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Problem Solving Through Tool
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Lakshmi Nair* and Sonia Chernova
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Robots in the real world should be able to adapt to unforeseen circumstances. Particularly

in the context of tool use, robots may not have access to the tools they need for

completing a task. In this paper, we focus on the problem of tool construction in the

context of task planning. We seek to enable robots to construct replacements for missing

tools using available objects, in order to complete the given task. We introduce the

Feature Guided Search (FGS) algorithm that enables the application of existing heuristic

search approaches in the context of task planning, to perform tool construction efficiently.

FGS accounts for physical attributes of objects (e.g., shape, material) during the search

for a valid task plan. Our results demonstrate that FGS significantly reduces the search

effort over standard heuristic search approaches by ≈ 93% for tool construction.

Keywords: tool construction, creative problem solving, task planning, heuristic search, adaptive robotic systems

1. INTRODUCTION

Humans often show remarkable improvisation capabilities, particularly in times of crises. The
makeshift carbon dioxide filter constructed on board the Apollo 13 (Cass, 2005), and the jury-
rigged ventilators built to combat equipment shortages during COVID-19 (Turner et al., 2020),
are examples of human ingenuity in the face of uncertainty. In addition to humans, other
primates and certain species of birds have also been shown to creatively accomplish tasks by
constructing tools from available objects, such as sticks and stones (Jones and Kamil, 1973; Toth
et al., 1993; Stout, 2011). While the capability to construct tools is often regarded as a hallmark
of sophisticated intelligence, similar improvisation capabilities are currently beyond the scope of
existing robotic systems. The ability to improvise and construct necessary tools can greatly increase
robot adaptability to unforeseen circumstances, enabling robots to handle any uncertainties or
equipment failures that may arise (Atkeson et al., 2018).

In this paper, we focus on the problem of tool construction in the context of task planning.
Specifically, we address the scenario in which a robot is provided with a task that requires certain
tools that are missing or unavailable. The robot must then derive a task plan that involves
constructing an appropriate replacement tool from objects that are available to it, and use the
constructed tool to accomplish the task. Existing work that addresses the problem of planning in
the case of missing tools focuses on directly substituting the missing tool with available objects
(Agostini et al., 2015; Boteanu et al., 2015; Nyga et al., 2018). In contrast, this is the first work
to address the problem through the construction of replacement tools, by introducing a novel
approach called Feature Guided Search (FGS). FGS enables efficient application of existing heuristic
search algorithms in the context of task planning in order to perform tool construction by
accounting for physical attributes of objects (e.g., shape, material) during the search for a valid
task plan.
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Heuristic search algorithms, such as A∗ and enforced hill-
climbing (EHC), have been successfully applied to planning
problems in conjunction with heuristics such as cost-optimal
landmarks (Karpas and Domshlak, 2009) and fast-forward
(Hoffmann and Nebel, 2001), respectively. However, the
application of heuristic search algorithms to perform tool
construction in the context of task planning can be challenging.
For example, consider a task where the goal of the robot is to hang
a painting on the wall. In the absence of a hammer that is required
for hammering a nail to complete the task, the robot may choose
to construct a replacement for the hammer using the objects
available to it. How does the robot know which objects should
be combined to construct the replacement tool? One possible
solution is for the user to manually encode the correct object
combination in the goal definition, and the search procedure
would find it. However, it is impractical for the user to know and
encode the correct object combination to use, for all the objects
that the robot could possibly encounter. Alternatively, the robot
can autonomously attempt every possible object combination
until it finds an appropriate tool construction for completing
the task. However, this would require a prohibitive number of
tool construction attempts. Further, what if the robot cannot
construct a good replacement for a hammer using the available
objects, but can instead construct a makeshift screwdriver to
tighten a screw and complete the task? In this case, the task
plan would also have to be adapted to appropriately use the
constructed tool, i.e., “tighten” a screw with the screwdriver
instead of “hammering” the nail. In order to address these
challenges, FGS combines existing planning heuristics with a
score that is computed from input point clouds of objects
indicating the best object combination to use for constructing
a replacement tool. The chosen replacement tool then in turn
guides the correct action(s) to be executed for completing the task
(e.g., “tighten” vs. “hammering”). Hence, our algorithm seeks to:
(a) eliminate the need for the user to specify the correct object
combination, thus enabling the robot to autonomously choose
the right tool construction based on the available objects and the
task goal, (b) minimize the number of failed tool construction
attempts in finding the correct solution, and (c) adapt the task
plan to appropriately use the constructed replacement tool.

