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The emergent interest in artificial nanostructures that can be remotely navigated a

specific location in a fluidic environment is motivated by the enormous potential this

technology offers to biomedical applications. Originally, bio-inspired micro-/nanohelices

driven by a rotating magnetic field were proposed. However, fabrication of 3D helical

nanostructures is complicated. One idea to circumvent complex microfabrication is

to use 1D soft magnetic nanowires that acquire chiral shape when actuated by a

rotating field. The paper describes the comprehensive numerical approach for modeling

propulsion of externally actuated soft magnetic nanowires. The proposed bead-spring

model allows for arbitrary filament geometry and flexibility and takes rigorous account of

intra-filament hydrodynamic interactions. The comparison of the numerical predictions

with the previous experimental results on propulsion of composite two-segment (Ni-Ag)

nanowires shows an excellent agreement. Using our model we could substantiate and

rationalize important and previously unexplained details, such as bidirectional propulsion

of three-segment (Ni-Ag-Au) nanowires.

Keywords: microswimmer, micropropeller, magnetic nanowire, driven propulsion, flexible filament, bead-spring

model

1. INTRODUCTION

Development of artificial nanomachines that can controllably propel through complex fluidic
environments is one of the most exciting challenges of nanotechnology. The emergent
approaches range from catalytically driven nanowires, Janus particles to thermally, light- and
ultrasound-driven colloids (Wang, 2013). One of the promising methods is magnetic actuation.
While the traditional techniques are based on strong gradient magnetic fields to generate a force
for remote towing of magnetic nanoparticle, the alternative approach relies on a weak (milli Tesla)
uniform rotating magnetic field that serves to apply a torque twirling the nanomotor. Given that
the particle shape admits non-trivial rotation-translation coupling, such torque-driven twirling will
result in net propulsion. Notice that while the field gradient can tow an isotropic (i.e., spherical)
particle, it is not very efficient due to the need of large field strength (of the order of Tesla) required
for creating appreciable variance of the field at the size of the nanoparticle. Although propulsion
based on external magnetic torque requires more complex particle shape [e.g., helical (Ghosh and
Fischer, 2009; Zhang et al., 2009)], it offers a remote, fuel-free and engineless propulsion in a variety
of fluidic environments with typical velocities considerably exceeding the speed of gradient towing.

This technology has been extensively studied over the last decade by a number of groups.
Various methods, such as “top-down” approach (Zhang et al., 2009), delamination of magnetic
stripes (Smith et al., 2011), glancing angle deposition Ghosh and Fischer (2009), direct laser writing
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(Tottori et al., 2012), biotemplated synthesis using biological
spiral organelles (Gao et al., 2014), two-photon polymerization
of a curable magnetic polymer composite (Peters et al., 2013),
spiraling microfluidic flow lithography (Yu et al., 2017), and
other techniques have been developed for fabrication of µm-size
and sub-µm-size (Schamel et al., 2014) helical motors. These
bio-inspired helical motors propel unidirectionally (along the
field rotation axis) when driven by a rotating magnetic field
similar to a twirling bacterial flagellum. However, fabrication
of three-dimensional (3D) chiral/helical nanostructures requires
sophisticated procedures and the search for simpler alternatives
is under way.

One alternative relies on the fact that in torque-driven
propulsion the propeller’s shape may not necessarily be
helical or even chiral. It was recently demonstrated that
geometrically achiral objects made of three interconnected
magnetized microbeads can be steered quite efficiently by an
in-plane rotating magnetic field (Cheang et al., 2014). These
findings suggested that the two-dimensional (2D) ferromagnetic
propellers could be of practical interest, as they can be mass-
fabricated via standard photolithography methods (Tottori and
Nelson, 2018). It was theoretically predicted (Morozov et al.,
2017) and demonstrated experimentally [using up-scaled cm-
size propeller (Sachs et al., 2018)] that unidirectional propulsion
of 2D magnetic structures is feasible, however it requires
non-trivial off-plane magnetization. Since 2D structures are
prone to magnetize in-plane, uniform off-plane magnetization at
nano/microscale cannot be easily achieved.

Another possibility to avoid sophisticated microfabrication
relies on spontaneous aggregation of magnetic nanoparticles
into random-shaped 3D microclusters (Vach et al., 2013,
2015). These random aggregates can also be steered through
fluid by an external torque, however they appear to be
significantly less efficient “swimmers” on average in comparison
to nanomotors with preprogrammed (optimal) geometry and
magnetization (Mirzae et al., 2018).

