

a robotic hand.

Keywords: deformable objects, dynamic shape modeling, manipulation, robotics, shape, sensing

1. INTRODUCTION

In the context of robotic manipulation, object models are used to provide feedback signals
that a robot can control when performing a specific task. For deformable objects, the object
pose is not a sufficient state representation (Khalil et al., 2010) to guarantee even low-level
manipulation tasks (e.g., pick-and-place), as manipulation actions produce changes in the object
shape. Likewise, high-level manipulation tasks (e.g., making a bed or cleaning surfaces) involve
knowledge of future behaviors to develop hierarchical plans. Therefore, an object model that
integrates shape representation and prediction is required in order to perform a variety of tasks
with deformable objects.

Early attempts to estimate the object shape in robotic manipulationmainly adopted an analytical
approach, which is commonly adjusted in simulation (Nadon et al., 2018). This comes with some
drawbacks in real robotic environments, as simulators are currently not sophisticated enough to
provide realistic models of non-rigid objects (Billard and Kragic, 2019), and the support for sensor
measurements and hardware in simulators is very limited. Furthermore, certain assumptions about
objects are often made (e.g., homogeneous composition or isotropic materials). On the contrary,
it is rarely possible to determine these conditions in advance for every new object encountered in
the environment. This lack of a general-purpose methodology to estimate the object shape makes
it difficult to develop more autonomous and dexterous robotic manipulation systems capable to
handle deformable objects (Sanchez et al., 2018).

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.600584
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.600584&domain=pdf&date_stamp=2020-12-23
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ppayeur@uottawa.ca
https://doi.org/10.3389/frobt.2020.600584
https://www.frontiersin.org/articles/10.3389/frobt.2020.600584/full


Valencia and Payeur Modeling Deformable Objects in Robotics

In this paper, we present a data-driven approach to estimate
and predict the state of initially unknown deformable objects
without the dependency on simulators or predefined material
parameters. The contributions of this work can be summarized
as follows: First, we develop a method for shape estimation
using Self-Organizing Neural Networks (SONNs). Second, we
design and implement an original method for shape prediction
using Graph Neural Networks (GNNs) that leverages the initial
SONN-based model. Third, we test the combination of the
shape estimation and prediction methods as a learned model
of deformable objects in real robotic environments. This paper
represents a significant extension to previous work (Valencia
et al., 2019) that corroborates the learned model across different
types of deformable objects with experimental evaluations.

2. RELATED WORK

Various methods that explore analytical modeling approaches
for non-rigid objects in robotic environments are inspired by
physics-based models, extensively studied in computer graphics
(Nealen et al., 2006). These include continuous mesh models
such as Euler-Bernoulli (EB) (Fugl et al., 2012), linear Finite
Element Method (FEM) (Lang et al., 2002; Frank et al., 2014;
Jia et al., 2014; Petit et al., 2015; Duenser et al., 2018) and non-
linear FEM (Leizea et al., 2017; Sengupta et al., 2020). Also,
discrete mesh models such as linear Mass-Spring Systems (MSS)
(Leizea et al., 2014) and non-linear MSS (Zaidi et al., 2017)
are considered. Additionally, discrete particle models such as
Position Based Dynamics (PBD) (Güler et al., 2015) have been
introduced. In these methods, a crucial step is to determine
the material parameters of a deformable object (e.g., Young’s
modulus and Poisson’s ratio). This is typically done via specific
sensor measurements or assuming prior material information.
More generally, these parameters are obtained by simultaneously
tracking the shape while applying optimization techniques in
the model.

Alternatively, data-driven approaches leverage sensor data to
approximate the behavior of deformable objects typically using
learning-based models. These include Single-layer Perceptron
(SLP) (Cretu et al., 2012; Tawbe and Cretu, 2017). Other methods
combine analytical and data-driven approaches in different parts
of the modeling pipeline. For example, a Gaussian Process
Regression (GPR) is used to estimate the deformability parameter
of a PBD model (Caccamo et al., 2016). An Evolutionary
Algorithm (EA) is proposed to search for the parameter space of
anMSS model (Arriola-Rios andWyatt, 2017). In these methods,
an important aspect for a correct modeling is the information
extracted from the sensor measurements. For RGB-D data, these
correspond to properties of the shape (e.g., surfaces or feature
points) and typically provide a structured representation suitable
for the type of deformation model used. As such, B-spline snakes
(Arriola-Rios and Wyatt, 2017) can be used to create a mesh-
like representation. On the other hand, optical flow (Güler et al.,
2015) and neural gas (Cretu et al., 2012) are used to create a
particle-like representation.