Prior work by Nair et al. introduced a novel computational
framework for performing tool construction, in which the
approach takes an input action, e.g., “flip,” in order to output
a ranking of different object combinations for constructing a
tool that can perform the specified action, e.g., constructing
a spatula (Nair et al., 2019a,b). For performing the ranking,
the approach scored object combinations based on the shape
and material properties of the objects, and whether the objects
could be attached appropriately to construct the desired tool. In
contrast, this work focuses on the application of heuristic search
algorithms such as A∗, to the problem of tool construction in
the context of task planning. In this case, the robot is provided
an input task, e.g., “make pancakes,” that requires tools that
are inaccessible to the robot, e.g., a missing spatula. The robot
must then output a task plan for making pancakes, that involves
constructing an appropriate replacement tool from available
objects, and adapting the task plan to use the constructed tool

for completing the task. Thus, prior work takes an action as
input, and outputs a ranking of object combinations. In contrast,
our work takes a task as input, and outputs a task plan that
involves constructing and using an appropriate replacement tool.
Hence, our work relaxes a key assumption of the prior work that
requires the input action to be specified. Our approach directly
uses the score computation methodology described in prior work
(Nair et al., 2019a,b), but combines it with planning heuristics to
integrate tool construction within a task planning framework.

Our core contributions in this paper include:

• Introducing the Feature Guided Search (FGS) approach that
integrates reasoning about physical attributes of objects with
existing heuristic search algorithms for efficiently performing
tool construction in the context of task planning.

• Improving upon prior work by enabling the robot to
automatically choose the correct tool construction and the
appropriate action based on the task and available objects, thus
eliminating the need to explicitly specify an input action as
assumed in prior work.

We evaluate our approach in comparison to standard heuristic
search baselines, on the construction of six different tool types
(hammer, screwdriver, ladle, spatula, rake, and squeegee), in
three task domains (wood-working, cooking, and cleaning). Our
results show that FGS outperforms the baselines by significantly
reducing computational effort in terms of number of failed
construction attempts. We also demonstrate the adaptability of
the task plans generated by FGS based on the objects available in
the environment, in terms of executing the correct action with
the constructed tool.

2. RELATED WORK

Prior work by Sarathy and Scheutz have focused on formalizing
creative problem solving in the context of planning problems
(Sarathy and Scheutz, 2017, 2018). They define the notion
of “Macgyver-esque” creativity as embodied agents that can
“generate, execute, and learn strategies for identifying and
solving seemingly unsolvable real-world problems” (Sarathy and
Scheutz, 2017). They formalize Macgyvering problems (MGP)
with respect to an agent t, as a planning problem in the
agent’s world Wt , that has a goal state g currently unreachable
by the agent. As described in their work, solving an MGP
requires a domain extension or contraction through perceiving
the agent’s environment and self. Prior work by Sarathy also
provide an in-depth discussion of the cognitive processes
involved in creative problem solving in detail, by leveraging
existing work in Neuroscience (Sarathy, 2018). Prior work by
Olteţeanu and Falomir has also looked at the problem of Object
Replacement and Object Composition (OROC) situated within
a cognitive framework called, the Creative Cognitive Framework
(CreaCogs) (Olteţeanu and Falomir, 2016). Their work utilizes
a knowledge base that semantically encodes object properties
and relationships in order to reason about alternative uses for
objects to creatively solve problems. The semantic relationships
themselves are currently encoded a-priori. Similar work by
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Freedman et al. has focused on the integration of analogical
reasoning and automated planning for creative problem solving
by leveraging semantic relationships between objects (Freedman
et al., 2020). They present the Creative Problem Solver (CPS), that
uses large-scale knowledge bases to reason about alternate uses
of objects for creative problem solving. In contrast to reasoning
about objects, prior work by Gizzi et al. has looked at the
problem of discovering new actions for creative problem solving,
enabling the robot to identify previously unknown actions (Gizzi
et al., 2019). Their work applies action segmentation and change-
point detection to previously known actions to enable a robot to
discover new actions. The authors then apply breadth-first search
and depth-first search in order to derive planning solutions using
the newly discovered actions.