There is an additional possibility that uses even simpler
one-dimensional (1D) soft magnetic nanowires. The first
demonstration of soft artificial “swimmer” was provided by
Dreyfus et al. (2005) whereas a linear chain of magnetic
microbeads linked by DNA and attached to a red blood cell was
actuated by a plane oscillatory magnetic field. This “swimmer”
was undergoing in-plane undulations and propelled similar to a
flagellum of an eukaryotic cell. A minimal design of the planar
undulating magnetic microswimmer made of just two rigid
links connected by a torsional spring was suggested by Gutman
and Or (2015) and the corresponding nanowire-based analog
was demonstrated by Jang et al. (2015). Highly efficient two-
arm magnetic nanoswimmer exhibiting complex 3D (“freestyle”)
undulations driven by an in-plane oscillatory magnetic field was
reported in Li et al. (2017).

Flexible 1D nanowire-based propellers steered by a rotating
field were reported by Gao et al. (2010). These nanomachines
were fabricated by electrodeposition from a composite nanowire
that had a rigid magnetic (Ni) head, flexible (porous Ag) middle

segment and passive rigid (Au) tail. The flexible segment deforms
and supposedly acquires helicity due to an interplay of viscous
and elastic forces when actuated by rotating magnetic field and
the nanowire propels similar to the 3D rigid helical motors. The
nanowire propeller in (Gao et al., 2010) had a total length 6.5 µm
and diameter 100 nm and exhibited propulsion with speed of
∼ 5 µm/s when actuated by the magnetic field rotating in-
plane with frequency 10–15 Hz. Pak et al. (2011) proposed a
similar two-segment (Ni-Ag) design whereas nanowire propeller
was driven by a conically rotating magnetic field (permanent
magnetic field applied along the axis of the rotating field). This
Ni-Ag propeller showed even faster propulsion in comparison to
Gao et al. (2010). Interestingly, the three-segment nanowire of
Gao et al. (2010) could propel either head-forward (fast) or tail-
forward (slow), whereas the two-segment nanowire in Pak et al.
(2011) could only propel head-forward.

Theoretical modeling of soft nanowire propellers is quite
limited. Gauger and Stark (2006) put forward a discrete
bead-spring model for simulating externally driven undulatory
propulsion of a flexible filament powered by an oscillating
magnetic field reported by Dreyfus et al. (2005). Only
planar undulations (via bending) were considered and the
hydrodynamics was modeled using approximate Rotne-Prager
method. Pak et al. (2011) put forward an approximate
elastohydrodynamic model based on the dynamic deformation
of initially straight elastic filament that is steadily rotated
at its one (clamped) end, while the other end is free. The
filament is rotated in a way, that its long axis forms a constant
conical angle with the rotation axis mimicking actuation by a
conically rotating magnetic field. Although this model showed
a reasonable agreement with the experiments, it only imitates
the real problem in which both ends of the nanowire are free.
Various analytical theories concerning two-, three-, or multi-link
propellers take advantage of simplified (local) hydrodynamics
that neglects hydrodynamic interaction between the rigid links
(see e.g., Gutman and Or, 2015; Jang et al., 2015; Alouges et al.,
2019).

In the present paper we develop a numerical approach for
modeling of flexible, semi-flexible or multi-link externally driven
nanopropellers. The numerical algorithm is based on a discrete
bead-spring model of the filament. Multipole Expansion (ME)
algorithm allows for rigorous account of non-local intra-filament
hydrodynamic interaction mediated by a viscous fluid, while
springs connecting the beads model the elastic deformation (due
to bending and torsion). The ability to accurately model viscous
hydrodynamic forces is important for accurate simulations
of non-slender objects and large-amplitude deformations (see
e.g., Berman et al., 2013 for the importance of non-local
hydrodynamics in locomotion powered by large-amplitude
undulations). This is particularly relevant for externally actuated
nanowire propellers, whereas the deformation is not known in
advance and determined by an interplay of elastic, magnetic and
hydrodynamic forces. Below we demonstrate the applicability
of the proposed approach toward simulations of soft nanowire-
based propellers (Gao et al., 2010; Pak et al., 2011).
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FIGURE 1 | Illustration of the bead-spring model: magnetized beads connected by springs actuated by an in-plane rotating magnetic field. Triads of local orthogonal

unit vectors {bi , ni , t i} affixed to each bead together with magnetic moments mi are showing.

2. RESULTS

2.1. Bead-Spring Model of the Flexible
Filament
2.1.1. Elastic and Magnetic Energies
The bead-spring model of the flexible filament comprises of N
identical spherical beads of radius a (beads of different radii
ai can also be used) connected by N − 1 springs. Each bead
is characterized by its position ri and a triad of orthogonal
(binormal, normal, and tangent) unit vectors {bi, ni, ti} (Maggs,
2000; Wada and Netz, 2012), see the schematic illustration in
Figure 1. The ith bead is linked to its neighbors by springs
connected to its surface at points ri − aiti and ri + aiti.