Recent learning-based models such as Graph Neural
Networks (GNN) have demonstrated the ability to act as a
physics engine (Battaglia et al., 2016; Mrowca et al., 2018).
Although there is little exploration of training such models
using only sensor measurements. The most advanced attempt
to model deformable objects beyond simulation is presented in
Li et al. (2019a), where a real robotic gripper performs a shape
control task on a deformable object. However, the models are
initially trained entirely in simulation. Conversely, while aiming
at exploiting real shape measurements for the modeling and
prediction stages, this paper expands on the work of Cretu et al.
(2012), as we aim to contribute a general-purpose methodology
for modeling deformable objects in real robotic environments. In
this way, we extend the latter by exploring recent learning-based
models with physical reasoning capabilities (Battaglia et al.,
2016) using RGB-D sensor measurements.

3. METHODOLOGY

In this section, the proposed data-driven approach to model
deformable objects is introduced (Figure 1). The main
components of the learned object model are the shape estimation
and prediction methods.

3.1. Shape Estimation
A Self-Organizing Neural Network (SONN) based model
is proposed to estimate the object state from the sensor
measurements. This model is called Batch Continual
Growing Neural Gas (BC-GNG) and is an extension of the
continual formulation of the Growing Neural Gas (C-GNG)
algorithm (Orts-Escolano et al., 2015). C-GNG is extended by
implementing a batch training procedure that enables to update
the model parameters while avoiding an individual iteration
on each sample during the execution of the algorithm. This
approach provides benefits such as computational efficiency and
faster convergence. First, the core principles of GNG models
are described and then the technical details of our proposal
are explained.

Growing Neural Gas: A GNG model (Fritzke, 1995) produces
a graph representation G = (O,R) from a data distribution P
of size N. Where, O = {oi}i=1 :NO

is the set of nodes with
NO cardinality, and R = {rk, uk, vk}k=1 :NR

is the set of edges
with NR cardinality, which connects an unordered pair of nodes
uk and vk. Also, each node has an associated feature vector
oi = {xi, ei}, which contains the position and spatial error,
respectively. Likewise, each edge has an associated feature vector
ek = {ak}, which contains the connection age. The position is a
direct measure of the spatial location of a node with respect to
the sample, while the spatial error and connection age serve as
measures for the addition and removal processes of nodes and
edges from the graph.

The GNG model receives as input distribution, P, the current
frame of the point cloud data associated to the object and
produces the graph, G, as an estimation of the object shape. The
model is trained following the execution of Algorithm 1. First,
the graph is initialized by creating two nodes with position set
to random values and spatial error set to zero. In addition, an
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FIGURE 1 | Components of the proposed data-driven approach for deformation modeling. The framework takes as input RGB-D sensor images and robotic hand’s

fingertips pose. (Data Processing) object and robot manipulation actions are detected. (Learned Object Model) the processed data is combined for the estimation and

prediction of the object shape.

edge connecting these nodes is created with age set to zero. After
initialization, an individual sample, ξ , is randomly drawn from
the distribution, and then the ADAPTATION and GROWING
phases are run. During the former, nodes and edges features are
sequentially updated, while during the latter and after receiving
a certain number of samples, λ, new nodes and edges are added
to the graph. These phases follow the original algorithm proposed
by Fritzke (1995). In this work, the algorithm is executed until the
quantization error (QE) reaches certain limit, which gives more
flexibility to control the representation, as during the GROWING
phase, nodes are dynamically created in an attempt to best fit the
samples available in the input data, but does not require setting a
fixed number of nodes. The quantization error is evaluated over
the distribution P and computes the average difference between
the closest node position (i.e., the smallest Euclidean distance) xs1
and the associated sample ξ .