In related work, Erdogan and Stilman (2013) described
techniques for Automated Design of Functional Structures
(ADFS), involving construction of navigational structures, e.g.,
stairs or bridges. They introduce a framework for effectively
partitioning the solution space by inducing constraints on the
design of the structures. Further, Tosun et al. (2018) have
looked at planning for construction of functional structures
by modular robots, focusing on identifying features that
enable environment modification in order to make the terrain
traversable. In similar work, Saboia et al. (2018) have looked
at modification of unstructured environments using objects, to
create ramps that enhance navigability. More recently, Choi
et al. (2018) extended the cognitive architecture ICARUS to
support the creation and use of functional structures such
as ramps, in abstract planning scenarios. Their work focuses
on using physical attributes of objects that is encoded a-
priori, such as weight and size, in order to reason about
the construction and stability of navigational structures. More
broadly, these approaches are primarily focused on improving
robot navigation through environment modification as opposed
to construction of tools. Some existing research has also
explored the construction of simple machines such as levers,
using environmental objects (Levihn and Stilman, 2014; Stilman
et al., 2014). Their work formulates the construction of
simple machines as a constraint satisfaction problem where
the constraints represent the relationships between the design
components. The constraints in their work limit the variability of
the simplemachines that can be constructed, focusing only on the
placement of components relative to one another, e.g., placing a
plank over a stone to create a lever. Additionally, Wicaksono and
Sheh (2017) have focused on using 3D printing to fabricate tools
from polymers. Their work encodes the geometries of specific
sub-parts of tools, and enables the robot to experiment with
different configurations of the fabricated tools to evaluate their
success for accomplishing a task.

The work described in this paper differs from the research
described above in that we focus on creative problem solving
through tool construction. Specifically, we focus on planning
tasks in which the required tools need to be constructed from
available objects. Two key aspects of our work that further
distinguish it from existing research include: (i) sensing and
reasoning about physical features of objects, such as shape,
material, and the different ways in which objects can be

attached, and (ii) improving the performance of heuristic search
algorithms for tool construction in the context of task planning,
by incorporating the physical properties of objects during the
search for a task plan.

3. APPROACH

In this section, we begin by discussing some background details
regarding heuristic search, followed by specific implementation
details of FGS.

3.1. Heuristic Search
Heuristic search algorithms are guided by a cost function f (s) =
g(s)+ h(s), where g(s) is the best-known distance from the initial
state to the state s, and h(s) is a heuristic function that estimates
the cost from s to the goal state. An admissible heuristic never
overestimates the path cost from any state s to the goal (Hart
et al., 1968; Zhang et al., 2009). A consistent heuristic holds the
additional property that, if there is a path from a state x to a
state y, then h(x) ≤ d(x, y) + h(y), where d(x, y) is the distance
from x to y (Hart et al., 1968). Most heuristic search algorithms,
including A∗, operate by maintaining a priority queue of states
to be expanded (the open list), sorted based on the cost function.
At each step, the state with the least cost is chosen, expanded,
and the successors are added to the open list. If a successor state
is already visited, the search algorithm may choose to re-expand
the state, only if the new path cost to the state is lesser than
the previously found path cost (Bagchi and Mahanti, 1983). The
search continues until the goal state is found, or the open list
becomes empty, in which case no plan is returned.

3.2. Feature Guided Search
We now describe the implementation of FGS1. For the purposes
of this explanation, we present our work in the context of A∗,
though our approach can be easily extended to other heuristic
search algorithms as demonstrated in our experiments. Let S
denote the set of states, A denote the set of actions, γ denote state
transitions, si denote the initial state, and sg denote the goal state.
For the planning task, we consider the problem to be specified
in Planning Domain Definition Language (PDDL) (McDermott
et al., 1998), consisting of a domain definition PD = (S,A, γ ),
and a problem/task definition PT = (PD , si, sg). Further, we use
O to denote a set of n objects in the environment available for tool
construction, O = {o1, o2, ...on}.

Since our work focuses on tools, we assume that some
action(s) in A are parameterized by a set of object(s) Oa ⊆

O, that are used to perform the action. Specifically for tool
construction, we explicitly define an action “join(Oa)”, where
Oa = {o1, o2, ...om},m ≤ n, parameterized by objects that can be
joined to construct a tool for completing the task. For example,
the action “join-hammer(Oa)” allows the robot to construct a
hammer using the objects Oa that parameterize the action. For
actions that are not parameterized by any object, Oa = ∅. Our
approach seeks to assign a “feature score” to the objects in Oa,

1All source code including problem and domain definitions, are publicly available

at: https://github.com/Lnair1993/Tool_Macgyvering.
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Algorithm 1: Feature guided A∗ search.