There are three contributions into the elastic energy:
stretching, bending and torsion, Eel = Est + Eb + Et . The
stretching energy reads

Est =
K

2

N−1∑

i=1

(
|ri − aiti − ri+1 − ai+1ti+1| − l0

)2
, (1)

where K is the spring constant and l0 is the length of the
spring at rest. The constant K is assumed to be sufficiently
large to preserve the curvilinear length of inextensible or weakly
extensible filament. We use non-zero values of the rest lengths l0
to prevent the beads from overlapping and avoid the necessity
to introduce steric repulsions between neighboring beads. In
calculations we typically used the values l0 ∼ 0.25a. Notice thatK
should not necessarily be constant along the filament. When the
filament is made of several segments (e.g., of different rigidity),
the value of the spring constant can be prescribed separately to
each segment.

The bending energy describes the preferable orientation of
the tangential vector ti with respect to the line of centers ri,i+1

connecting the neighboring beads. The characteristic bending
energy of a bead-spring contact is A

a (1 − ti · r̂i,i+1), where A is
the bending modulus and r̂i,i+1 is the unit vector along the line
of centers of i and i + 1 beads, r̂i,i+1 =

ri−ri+1
|ri−ri+1|

. Summing up

all bead-spring contacts and symmetrizing the bending energy

relative to both filament ends, one obtains

Eb =
A

2a

N−1∑

i=1

[
2− (ti + ti+1) · r̂i,i+1

]
, (2)

where A is the bending modulus.
Notice that the bending modulus A was chosen in such a

way that the relation (2) would reduce to the form Eb =

(A/2a)
∑

i(1 − ti · ti+1) commonly used for chains of beads
in contact (i.e., for l0 = 0) (Maggs, 2000; Wada and
Netz, 2012), for small deviations of ti and ti+1 from the
vector ri,i+1. Let us choose the local spherical coordinate
system with the polar axis aligned with the unit vector r̂i,i+1,
i.e., r̂i,i+1 = (0, 0, 1). In this frame the vectors ti and
ti+1 take the form ti = (sin θi cosφi, sin θi sinφi, cos θi) and
ti+1 = (sin θi+1 cosφi+1, sin θi+1 sinφi+1, cos θi+1). Neglecting
the cross terms in the scalar product ti · ti+1, we have
ti · ti+1

∼= cos θi cos θi+1 ≈ 1 − 1
2θ

2
i − 1

2θ
2
i+1. The

expression in the square brackets in Equation (2) reads
2− (ti + ti+1) · r̂i,i+1 = 1− cos θi − cos θi+1≈

1
2θ

2
i + 1

2θ
2
i+1.

Thus, in the limit of small deformations we have 2− (ti + ti+1) ·
r̂i,i+1 ≈ 1− ti · ti+1.

The torsional energy can be written in the form (Maggs, 2000;
Wada and Netz, 2012)

Et =
C

4a

N−1∑

i=1

(1− ni · ni+1 − bi · bi+1 + ti · ti+1) , (3)

where C is the twisting modulus. The coefficients A and C have
the units of energy times length, K has units of energy per area,
while their respective magnitudes typically satisfy Ka3 ≫ A ≈ C.

The magnetic energy is owing to the interaction of the net
magnetic momentm =

∑
imi (see in Figure 1) with the external

magnetic fieldH

Em = −m ·H . (4)

Magnetic moment of an individual bead,mi, is affixed to the bead
coordinate system formed by the triad {ni, bi, ti}. Assuming these
vectors to be the {x, y, z} axes of the local coordinate system, we
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characterize the local orientation of mi by two spherical angles
θmi and φmi ,mi = mi{sin θmi cosφmi , sin θmi sinφmi , cos θmi}.

2.1.2. Force and Torque Balances
The elastic force F

el
i acting on the ith bead is derived from

Equations (1) and (2) as

F
el
i = −

∂Est

∂ri
−

∂Eb

∂ri
. (5)

The force F
el
i has two contributions Feli = F

el
i−1 + F

el
i+1, where

F
el
i−1 and F

el
i+1 are the elastic forces exerted on the ith bead by its

neighbors, i.e., (i − 1)th and (i + 1)th beads, respectively. The
corresponding torque Li exerted on the ith bead is a sum of the
magnetic Lmi and elastic Leli contributions, Li = L

m
i + L

el
i , where

L
m
i = mi ×H (6)

and (Espa nol, 1998; Wada and Netz, 2012)