QE =
1

N

∑

ξ∈P

∥∥xs1 − ξ
∥∥ (1)

Algorithm 1:Steps of computation in GNG

Input: P
Output: G
1: G← init_graph(P)
2: while QE > QEmax do

3: for all n ∈ N do

4: ξ ∼ P
5: ADAPTATION(G, ξ )
6: if (nmod λ) = 0 then
7: GROWING(G)
8: end if

9: end for

10: end while

Outlier Regularization: One problem that limits the use
of GNG in problems with time constraints, such as tracking
the shape of a deformable object as it evolves, relates to the
requirement to retrain themodel for every new input distribution
collected by sensors. A continual formulation of the Growing
Neural Gas (C-GNG) (Orts-Escolano et al., 2015) implements a
technique that leverages the knowledge already learned during
previous executions. Specifically, the graph from the previous
data frame Gt−1 is used to initialize the graph in the current
data frame G. This provides a significant practical improvement
but makes its formulation more sensitive. For example, outliers
can affect the graph by creating nodes that do not adapt to the
input distribution. The presence of these dead nodes represents
a serious issue for the estimation of the object shape, especially
when it is meant to vary over time. Therefore, we propose to
regularize the influence of the outliers during the procedure
that updates the position feature of each node. During the
ADAPTATION phase, the nodes position are updated (Equation
2) for those that are found as closest xs1 or topological neighbors
xn to the sample ξ . The parameters, ǫs1 , and, ǫn, correspond to
the learning rates that control the influence of the adjustment of
each contribution to the position feature.

xs1 ← xs1 + ǫs1 (ξ − xs1 )

xn ← xn + ǫn(ξ − xn)
(2)

We introduce a new term, ws1 , that modifies the learning rate of
the closest node position (Equation 3). In this way, those pairs
of nodes and samples for which distances are large are penalized
due to the possibility of being outliers, whereas those with small
distances remain unchanged.

xs1 ← xs1 + ws1ǫs1
(
ξ − xs1

)
(3)

This regularization term (Equation 4) evaluates a 1D Gaussian
kernel function with mean equal to the difference between the
Euclidean distance ‖xs1 − ξ‖ and maximum quantization error
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QEmax. And, standard deviation proportional to the maximum
quantization error QEmax.

ws1 =

{
1, µ < 0

K(µ, σ ) = e
−

µ2

2σ2 , others
(4)

Batch Training: We also introduce a new procedure to update
the features of the nodes and edges in batches, which unifies
the contributions of a node with respect to its role among
the samples. First, the node position is updated by combining
the contributions when the node is found as closest and as
topological neighbor. Similarly, the age of the edges connecting
the closest node with its neighbors is updated by accumulating
the times in which the node is found as closest. More specifically,
the Euclidean distances between all the samples and nodes
position are computed, also finding the two closest nodes at once.
With this information, the input distribution can be represented
as a set P = {Pi}i=1 :NO

, where Pi is the batch data associated
with each node found as closest, with size Ni. In this way, the
contribution of each node as closest is reformulated (Equation
5) as the average of the distances paired with that particular
closest node.

x
s1
i =

1

Ni

∑

ξ∈Pi

(ξ − xi) (5)

Also, the age of the neighbor edges is reformulated as an
increment of the batch data size Ni. Since nodes are likely
to be connected with more than one edge in the graph, the
contribution of each node as neighbor requires an additional
consideration. Initially, all the distances between the node and the
samples associated due to the connections with all its neighbor
nodes are collected, then the average of the collected distances is
computed (Equation 6) similarly as in the previous step.

x
n
i =

∑

j

1

DiNj

∑

ξ∈Pj

(ξ − xi) (6)

Where, Pj is the batch data of each neighbor of the closest
node and Di is the number of edges of the closest node. Thus,
the contributions of each node as closest and as neighbor are
included in a single expression to update the position feature
(Equation 7), thus replacing the two-step update process with
only an ADAPTATION phase in the online training, as detailed
in Algorithm 2. By computing the Euclidean distance for all the
samples at once, this procedure is also highly parallelizable as
nodes can be updated independently.

xi ← xi + ǫs1x
s1
i + ǫnx

n
i (7)

Algorithm 2:Steps of computation in BC-GNG

Input: P, Gt−1

Output: Gt

1: if t = 1 then
2: G ← GNG(P)
3: else

4: G ← Gt−1

5: end if

6: while QE > QEmax do

7: ADAPTATION(G, P)
8: end while

3.2. Shape Prediction
As described in section 1, shape estimation alone does
not provide sufficient information to perform high-level
manipulation tasks. Therefore, a prediction phase must be
incorporated in order to characterize the future states of
a deformable object. With the objective to support the
requirements of path planning and dynamic interaction of a
robotic hand with a deformable object, Graph Neural Network
(GNN) based models are also adapted in our framework
to predict the future object state using the information of
the current object state and the manipulation actions of the
robotic hand. Specifically, we use the Interaction Network (IN)
framework (Battaglia et al., 2016) along with its extension known
as PropNet (Li et al., 2019b) for supervised learning on graph
structures. Unlike standard GNNs, the IN is specifically designed
to learn the dynamics of physical interactive systems. This model
is characterized by being able tomake predictions for future states
of the system, and also to extract latent physical properties.