1 Function Search(PD ,PT , trust=true):
2 si, sg = extractStates(PT )
3 A = extractActions(PD)
4 O = extractObjects()
5 Oreject = [ ]
6 openList= [ ]
7 setPathCost(si, 0) // Set initial state’s g(s) and f(s) to 0
8 openList. add(si, 0)
9 while OpenList not empty do
10 currState = argmins(f (s)) ∀ s ∈ openList
11 openList. pop(currState)
12 if currState = sg then
13 return extractPlan(sg , si)
14 nextStates = getNext(currState, A)
15 for (s, a,Oa) ∈ nextStates do
16 g(s) = computePathCost(s, currState) // Get

current path cost
17 c(s) = getPathCost(s) // Get previous best

known path cost
18 if g(s) ≥ c(s) then
19 continue

20 else

21 setPathCost(s, g(s)) // Update lower costs as
new paths are
found

22 end

23 h(s) = computeHeuristic(s)
24 φ(s) = featureScore(s, a,Oa, trust) // Compute

the feature score: Algorithm 2
25 if φ(s) = −∞ then

26 Oreject . add(Oa, a) // Track rejected
combinations

27 f (s) = g(s)+ h(s)− φ(s)
28 if f (s) = ∞ then

29 continue

30 openList. add(s, f (s))
31 end

32 end

33 if Oreject not ∅ then

34 Search(PD ,PT , trust = false) // Re-attempt
without trusting all sensors

35 return ∅ // No plan found

indicating their fitness for performing the action a. Thus, given
different sets of objects Oa that are valid parameterizations of
a, the feature score can help guide the search to generate task
plans that involve using the objects that are most appropriate
for performing the action. In the context of tool construction,
the feature score guides the search to generate task plans that
involve joining the most appropriate objects for constructing the
replacement tool, given the objects available in the environment.
Feature scoring can also potentially reject objects that are unfit
for tool construction.

Our approach is presented in Algorithm 1. The search
algorithm extracts information regarding the initial state si and
goal state sg from the task definition (Line 2). The set of actions
A is extracted from the domain definition PD (Line 3). The
agent extracts the objects in its environment from an RGB-D
observation of the scene through point cloud segmentation and
clustering (Line 4). We initialize the open list (openList) as a
priority queue with the initial state si and cost of 0 (Lines 6–
8). Lines 9–32 proceed according to the standard A∗ search
algorithm, except for the computation of the feature score in
Line 24. While the open list is not empty, we select the state
with the lowest cost function (Line 10,11). If the goal is found,
the plan is extracted (Lines 12–13), otherwise the successor states
are generated (Line 14). For each successor state s, the algorithm
computes the path cost g(s) from the current state currState to
s (Line 16). The algorithm then retrieves the best known path
cost c(s) for the state from its previous encounters (Line 17). If
the state was not previously seen, c(s) = ∞. In Lines 18–22,
the algorithm compares the best known path cost to the current
path cost, and updates the best known path cost if g(s) < c(s).
The algorithm then computes the heuristic h(s) (Line 23), and
the feature score φ(s) (Line 24). The algorithm also maintains a
list of object combinations that were rejected by feature scoring
(i.e., assigned a score of −∞), in Oreject (Line 26). The final cost
is computed as f (s) = g(s) + h(s) − φ(s) (Line 27; We expand
more on our choice of cost function in section 3.5). If f (s) 6= ∞,
then the state is added to the open list, prioritized by the cost.
The search continues until a plan is found, or exits if the open list
becomes empty. If no plan was found, the search is reattempted
(Line 34) by modifying the feature score computation (described
in section 3.3). If all search attempts fail, the planner returns a
failure with no plan found. In the following section we discuss
the computation of the feature score in detail.