L
el
i = −ni ×

∂Eel

∂ni
− bi ×

∂Eel

∂bi
− ti ×

∂Eel

∂ti
−

ri−1,i

2
× F

el
i−1

+
ri,i+1

2
× F

el
i+1 . (7)

The elastic forces andmagnetic and elastic torques acting on each
bead are balanced by the corresponding hydrodynamic (viscous)
forces Fhi and torques Lhi :

F
el
i + F

h
i = 0 , L

el
i + L

m
i + L

h
i = 0 . (8)

The viscous forces and torques applied to each bead are
determined via the multipole expansion (ME) method (Filippov,
2000) that allows careful account of the mutual hydrodynamic
interactions between different beads composing the filament. The
method relies on multipole expansion of the Lamb’s spherical
harmonic solution of the Stokes equations in the unbounded fluid
(Filippov, 2000). Given N spheres with radii ai, the algorithm
outputs the translational and angular velocities of the spheres
for the input of prescribed forces and torques acting on each
sphere. The no-slip condition at the surface of all spheres is
enforced rigorously via the use of direct transformation between
solid spherical harmonics centered at origins of different spheres.
The ME method solves a system of O(NL

2) linear equations for
the expansion coefficients and velocities, whereas the accuracy
is controlled by the truncation level, L, equal to the number
of spherical harmonics retained in the expansion. The validity
and accuracy of the ME algorithm have been previously tested
for (i) the exact solution (in bi-spherical coordinates) for the
flow past two close spheres and against (ii) a boundary element
method numerical solution for the translation and rotation of
straight chains of spheres (made of N = 2–30 spheres, Filippov,
2000). The method was previously applied for modeling self-
locomotion of undulating filament (Berman et al., 2013), and
externally driven propulsion of a microhelix (Walker et al., 2015),
arc-shaped filament (Morozov et al., 2017; Sachs et al., 2018),

and random fractal-like aggregates (Mirzae et al., 2018). In our
calculations the truncation level was set to L = 2–3, as it
yielded sufficiently accurate results, while keeping the small size
of the linear system to be solved at each time step. Notice that
the extension of the ME method to wall-bounded domain is
possible (Ozarkar and Sangani, 2008). The applied ME method
valid for unbounded fluid domain can also be used for modeling
propulsion near boundary by adding a stationary sphere of a large
radius (e.g., larger than the filament length) in the vicinity of
the micro-swimmer.

2.1.3. Non-dimensionalization
In the numerical simulations we distinguish between the
parameters for the rigid and flexible segments of the filament.
In particular, the elasticity constants of the rigid segments are
much higher than the corresponding parameters for the flexible
part. Typically the magnetic Ni segment is rigid, and thus its net
magnetic moment m can be distributed equally between beads
comprising it.

For simplicity we assume uniform thickness of the filament,
i.e., the equal-sized beads with radius a composing the rigid
and flexible parts. For characteristic scales of length, time and
elasticity we use, respectively, the bead radius a, the period of
the rotating field T = 2π/ω and the twisting modulus C of the
flexible segment.

The non-dimensional form of the forces and torques balances
in Equation (8) read,

F̂
h
i = −

1

p
(CstF̂

st
i + CbF̂

b
i ) , (9)

L̂
h
i = −

1

p
(CstL̂

st
i + CbL̂

b
i + L̂

t
i + CmL̂

m
i ) , (10)

where the corresponding F̂i and L̂i stand for the dimensionless
hydrodynamic (superscript h), bending (b), stretching (st), and
magnetic (m) forces and torques, exerted on ith bead. Here p =

ω/ωf is a ratio of the frequency of the magnetic field, ω, and the

characteristic frequency of the filament,ωf = πC/ηa4, where η is
the dynamic viscosity of the fluid. Cm = 2amH/C measures the
relative magnitude of the elastic and magnetic moments, Cst =

2Ka3/C stands for the ratio of stretching and twisting coefficients
and Cb = A/C for the ratio of bending and twisting coefficients.
Typically we assume that Cb ≈ 1 (Landau and Lifshitz, 1970)
and Cst ≫ 1. The last condition implies nearly incompressible
filament. Notice that the twist modulusC of the flexible part of the
filament was chosen for non-dimensionalization. The observable
deformation of the flexible filament in the external magnetic field
takes place when the magnitudes of characteristic magnetic and
elastic torques are close, i.e., Cm ∼ 1. For the rigid segment(s) the
corresponding value of Cm is smaller by a factor C/Crigid ≪ 1.