3.2.1. Object-Action Representation
Anew representation is created to jointly capture the object shape
and the manipulation actions. This is defined as a directed graph
G = 〈O,R〉. In which, O = {oi}i=1 :NO

is the set of nodes
with NO cardinality, and associated feature vector oi = {xi, vi},
which contains the object-action state defined as position and
velocity. Also, R = {rk, vk, uk}k=1 :NR

is the set of edges with
NR cardinality, which due to the graph directionality connects
an ordered pair of nodes, defined as sender node uk and receiver
node vk.

The object state is the shape estimation G produced by the
BC-GNG model (section 3.1) and the manipulation actions are
included as contact points, which are captured from the fingertips
pose of the robotic hand. This means that new nodes are added
to the graph with their feature corresponding to the position
components of the fingertips pose. Also, edges are created when
physical interactions are detected between the fingertips and
the object, thus assigning action nodes for the fingertips as
senders, and object nodes as receivers in the directed graph. The
edge direction adds a causality property, indicating that action
nodes produce the displacement of the object nodes and not
the opposite. Furthermore, the velocity feature is computed by
differentiating the signal obtained by the position feature of the
object-action nodes.
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3.2.2. Interaction Networks
An IN model is trained to learn the transition dynamics of the
object state. It takes the object-action graph at a certain time step
Gt and outputs a prediction of the nodes position of the graph
for the next time step Ĝt+1. The model is updated following
the execution of Algorithm 3, which uses the evaluation of
aggregation and update functions (Gilmer et al., 2017) to perform
computations with the graph features. The update function, φR, is
responsible to perform per-edge updates. This function evaluates
the collected features of the edge along with the sender and
receiver nodes, and thus computes the edge effect. Similarly, the
update function, φO, is responsible to perform per-node updates.
This function evaluates the collected features of the node along
with those produced by the update function, and thus computes
the node effect. Since the update function produces a variable
number of effects associated with each node, these are reduced
using an aggregation function, ρR→O, in order to produce a
single effect.

The update functions are implemented as Multi-layer
Perceptron (MLP) modules while the aggregation function is a
summation. The mean squared error (MSE) of the predicted and
observed nodes velocity (Equation 8) is used as the loss function
to train the models. This statistical metric computes the average
of the squared errors between the predicted velocities, v̂i,t+1, and
the observed velocities, vi,t+1.

MSE =
1

NO

NO∑

i=1

(
v̂i,t+1 − vi,t+1

)2
(8)

Algorithm 3:Steps of computation in IN

Input: Gt

Output: Ĝt+1

1: ek,t ← φR

(
rk,t , ouk,t , ovk,t

)
k=1 :NR

2: ei,t ← ρR→O(ek,t)i=1 :NO

3: ôi,t+1 ← φO(ei,t , oi,t)i=1 :NO

3.2.3. Propagation Networks
A limitation of the IN occurs for systems that require long and
fast propagation effects, since its formulation only considers local
pairwise interactions during each time step. Therefore, several
iterations of the algorithm are needed in order to propagate
the information on the graph, and thus reach remote nodes. As
an extension to IN, the PropNet (Li et al., 2019b) formulation
(Algorithm 4) proposes the inclusion of a multi-step propagation
phase, which consists of computing the edge and node effects
using an additional iterative process, where l corresponds to
the current propagation step parameter, and is set to a value
within the range of 1 ≤ l ≤ L. Also, the update functions,
φenc
R , φenc

O , are used to encode the input edge and node features,
respectively. While the function, φdec

O , is used to decode the
output node feature. In this way, these functions learn a latent
representation of the graph features, which are also part of the
model during training.

FIGURE 2 | Configuration of the real robotic environment. The location of the

RGB-D sensor, deformable object and three-fingered robotic hand are marked

in red.