3.3. Feature Score Computation
In this section, we describe the computation of the feature score
for a given set of objects Oa that parameterize an action a.
Note that, in this work the feature score computation focuses on
the problem of tool construction. However, FGS can potentially
be extended to other problems such as tool substitution, by
computing similar feature scores as described in prior work
(Abelha et al., 2016; Shrivatsav et al., 2019). Given n objects, tool
construction presents a challenging combinatorial problem with
a state space of size nPm, assuming that we wish to construct a tool
with m ≤ n objects. Thus, Oa = {o1, o2, ...om} denotes a specific
permutation of m objects. Inspired by existing tool-making
studies in humans (Beck et al., 2011), prior work introduced
a multi-objective function for evaluating the fitness of objects
for tool construction (Nair et al., 2019b), that we apply in this
work for feature scoring. The proposed multi-objective function
included three considerations: (a) shape fitness of the objects
for performing the action, (b) material fitness of the objects for
performing the action, and (c) evaluating whether the objects in
Oa can be attached to construct the tool.

The calculation of each of the three metrics above relies
on real-world sensing, which can be noisy. This can result in
false negative predictions, that eliminate potentially valid object
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combinations from consideration. In particular, prior work has
shown that false negatives inmaterial and attachment predictions
have caused ≈ 4% of tool constructions to fail (Nair et al.,
2019b). To address the problem of false negatives in material
and attachment predictions, we introduce the notion of “sensor
trust” in this work. Prior work that has looked at accounting
for sensor trust has introduced the notion of “trust weighting”
to use continuous values to appropriately weigh the sensor
inputs (Pierson and Schwager, 2016). In contrast, the sensor trust
parameter in our work is a binary value that determines whether
the material and attachment predictions should be believed by
the robot and included in the feature score computation. This is
because material and attachment scores are hard constraints and
not continuous, i.e., they are −∞ for objects that are not suited
for tool construction (we describe this further in later sections).
Hence, a continuous weighting on the material and attachment
scores is not appropriate for our work.

Our feature score computation approach is described in
Algorithm 2. For actions that are not parameterized by objects,
the approach returns 0 (Lines 2-3). If the trust parameter is
set to true, the feature score computation incorporates shape,
material, and attachment predictions. (Lines 5–12 of Algorithm
2; section 3.4.1 for details). If the trust parameter is set to false,
the feature score computation only includes shape scoring (Lines
14–19 of Algorithm 2; section 3.4.2 for details). Thus, we describe
two modes of feature score computation that is influenced by
the sensor trust parameter. In the following sections, we briefly
describe the computation of shape, material and attachment
predictions, and for a more detailed implementation of each
method, we refer the reader to Nair et al. (2019b) and Shrivatsav
et al. (2019).

3.3.1. Shape Scoring
Shape scoring seeks to predict the shape fitness of the objects in
Oa for performing the action a. This is indicated by the ShapeFit()
function in Algorithm 2. In this work, we consider tools to have
action parts and grasp parts2. Thus, m = 2 and the set of objects
Oa consists of two objects, i.e., |Oa| = 2. Further, the ordering of
objects in Oa indicates the correspondence of the objects to the
action and grasp parts.

For shape scoring, we seek to train models that can predict
whether an input point cloud is suited for performing a specific
action. We formulate this as a binary classification problem.
We represent the shape of the input object point clouds using
Ensemble of Shape Functions (ESF) (Wohlkinger and Vincze,
2011) which is a 640-D vector, shown to perform well in
representing object shapes for tools (Schoeler and Wörgötter,
2015; Nair et al., 2019b). We then train independent neural
networks that take an input ESF feature, and output a binary
label indicating whether the input shape feature is suited for
performing a specific action. Thus, we train separate neural
networks, one for each action3. More specifically, we train

2As in prior work, this covers the vast majority of tools (Myers et al., 2015; Abelha

and Guerin, 2017).
3The advantage of the binary classification is that for new actions, additional

networks can be trained independently without affecting other networks.

Algorithm 2: Feature score Computation

1 Function FeatureScore(s, a,Oa, trust = true):
2 if Oa is empty then
3 return 0
4 if trust then
5 if canAttach(Oa, a) then
6 φs

shape
(Oa) = ShapeFit(Oa, a) // Sensors are fully

trusted - section 3.4.1
7 φs

mat(Oa) =MaterialFit(Oa, a)
8 φ(s) = λ1 ∗ φs

shape
(Oa)+ λ2 ∗ φs

mat(Oa) // The

weighted sum is assigned to s
9 return φ(s)

10 else

11 return−∞

12 end

13 else

14 if (Oa, a) ∈ Oreject then

15 φs
shape

(Oa) = ShapeFit(Oa, a) // Not fully trust

sensors - section 3.4.2
16 return φs

shape
(Oa) // Evaluate objects that were

previously rejected

17 else

18 return−∞

19 end

20 end

separate networks for the tools’ action parts, e.g., the head of
a hammer or the flat head of a spatula, and for a supporting
function: “Handle,” which refers to the tools’ grasp part, e.g.,
hammer handle.