The forces and torques exerted on a bead in Equations (9)
and (10) are proportional to the rigidity of its links and to
p−1. Therefore, in cases where the composite nanowire has
rigid segment(s) (with p ≪ 1) composed of multiple beads, the
equations of time-evolution become stiff, forcing a small time
step 1t and prolonged computation time. To overcome this
difficulty, we assume that the rigid (small-p) section does not
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deform and participate in a rigid-body motion. The unknown
velocities of the individual beads comprising the rigid section are
expressed in terms of the translation and rotation velocity of the
segment as a whole. In addition, the net hydrodynamic force and
torque acting on the rigid segment are calculated as

F̂rigid =
∑

i

F̂
h
i , (11)

L̂rigid =
∑

i

(L̂
h
i + Ri × F̂

h
i ) , (12)

where i iterates over the beads composing the rigid part and Ri

is the vector connecting a central point of the segment and the
center of the ith bead. This modification removes the need to
compute negligibly small deformations due to stiff elastic links.
Furthermore, for every rigid segment made of M beads, the
number of unknown variables in the linear system is reduced
by 6(M − 1). Using this method we found acceleration of up to
∼ 20 times in simulation speed depending on the value of p in
comparison with the scheme that treats both rigid and flexible
segments similarly based on Equations (9) and (10).

2.1.4. Initial Setup and Time-Evolution
Consider the laboratory coordinate system with the axes
{X,Y ,Z}. Initially the filament is at rest, parallel to the Z-axis, so
as at t = 0, all tangent unit vectors are ti = (0, 0, 1). We assume
the initial orientation of the binormal bi and normal ni vectors
along the axes X and Y , respectively: bi = (1, 0, 0) and ni =

(0, 1, 0). As was mentioned above, the orientation of the magnetic
moment of ith magnetized bead, m̂i = mi/m, is prescribed by the
two spherical angles θmi and φmi and initial orientation of the net
magnetic moment is given by a superposition

∑
i m̂i.

The time-varying (e.g., rotating or oscillating) external
magnetic field H is switched on at the moment t = 0. Since the
initial geometry is prescribed, one can determine the forces Fi
from (5) and torques Li from (6–7) exerted on all beads. Then
equating the respective elastic and hydrodynamic forces and
torques one finds the translational U i and angular �i velocities
of beads at first time step by using the ME algorithm.

Using these values we obtain the new positions and
orientations of beads at the moment t = 1t:

ri(1t) = ri(0)+ U i1t , (13)

ξ i(1t) = ξ i(0)+ [�i × ξ i(0)]1t , (14)

whereas ξ i stands for either bi, ni or ti. Since the magnetic
moment of all magnetic beads is affixed to the triad {bi, ni, ti},
its time-evolution is also governed by an equation similar to (14)
whereas ξ i is replaced by m̂i everywhere. The updated vectors
according to Equation (14) are normalized with |ξ i| to keep their
magnitude of one. At the next time step the procedure is repeated.

2.2. Validation
We tested the validity of the proposed numerical model by
comparing its results to two benchmark problems for which

theoretical predictions exist: (i) magnetized rigid cylinder
actuated by a rotating magnetic field; (ii) the twirling-whirling
instability of an elastic filament rotated by its end. The first
problem tests the hydrodynamic part of the algorithm, as
filament is assumed to be rigid, while the second problem
concerns the interplay between elasticity and hydrodynamics.

2.2.1. Magnetized Rigid Cylinder in a Rotating Field
Consider the dynamics of a cylinder with magnetic moment
m driven by a rotating uniform magnetic field H =

H(cosωt, sinωt, 0): at low frequency ω the cylinder tumbles in
the plane of the field rotation in-sync with the field; at a certain

critical frequency, ω
(I)
c (or the corresponding dimensionless

parameter p
(I)
c ), the tumbling switches to in-sync wobbling,

where the precession angle (i.e., the angle between the field
rotation axis and the long axis of the cylinder) gradually
diminishes as the frequency is increased; then, at the step-

out frequency ω
(II)
c (p

(II)
c ) the synchronous regime switches to

the asynchronous one. The analytical solution of the problem
was given in Morozov and Leshansky (2014). The dynamics
of a cylinder-like structure of a linear chain composed of 5
beads (see Supplementary Material for details) was simulated,
yielding the numerical value of the angle α at steady-state
between the vectors m and H. The ratio of the longitudinal and
transverse components of the cylinder’s magnetization m was
set to m‖/m⊥ = 2.33, and the dimensionless parameters were
set to Cst = 2, Cb = 1, and Cm = 0.0015, resulting in the

critical values p
(I)
c ≈ 2.48 · 10−7 and p

(II)
c ≈ 8.70 · 10−7. Table 1

shows a comparison of the theoretical values of α in the tumbling
and wobbling regimes given, respectively by Equations (16) and
(18) in Morozov and Leshansky (2014), to the numerical values
obtained in this work. The agreement between the theoretical
predictions and the numerical results is excellent.