Algorithm 4:Steps of computation in PropNet

Input: Gt

Output: Ĝt+1

1: oenci,t ← φenc
O

(
oi,t

)
i=1 :NO

2: renc
k,t ← φenc

R

(
rk,t , ouk,t , ovk,t

)
k=1 :NR

3: h0i,t ← 0

4: for all l ∈ L do

5: el
k,t ← φE(renck,t , h

l−1
uk ,t

, hl−1vk ,t
)k=1 :NR

6: eli,t ← ρR→O(elk,t)i=1 :NO

7: hli ← φO(oenci,t , eli,t , h
l−1
i,t )i=1 :NO

8: end for

9: ôi,t+1 ← φdec
O (hLi,t)i=1 :NO

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup
The configuration of the real robotic environment is shown in
Figure 2, which consists of a Barrett BH8-280 robotic hand1

resting on a flat table, an Intel RealSense SR305 RGB-D sensor2

mounted overhead on a tripod, and a deformable object placed
on the palm of the robotic hand. The complete set of deformable
objects used to construct the datasets is shown in Figure 3.

All the sensors and hardware components used in the robotic
manipulation setup are operated through ROS (Quigley et al.,
2009). The data preparation, signal and image processing steps
are implemented using SciPy (Virtanen et al., 2020) and OpenCV
(Bradski, 2000) libraries. The models are implemented in the
Deep Graph Library (Wang et al., 2019) using PyTorch (Paszke
et al., 2019) as backend.

1https://advanced.barrett.com/barretthand
2https://www.intelrealsense.com/depth-camera-sr305
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FIGURE 3 | Deformable objects used to construct the dataset. (Ball) plastic type found in toy stores. (Sponges) foam type used as cleaning utensils. (Towel) textile

type found in warehouses. (Toy) stuffed type found in pillows or stuffed animals.

4.2. Sensor Measurements and Data
Processing
The RGB-D sensor data is processed in a ROS node to detect the
object and generate the point cloud data. Also, another ROS node
is used to estimate the robotic hand’s fingertips pose to generate
the manipulation action information.

4.2.1. Object Detection
Classical image segmentation techniques are applied to both
aligned color and depth images for the detection of the
deformable objects. The color image is transformed to the HSV
color space, and then a histogram backprojection technique is
applied to obtain a binary mask. Then, the mask is filtered by
applying a convolution with threshold operation to obtain a
cleaner result. Moreover, the depth image is cropped by volume,
truncating the spatial values based on available information about
the object position relative to the camera. Thus, the resulting
color and depth masks are combined and applied to the depth
image to obtain the object of interest. The segmented image is
then deprojected to convert the 2D pixels to 3D point clouds.
For the small sponge object, this process transforms the RGB-D
sensor images from 640×480 to approximate 80×80×3.

4.2.2. Fingertips Pose Estimation
The data captured on the fingertips correspond to the pose
(position and orientation) of each tip. To facilitate the accurate
estimation of the pose, a set of AR markers are placed on each
tip. The design is based on the ARTags fiducial marker system,
and generated according to the following parameters: size of 1.8
cm, margin of 1-bit, and pattern of 25-bit 5×5 array. The latter
controls the number of tags that can be created based on the
marker dictionary. Given the physical dimensions of the robotic
hand, this design enables to precisely fit eachmarker on the tip. In
turn, the markers are visible enough to be detected in the images
captured by the RGB-D sensor. The fingertips pose corresponds
to that estimated by the markers. The pose enables to define the
contact points, which is determined by a contact region with
spherical shape, centered on the marker and with a radius of 2.3
cm. The latter is measured considering the tip size relative to the
marker location.

4.3. Shape and Motion Estimation With
GNG-Based Models
These experiments are run on a computer with 1× Intel Core
i5-7300U @ 2.60 GHz, 16 GB RAM, and GNU/Linux operating

system. The parameters of the GNG models are shared as much
as possible in order to consistently compare the performance of
the different variations. For GNG, an age of 35, learning rate of
0.1 and 0.005, error decay of 0.5 and 0.9995 are used. For C-GNG,
an age of 2,000, learning rate of 0.1 and 0.005. And for BC-GNG,
an age of 2,000, learning rate of 0.4 and 0.01 are used. The sigma
value of the regularization term used in C-GNG and BC-GNG
corresponds to 0.6 for the towel and 4 for the rest of the objects.