For the score prediction, given a set of objectsOa to be used for
constructing the tool, letK denote the set of objects inOa that are
candidates for the action parts of the final tool, and let Oa −K be
the set of candidate grasp parts. Then the shape score φs

shape
(Oa)

is computed by using the trained networks as:

φs
shape(Oa) =

∏

oi∈K

p(action|oi)
∏

oi∈Oa−K

p(handle|oi) (1)

Where, p is the prediction confidence of the corresponding
network. Thus, we combine prediction confidences for all
action parts and grasp parts. For example, for the action “join-
hammer(Oa)” whereOa consists of two objects (o1, o2), the shape
score φs

shape
(Oa) = p(hammer_head|o1) ∗ p(handle|o2).

3.3.2. Material Scoring
Material scoring seeks to predict the material fitness of the
objects in Oa for performing the action a. This is indicated
by the MaterialFit() function in Algorithm 2. In this work, we
make three simplifying assumptions. Firstly, we consider the
construction of rigid tools which covers a vast range of real-
world examples (Myers et al., 2015; Abelha et al., 2016). Secondly,
we consider the material properties of the action parts of the
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TABLE 1 | Table indicating appropriate materials for action parts of different tools.

Tool Material (Action part)

Hammer Metal, Wood

Screwdriver Plastic, Metal

Ladle Plastic, Wood, Metal

Spatula Plastic, Wood, Metal

Rake Plastic, Wood, Metal

Squeegee Foam

tool since the action parts are more critical to performing the
action with the tool (Shrivatsav et al., 2019). Lastly, we assume
that the materials that are appropriate for different tools is
provided a-priori, e.g., hammer heads are made of wood or
metal (Shown in Table 1). Note that this information can also
be obtained using common knowledge bases such as RoboCSE
(Daruna et al., 2019).

For material scoring, we seek to train models that can
predict whether an input material is suited for performing a
specific action. We represent the material properties of the
object using spectral readings, since it has been shown to
work well for material classification problems in prior work
(Erickson et al., 2019, 2020; Shrivatsav et al., 2019). For extracting
the spectral readings, the robot uses a commercially available
handheld spectrometer4, called SCiO, to measure the reflected
intensities of different wavelengths, in order to profile and classify
object materials. The spectrometer generates a 331-D real-valued
vector of spectral intensities. Then given a dataset of SCiO
measurements from an assortment of objects, we train a model
through supervised learning to output a class label indicating the
material of the object.

For the material score prediction, given the spectral readings
for the action parts in Oa denoted by K, we map the predicted
class label to values inTable 1 to compute thematerial score using
the prediction confidence of the model. Let T(a) denote the set
of appropriate materials for performing an action a. Then the
material score is computed as:

φs
mat(Oa) =







z =
∏

oi∈K

max
ci∈T(a)

p(ci|oi), if z ≥ t

−∞, otherwise

(2)

Where, p is the prediction confidence of the network regarding
the class ci. We compute the max prediction confidence across
all the appropriate classes ci ∈ T(a), and their product over the
action parts inK. For example, for the action “join-hammer(Oa),”
where Oa consists of two objects (o1, o2), the material score
φs
mat(Oa) = max(p(metal|o1), p(wood|o1)). If the max value

exceeds some threshold5 denoted by t, then the corresponding
value is returned. Otherwise, the model returns−∞. Hence, note
that material prediction acts as a hard constraint, by directly

4https://www.consumerphysics.com/ - Note that SCiO can be controlled via an app

that enables easy scanning of objects. The robot simply moves the scanner over the

object, and the user presses a key within the app to scan the object.
5We empirically determined a threshold of 0.6 to work well.

eliminating any objects that are made of inappropriate materials,
thus reducing the potential search effort.