2.2.2. The Twirling-Whirling Instability
Consider an elastic rod of length L in a viscous fluid that at one
end is forced to rotate about its long axis with frequency ω0

and the other end is free. Upon increasing the driving frequency
the twirling regime of the rod switches to the whirling regime
and the initially straight rod buckles. This elasto-hydrodynamic
instability occurs at the critical frequency (Wolgemuth et al.,
2000; Powers, 2010)

ωc ≈ 8.98
A

ζrL2
, (15)

where ζr is the rotational drag coefficient (torque per unit length).
At low angular frequency ω0 < ωc, the steady-state twist
distribution (i.e., the twist angle per unit length of the filament)
along the straight filament of length L reads (Wolgemuth et al.,
2000; Powers, 2010),

τ (s) =
ζrω0

C
(s− L) , (16)

where s is the arc-length parameter.
We simulated the twirling-whirling instability numerically

using bead-spring model as illustrated in Figure 2. Substituting
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TABLE 1 | The angle α between the magnetic moment m of a linear chain made

of 5 beads and the rotating magnetic field H in the in-synch tumbling (upper table)

and wobbling (lower table) regimes.

0 < p < p
(I)
c (×107)

α (rad)

Equation (16) (Morozov and

Leshansky, 2014)

This work

In-synch tumbling

0.31 0.125 0.125

0.62 0.253 0.253

1.24 0.525 0.525

1.86 0.851 0.851

2.29 1.178 1.165

p
(I)
c < p < p

(II)
c (×107)

α (rad)

Equation (18) (Morozov and

Leshansky, 2014)

This work

In-synch wobbling

2.49 1.168 1.168

3.11 1.179 1.178

3.73 1.192 1.191

4.35 1.208 1.206

4.97 1.227 1.225

5.59 1.250 1.248

6.22 1.277 1.273

6.84 1.310 1.305

7.46 1.352 1.345

The critical p values at the tumbling-to-wobbling transition and the step-out (synchronous-

to-asynchronous transition) are p
(I)
c ≈ 2.48 · 10−7 and p

(II)
c ≈ 8.70 · 10−7, respectively.

p into Equation (16), the expression ∂τ/∂s = ζrπp/ηa
4 is

obtained. In the calculation the value of ζr ≈ 10ηa2 was used
(Morozov and Leshansky, 2014). Table 2A shows an excellent
agreement of the numerically determined values of the angle
(∂τ/∂s) L2 for a 25-bead filament at several driving frequencies
ω0 < ωc to the analytical prediction in Equation (16).
Substituting the critical frequency ωc into (16) and integrating
over the filament length leads to the critical twist angle between
its ends, 1ϕc = 4.49Cb. The instability onset can be detected
either by a sudden take-off of the bending energy or the
maximum of the torsional energy. In the simulations p was
gradually incremented until the torsional buckling (or whirling)
of the filament occurs. Table 2B shows the critical value 1ϕc

of the twist angle between filament ends at which the twirling-
to-whirling transition occurs for a filament made of 25 beads,
as calculated by Equation (15) and by using the bead-spring
model upon varying Cb for a fixed value of Cst = 20. The
agreement between the numerical results and the theoretical
prediction is quite accurate, given the discrete nature of the
bead-spring model. Figure 2B illustrates the near-critical shape
of the filament at ω ≈ ωc, while Figure 2C depicts the
steady-state shape of the whirling filament at ω0 > ωc (see
Supplementary Video 1).

FIGURE 2 | The twirling-whirling instability: an initially straight flexible 25-bead

filament with Cb = 0.5 immersed in a viscous liquid and rotated at constant

rate ω0 at one end, while the other end is free (A); the filament buckles at the

critical frequency ω0 = ωc (B) acquiring the steady-state shape at higher

frequency, ω0 > ωc (C). The color arrows stand for the binormal and normal

vectors, bi and ni .

TABLE 2A | The steady-state twist distribution along the axis of a 25-bead

filament at low driving frequencies ω0 < ωc.

p (×105)
(∂τ/∂s)L2 (rad)

Equation (16) This work

0.080 0.063 0.062

0.159 0.125 0.125

0.318 0.250 0.249

2.3. The Two-Segment Nanowire Propeller
Pak et al. (2011) reported an experimental design of a flexible
nanomotor that displays high propulsion speed. This nanowire
propeller, composed of a 1.8 µm-long rigid magnetic head
(1.5 µm nickel segment and 0.3 µm gold segment) with a
diameter of 200 nm and a 4 µm-long flexible silver tail with
a diameter of ∼100 nm, was actuated by the conically rotating
magnetic field H = H0(h cosωt,−h sinωt, 1) where h = H1/H0

is the ratio of the rotating and constant components of the
magnetic field whereas tan−1 h is the cone angle.