The fingers trajectory are generated to perform a squeeze-like
manipulation with each object. The base joints range is limited
to (−90◦,90◦), whereas the spread joint is limited to (−45◦,45◦).
Each trajectory is generated taking as final configuration a
random joint position within the available moving range for
each robotic finger, and using a linear interpolation with 50
points beginning from a predefined rest position of the hand.
The trajectories are designed in this manner to produce brief
rest periods at the end of each point with the intention of
preventing slippage or sliding movements of the object, and thus
mainly capturing information associated with the deformation.
A dataset is created which consists of a file with 800 samples,
using a sampling rate of 30 Hz. Each file stores the data
generated in synchronization with the execution of the fingers
trajectory, which takes approximately 27 s to complete. Results
for a subset of the data frames that progressively reflects various
deformation levels using the small sponge as an example of
deformable object are shown in Figure 4. We refer the reader to
the Supplementary Material for additional results with the other
deformables objects considered, as per Figure 3.
As mentioned in section 2, the properties extracted from the
object shape are the basis for any learned model. This means
that motion changes should closely capture the dynamics of
the deformation. A motion analysis can be used to determine
whether the produced shape estimation is consistent with the
deformation and reflects the current state of the deformable
object. The latter is formalized by also considering the
requirements of real robotic environments.

4.3.1. Real-Time Execution
We evaluate the performance of different variations of GNG for
real-time shape estimation using point clouds as input data. The
runtime of eachmodel is recorded per data frame and the average
over the entire manipulation trajectory is computed, as shown
in a bar plot in Figure 5. The models are evaluated using three
levels of quantization error, which are selected to provide an
insight of the precision costs associated to the representation.
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FIGURE 4 | Qualitative results of the shape estimation method. (Top) color image sequence of the scene with the small sponge at different deformation levels.

(Bottom) point cloud and graph representation of the object shape obtained by the BC-GNG model.

FIGURE 5 | Average of runtime sequence. GNG models formation computing

time with respect to varying tolerance on model accuracy during the

manipulation of the small sponge object.

For GNG, the runtime takes an average of 80.7 s when a
quantization error tolerance of QE = 0.005 is imposed, and grows
linearly if more precision (lower quantization error) on the shape
representation is required. On the other hand, C-GNG runtime
is several orders of magnitude faster mainly due to the reuse of
the previous graphs over iterations. Although, this formulation
is a great improvement, its runtime is not yet suited for real-
time applications, at least for low-power CPUs and embedded
systems. It takes an average of 7.4 s at each data frame but reveals
less sensitive to the tolerance set on the model precision. Finally,
the proposed BC-GNG variation that involves batch training
considerably speeds up the execution. In this case, the algorithm
needs an average of 0.4 s to construct the same graph with only
a slight variation in computing time when the desired model
accuracy is varied. In certain cases, sudden increase in time is
observed when more accuracy is required, as shown in QE =
0.003. This occurs in data frames with high variations, since
graphs with a fixed number of nodes cannot always adapt to
such levels of accuracy. Therefore, early stoppingmechanisms are
required to avoid unnecessary iterations.

4.3.2. Temporal Smoothing
We evaluate the performance of different variations of GNG
to generate stable displacements of the nodes that encode the
object shape. The path followed by each individual node is
measured relative to the centroid coordinate system to mitigate
the influence of rigidmotions. These local displacements estimate
the actual deformation motion of the object shape. The 3-
dimensional temporal evolution of local nodes for the small
sponge object is shown in Figure 6 for a subset of nodes (first
6 out of 34 nodes) extracted from the graph forming the
shape model and over the 800 frames that correspond to a
manipulation operation.

The continual models (C-GNG and BC-GNG) clearly produce
more stable signals. An interesting property of BC-GNG is
the low-pass filter effect that is observed in the signals. This
behavior occurs due to the characteristic of the algorithm that
uses the average of the nodes position during the update process.
Therefore, the node displacements obtained by BC-GNG are
much smoother, and desirable to estimate with confidence the
motion and deformation quantities of a non-rigid object as its
shape is not dominated by noise associated with the individual
dynamics of nodes forming the graph-based representation.