3.3.3. Attachment Prediction
Given a set of objects, we seek to predict whether the objects
can be attached to construct a tool. This is indicated by the
canAttach() function in Algorithm 2. In order to attach the
objects, we consider three attachment types for creating fixed
attachments, namely, pierce attachment (piercing one object with
another, e.g., foam pierced with a screwdriver), grasp attachment
(grasping one object with another, e.g., a coin grasped with
pliers), and magnetic attachment (attaching objects via magnets
on them). For magnetic attachments, we manually specify
whether magnets are present on the objects, enabling them to be
attached. For pierce and grasp attachment, we check whether the
attachments are possible as described below. If no attachments
are possible for the given set of objects, the feature score returns
−∞, indicating that the objects are not a viable combination.
Thus, the search eliminates any objects that cannot be attached.

3.3.3.1. Pierce attachment
Similar to material reasoning, we use the SCiO sensor to
reason about material pierceability. We assume homogeneity of
materials, i.e., if an object is pierceable, it is uniformly pierceable
throughout the object. We train a neural network to output a
binary label indicating pierceability of the input spectral reading
(Nair et al., 2019b). If the model outputs 0, the objects cannot be
attached via piercing.

3.3.3.2. Grasp attachment
To predict grasp attachment, we model the grasping tool (pliers
or tongs) as an extended robot gripper. This allows the use of
existing robot grasp sampling approaches (Zech and Piater, 2016;
ten Pas et al., 2017; Levine et al., 2018), for computing locations
where a given object can be grasped. In particular, we use the
approach discussed by ten Pas et al., that outputs a set of grasp
locations given the input parameters reflecting the attributes of
the pliers or tongs used for grasping (ten Pas et al., 2017). If
the approach could not sample any grasp locations, the objects
cannot be attached via grasping.

3.4. Incorporating the Sensor Trust
Parameter
In this section, we describe how the sensor trust parameter (Line
4, Algorithm 2) is incorporated to compute the feature score in
two different ways. The first approach includes trusting the shape,
material, and attachment predictions of the models described
above. The second approach allows the robot to deal with possible
false negatives in material and attachment predictions, by only
incorporating the shape score into the feature score computation.

3.4.1. Fully Trust Sensors
In the case that the robot fully trusts the material and attachment
predictions, the trust parameter is set to true (Line 4, Algorithm
2). The final feature score is then computed as a weighted sum
of the shape and material scores, if the objects can be attached
(Algorithm 2, Lines 5–8). We found uniform weights of λ1 =

1, λ2 = 1, to work well for tool constructions. If the objects
cannot be attached, then φ(s) = −∞, indicating that the
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objects in Oa do not form a valid combination. Otherwise, using
Equations (1) and (2):

score(s,Oa) = λ1 ∗ φs
shape(Oa)+ λ2 ∗ φs

mat(Oa) (3)

Since both material and attachment predictions are hard
constraints, certain object combinations can be assigned a
score of −∞, indicating that the robot does not attempt
these constructions. As described before, this can lead to
cases of false negatives where the robot is unable to find the
correct construction due to incorrect material or attachment
predictions. In these cases, the algorithm tracks the rejected
object combinations in Oreject (Algorithm 1, Line 26), and
repeats the search as described below, by switching trust to false
(Algorithm 1, Lines 33–34).

3.4.2. Not Fully Trust Sensors
In case of false negatives, the robot can choose to eliminate the
hard constraints of material and attachment prediction from the
feature score computation, thus allowing the robot to explore
the initially rejected object combinations by using only the shape
score. This is achieved by setting the trust flag to false in our
implementation (Lines 14–15, Algorithm 2). In this case, we
attempt to re-plan using the feature score as:

φ(s) =

{

φs
shape

(Oa), if Oa ⊆ Oreject

−∞, otherwise
(4)

Here,Oreject indicates the set of objects that were initially rejected
by the material and/or the attachment predictions. Since, shape
score is a soft constraint, i.e., it does not eliminate any object
combinations completely, we use the shape score to guide the
search in case of the rejected objects. In the worst case, this causes
the robot to explore all nPm permutations of objects. However,
as shown in our results, shape score can serve as a useful guide
for improving tool construction performance in practice, when
compared to naively exploring all possible object combinations.
The final feature score computation, influenced by attachments
and the trust parameter, can be summarized as follows from
Equations (3), (4):

φ(s) =











score(s,Oa), if attachable & trust

φs
shape

(Oa), if not trust & Oa ⊆ Oreject .