Experiments were performed to determine the dependence of
the nanomotor propulsion speed on the sperm number (Pak et al.,
2011),

Sp = L

(
f⊥ω

A

)1/4

, (17)

for several values of the field cone angle upon varying h. Here L
is the length of the nanowire’s flexible part and f⊥ is the normal
viscous drag coefficient (force density), given approximately for a
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TABLE 2B | The critical twist angle between the filament ends, 1ϕc, at the

twirling-to-whirling transition.

Cb

Critical twist angle, 1ϕc (rad)

Theory This work

0.1 0.45 0.49

0.2 0.90 0.98

0.5 2.25 2.46

0.7 3.14 3.10

0.8 3.59 3.45

0.9 4.04 3.79

1.0 4.49 3.94

1.1 4.94 4.43

The numerical results obtained for the 25-bead filament for several values of Cb = A/C

are compared with the theoretical prediction, 1ϕc = 4.49Cb.

slender filament by f⊥ =
4πη

log(2/ǫ)+1/2
, where ǫ = 2a/L≪ 1 is the

filament aspect ratio. In Pak et al. (2011) the value of the elastic
constant A ≈ 3.6 × 10−24 N·m2 was best fitted to match the
prediction of the approximate geometric theory assuming that
the freely suspended nanowire can be approximated by an elastic
filament with its one (clamped) end undergoing rotation with the
cone angle equal to tan−1 h.

Using the method described in this work we simulated the
nanowire propulsion assuming an initially straight filament,
composed of a 5-bead rigid head and a 11-bead flexible tail
(i.e., a head-to-tail ratio being similar to the experiment in Pak
et al., 2011), with the magnetic moment of the head set along
its longitudinal axis. Notice that simulations of very slender
filaments (with ǫ ≈ 0.025 as in Pak et al., 2011) would require
large number of beads and are computationally expensive. As
one may expect for viscous hydrodynamics, the larger dimension
(i.e., the length L) of the slender nanowire is important, while
its diameter (or the aspect ratio ǫ) has a minor effect on the
dynamics (as can also be seen from the definition of Sp in
Equation 17). Therefore, we expect that using of a chubby
nanowire with ǫ ≈ 0.09 would yet closely approximate the
dynamics of a slender filament in experiments of Pak et al. (2011).

The dimensionless parameters were set to Cm = Cb = 1,
Cst = 10 with p varying between 6 · 10−7 and 1.3 · 10−4. Figure 3
shows the dimensionless velocity, normalized by the length of the
flexible tail, L, as a function of the sperm number Sp in (17) that
can be rewritten in terms of dimensionless parameters as

Sp = 2ǫ−1

(
π f⊥p

ηCb

)1/4

. (18)

Best fitting of the numerical predictions to the experimental
results requires≈ 2.3 times larger value of the bending modulus,
A ≈ 8.3 × 10−24 N·m2, when compared to the estimate of
Pak et al. (2011). It can be readily seen that the agreement
between the numerical predictions and the experimental findings

FIGURE 3 | Dependence of the dimensionless swimming speed U/ωL of the

2-segment magnetic nanowire on the sperm number, Sp (upper panel). The

experimental data (symbols), taken from Pak et al. (2011), and the numerical

results for the bead-spring model (solid lines), are compared for three different

actuating magnetic fields with h−1 = 1.43 (blue); h−1 = 1.18 (red); and

h−1 = 0.70 (black). The lower panel shows the steady shapes of the simulated

nanowire made of an 11-bead flexible tail (Ag, gray) and a 5-bead rigid

magnetic (Ni, red) head magnetized longitudinally for h−1 = 0.70 and Sp = 1.1

(A), Sp = 1.5 (B), and Sp = 3.3 (C).

in Figure 3 is excellent without any extra adjustable parameters1.
In particular, the maximum speed is attained at Sp ≈ 1.55
(see Supplementary Videos 2–4). The numerical method allows
for finding the optimal value of h−1 maximizing the propeller’s
velocity. Computing the velocity of the propeller at the optimal
sperm number (Sp ≈ 1.55) reveals that the optimal value of h−1

is≈ 0.5, meaning the magnitude of the constant magnetic field is
half the magnitude of the rotating field (see Figure 4).