4.3.3. Region Correspondence
Finally, we evaluate the performance of different variations of
GNG to produce node displacements (Figure 6) that can be used
as features of the object motion. The region correspondence of
nodes position is non-existent in GNG due to the stochastic
nature of the algorithm, which causes that new nodes are not
created around the same location. For C-GNG, the displacements
exhibit a localized motion of nodes position that preserve certain
regions of the shape. However, there still exists some interference
between nodes which causes unrecoverable positions and
affects the region correspondence of the representation, more
noticeable when large deformations occur. For BC-GNG, these
displacements reflect a more localized motion of nodes position,
even further to that observed in C-GNG. Interference between
nodes is not causing strong deviations in their displacements,
hence better preserving their correspondence throughout the
manipulation task.

Frontiers in Robotics and AI | www.frontiersin.org 7 December 2020 | Volume 7 | Article 600584

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Valencia and Payeur Modeling Deformable Objects in Robotics

FIGURE 6 | Local displacements of nodes encoding the object shape. Three-dimensional coordinates of nodes obtained by the GNG models during the manipulation

of the small sponge object.

4.4. Deformation Dynamics Prediction With
GNN-Based Models
These experiments are run on a cloud instance with 1×
Intel Xeon Processor @ 2.3GHz, 1× NVIDIA Tesla K80 GPU
with 2,496 CUDA cores, 12 GB RAM GDDR5 VRAM, and
GNU/Linux operating system. The training procedure of the
GNN models consists of 20 iterations, and using a batch
size of 1. The MLP modules are trained using the Adam
optimizer (Kingma and Ba, 2015) with learning rate of 0.001 and
momentums of 0.9 and 0.9999. A learning rate scheduler with
factor of 0.8 and patience 3 is used.

The architecture design of the GNN models follows the
configuration presented in Li et al. (2019a). This configuration
is shared among models in order to consistently compare their
performances, hence the main difference is the propagation step
parameter L, which is 1 for IN and 2 for PropNet. In this
way, the encoder functions φenc

R , φenc
O are 2-layer MLPs with

hidden sizes of 200 and 300, with output size of 200. The update
functions φR, φO are 1-layer MLPs with hidden size of 200,
and output size of 200. And, the decoder function φdec

O is 2-
layer MLP with hidden size of 200 and output size of 3, the
latter corresponds to the components of the predicted velocity.
All MLP modules use the rectified linear unit (ReLU) as the
activation function. A dataset of graphs per object is created and
consists of 20 files, each associated to a different fingers trajectory.

This produces 16,000 samples in total. The dataset is divided into
80% for training, 10% for validation and 10% for test, which is
equivalent to 16 trajectories (12,800 randomly shuffled samples)
and 2×2 trajectories (2×1,600 samples) respectively. In addition,
the dataset is normalized between 0 and 1 due to the varied scales
of the position and velocity features.

The GNN models are primarily analyzed in two situations:
first evaluating the performance of the predictions for the object
deformation in single-step time sequences, and then evaluating
the ability to generalize over multi-step time sequences. In order
to enable a more direct interpretation of the results, the Root
Mean Square Error (RMSE) of the predicted and observed nodes
position is used as a metric. Thus, the nodes position of the next
frame x̂i,t+1 are calculated via explicit integration of the equation
of motion (Equation 9), which uses the predicted velocities of the
next frame v̂i,t+1 and time per frame 1t to update the current
position of each node.

x̂i,t+1 = xi,t +1t · v̂i,t+1 (9)

Single-Step Predictions:The nodes position are predicted from the
most recent observed data at each frame (t + 1). The GNNmodels
obtain a relatively low and consistent error (Table 1) of the nodes
position throughout the entire range of acquired data frames over
the object manipulation duration. These results confirm a stable
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prediction capability, one step ahead, with the GNN models, as
shown on the left of Figure 7.

Multi-Step Predictions: The nodes position are predicted for
every frame but with updates from observed data fed into the
model at different frames (t > 1), which involves a longer-
term prediction before new data is made available to the GNN
models. The error produced by the models remains relatively low
(Table 1) over a short range of frames (t + 5), but progressively
degrades as the number of frames further increases (t + 50). As a
consequence, at some point the models become unable to predict
with confidence the nodes position, as shown on the right of
Figure 7. The errors from previous iterations cumulate and the
prediction diverges, causing the deformable object prediction to
enter an unrecoverable state.

5. DISCUSSION

5.1. Shape Estimation Quality
All variants of GNG studied in this research produce a graph
sequence that estimates the object shape. However, regardless
of maintaining consistency during model training (i.e., shared
parameters and stopping criterion), the proposed BC-GNG
model performs better in terms of computing time and
motion estimation, as demonstrated experimentally in section
4.3. Consider the data frames (Figure 4) where the largest
deformation occurs (around t = 400). The areas on the shape
where the object is compressed more (e.g., around the center
and vertices) show a higher and more natural accumulation of
nodes. Also, the estimation obtained when no interaction occurs

TABLE 1 | Prediction error of nodes position.

GNN models
Frame steps

t + 1 t + 5 t + 50

IN 0.08 ± 0.02 9.52 ± 7.14 46.28 ± 30.53

PropNet 0.08 ± 0.02 9.53 ± 7.14 53.66 ± 37.08

RMSE (10-5 ) values in meters obtained by the GNN models at different time steps during

the manipulation of the small sponge.

between the fingers and the small sponge (around t = 800)
produces a more symmetric node density that better resembles
the object topology. These characteristics are also observed in the
other deformable objects considered in these experiments.

We also observed that BC-GNG still exhibits some difficulty
to recover the initial node position for elastic objects. Unlike C-
GNG, such variations do not manifest as abrupt changes in the
signal due to the smoother characteristic of the displacements.
This behavior is more desirable since abrupt changes are directly
associated with large deformations, which on the contrary do
not correspond to the reality of what the object is experiencing.
In particular, local displacements of large volumetric objects are
more affected. These might be related to occlusions causing
correspondence problems by further reducing the amount of
points reported by the sensor when the object is manipulated.

5.2. Shape Prediction Reliability
The main advantage of combining a GNN predictive model
(IN and PropNet) with a self-organizing model (BC-GNG)
is the fact that the training data generated by the latter are
dynamic graphs with efficient size. As noted in Li et al. (2019a),
training GNNs with large static graphs may overload memory
capacity and delay convergence. Furthermore, such models do
not perform well in dynamical settings due to unnecessary
interactions associated to a fully connected graph topology. The
proposed combination of models contributes to overcome these
important constraints, which can be detrimental to successful
robotic manipulation of deformable objects. Thus, the GNN
models trained in combination with the BC-GNG graphs
effectively capture the immediate changes of the object shape
when evaluated in single-step, or short-term, time sequences
and demonstrate potential to produce robust and visually
plausible predictions of the deformation dynamics. On the other
hand, while their performance tends to degrade over longer
term predictions, anticipating an object’s shape deformation a
few steps ahead is representative of what human beings can
realistically achieve, and generally proves sufficient for robotic
manipulation supported by modern RGB-D sensors that can
now capture point clouds in real-time. Given that the modeling
and prediction framework is meant to be part of the robotic

FIGURE 7 | Qualitative results of the shape prediction method. Graph sequences predicted by the GNN model (PropNet) over different time horizons for the small

sponge with three contact points (nodes in red-green-blue). The predicted shape corresponds to the nodes position produced by the model. The observed nodes

position are displayed in shaded color.
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hand control loop, new RGB-D data is made available to update
the deformable object representation, and provide an updated
prediction, at the same frame rate as the robot controller. As
a result, long-term prediction is not of essence in this type
of application. According to the configuration used, we also
notice that the performance of the GNN models are very
similar. Although, the latter could be affected by the fact that
PropNet shows faster convergence in training than IN due to the
multi-step propagation phase.

6. CONCLUSION

This paper presents a first attempt at using graph models to
learn the dynamics of deformable objects entirely from RGB-
D sensor measurements. The proposed BC-GNG formulation
improves the performance over C-GNG by producing graphs
with better node stability, correspondence in regions with shape
variations and lower computational cost. These properties enable
to combine other graph models such as GNNs to predict the
deformation dynamics of non-rigid objects.

By combining the relational structure of self-organizing and
graph neural networks, the proposed approach successfully
captures the object shape and predicts the deformation dynamics
when evaluated over single-step or short-term time sequences.
In comparison to analytical models, execution time is faster
and information on the shape and physical properties of the
object does not need to be known or approximated a priori.
Therefore, the proposed combination of graph models and

their adaptation demonstrate strong potential for characterizing
deformable objects’ shape and dynamics, as required to support
advanced dexterous robotic manipulation.
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