2.4. The Three-Segment Nanowire
Propeller
Gao et al. (2010) demonstrated the propulsion of a nanowire
motor with magnetic nickel head and golden tail (both rigid
segments) connected by a flexible link made of porous silver.
In the experiments they found that upon applying an external
rotating magnetic field, two propulsion gaits are observed: slow
backward motion (i.e., toward the passive tail), and fast forward
motion (toward the magnetic head). We simulated this nanowire
as a filament made of three segments each composed of 5,
10, and 5 beads, corresponding to the magnetic head, flexible
link and passive tail, respectively. All simulations of the initially
linear filaments resulted in the forward propulsion gait regardless
of the magnetic moment orientation. However, it was found
that some imperfection in the initial shape of the filament
(e.g., slight intrinsic curvature of the Ni-head) the bidirectional

1In Pak et al. (2011) the results shown by black diamonds in Figure 3 correspond

to h−1 = 0.95, while our numerical simulations suggest that the correct value is

actually close to h−1 = 0.7.
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FIGURE 4 | The dependence of dimensionless velocity U/ωL on h−1 at the

(near) optimal value of Sp = 1.55. The data is based on the simulation of a

nanowire propeller in Figure 3.

propulsion gait can be realized in a qualitative agreement with
the experiments by Gao et al. (2010), where the microfabricated
nanowires at rest were not straight.

Morozov et al. (2017) predicted and it was later demonstrated
experimentally (Sachs et al., 2018) that rigid planar objects (such
as arc) can change their propulsion direction when the sign of
the off-plane magnetization component is reversed. Similarly, it
was observed in the simulation of the three-segment nanowire
that reversal the off-plane component of the head’s magnetic
moment, results in propulsion reversal, i.e., switches between fast
head-forward and slow tail-forward motion (see videos #5 and
#6 in the Supporting Materials). In both cases the magnetic head
follows the rotation of the actuating field. Figures 5A,B depict the
nanowire steady-state shapes for both propulsion gaits. Setting
the dimensionless parameters to Cm = Cb = 1, Cst = 10,
and p = 10−4, the forward and backward dimensionless speeds
U/Lω (here L is the length of the flexible part) were determined
numerically to be 0.0011 and 0.0084, respectively, implying that
the head-forward motion is about 8 times faster. These findings
are in a qualitative agreement with the experimental observations
of Gao et al. (2010).

3. CONCLUSIONS

We developed a numerical scheme based on a discrete bead-
spring model for simulating soft nanowire-based propellers.
The algorithm was favorably tested by simulating a well-known
twirling-whirling instability of an elastic filament rotated in a
viscous liquid. The comparison of the numerical prediction for
the propulsion speed vs. the reported experimental results for
the Ni-Ag nanowire actuated by a conically rotating magnetic
field in Pak et al. (2011) as a function of actuation frequency
(Sp) upon varying the ratio of the in-plane rotating and
constant field components (h−1), showed an excellent agreement
(see Figure 3). At moderate actuation frequencies the Ni-Ag
nanowire adopts the arc shape, while it develops 3D geometric
chirality gradually as Sp increases above ≈ 2.5 The simulation

FIGURE 5 | The simulated three-segment nanowire, composed of Au rigid tail

(yellow), a flexible middle Ag link (gray) and a slightly curved rigid magnetic Ni

head (red). Two realizations of the nanowire were simulated, both have the

same magnetization component in the swimmer’s plane, whereas their

off-plane components of magnetization have the same magnitude, but

opposite sign. (A) The steady-state 3D shape of the nanowire when propelling

head-forward (fast); (B) The steady-state shape of the nanowire when

propelling tail-forward (slow).

results predict an optimal cone angle of the actuating field, ≈
63◦, that maximizes the value of the non-dimensional propulsion
velocity U/ωL at Sp ≈ 1.5. Surprisingly, at the optimum
the nanowire has a shape of a planar arc (see Figure 3B),
indicating that efficient propulsion of magnetically driven soft
nanowires does not require 3D geometric chirality as was
previously suggested. This finding is in accord with Mirzae et al.
(2018) where an efficient steering of rigid magnetic arc-shaped
nanomotors was demonstrated.

Using our model we could substantiate important and
previously unexplained details, such as bidirectional (fast head-
forward and slow tail-forward) propulsion of the Ni-Ag-Au
nanowire of Gao et al. (2010) powered by in-plane rotating
magnetic field due to potential shape imperfection which is
probably inevitable in nanowire nanofabrication. The proposed
numerical model can be used as an efficient tool for design
and optimization of previously proposed and also novel soft
nanomachines. It can be also extended to modeling of polarizable
(superparamagnetic) soft nanowires, biological and biohybrid
microswimmers and other externally or self-propelled machines.
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