−∞, otherwise

3.5. Final Cost Computation
Once the feature score is computed, the final cost function is
computed as f (s) = g(s) + h(s) − λ ∗ φ(s). Interestingly, we
found that λ = 1, thus f (s) = g(s) + h(s) − φ(s), performs very
well with the choice of search algorithms and heuristics in this
work for the problem of tool construction. In this case, the higher
the feature score φ(s), the lower the cost f (s), in turn guiding
the search to choose nodes with higher feature score (lower f (s)
values). Additionally, the values of the feature score are within the
range 0 ≤ φ(s) ≤ 2. Since we use existing planning heuristics that
have been shown to work well, and the task plans generated have
≫2 steps involved, g(s)+h(s)≫2 and thus, f (s) > 0. Thus, λ = 1

works well for the problems described in this work. However, this
presents an interesting research question for our future work in
terms of an in-depth analysis of the choice of heuristic and feature
score values, and its influence on the guarantees of the search.

3.6. Implementation Details
In this section, we describe additional details regarding the
implementation of the work, both in terms of the algorithm, as
well as the physical implementation on the robot.

3.6.1. Algorithm Implementation
In terms of implementation, the process begins with the trust
parameter set to True. FGS generates a task plan that involves
combining objects to construct the required tool. Once a task
plan is successfully found, the robot can proceed with executing
the task plan and joining the parts indicated byOa as described in
Nair et al. (2019b), to construct the required tool for completing
the task. If the tool could not be successfully constructed or used,
the plan execution is said to have failed, and the robot re-plans
to generate a new task plan with a different object combination,
since the algorithm tracks the attempted object combinations.
Note that the approach also keeps track of object combinations
rejected by material and attachment predictions in Oreject . If no
solution could be found with trust set to True, and Oreject 6= ∅,
then the robot switches trust to false, and FGS explores the object
combinations within Oreject (Lines 33-34 of Algorithm 1). If no
solution could be found with either trust setting, FGS returns a
complete failure and terminates.

Further note that in this work, we do not explicitly deal
with symbol grounding (Harnad, 1990) and symbol anchoring
(Coradeschi and Saffiotti, 2003) problems. We overcome these
issues by manually mapping the object point clouds to their
specific symbols within the planning domain definition. Once
the task plan is generated, the mapping is then used to match
the symbols within the task plan to their corresponding objects
in the physical world, via their point clouds. However, existing
approaches can potentially be adapted in order to refine the
symbol grounding functions (Hiraoka et al., 2018), or to enable
the robot to automatically extract the relationships between the
object point clouds and their abstract symbolic representations
(Konidaris et al., 2018).

3.6.2. Physical Implementation
The spectrometer used in this work can be activated either using
a physical button located on the sensor, or through an app
that is provided with the sensor. However, pressing the physical
button requires precision and careful application of the correct
amount of force, which can be challenging for the robot since it
may potentially damage the sensor if the applied force exceeds
a certain threshold. To prevent this, in our implementation,
the robot simply moves the scanner over the objects, and the
user then manually presses a key within the app to activate
the sensor. Additionally, the rate of scanning is also limited
by the speed of the robot arm itself. Since the robot arm used
in this work moves rather slowly, it took about ≈1.7 min on
average to scan 10 objects, while this would take <30 s for a
human. Overcoming these issues and several other manipulation
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challenges are essential to ensure practical applicability of this
work. We discuss this in more detail in section 5.

4. EXPERIMENTAL VALIDATION AND
RESULTS

In this section, we describe our experimental setup and present
our results alongside each evaluation. We validate our approach
on three diverse types of tasks involving tool construction
in a household domain, namely, wood-working, cooking, and
cleaning. For wood-working tasks, the tools to be constructed
include hammer and screwdriver; for cooking tasks the tools
include spatula and ladle; and lastly for cleaning tasks the tools
include rake and squeegee. Each tool is constructed from two
parts (m = 2) corresponding to the action and grasp parts
of the tool6. Our experiments seek to validate the following
three aspects:

1. Performance of feature guided A
∗ against baselines: In

order to investigate the informativeness of including feature
score in heuristic search, we evaluate the feature guided
A∗ approach against three baselines. We also evaluate our
approach in terms of the two different settings of the sensor
trust parameter to investigate the benefits of introducing
sensor trust.

2. Combining feature scoring with other heuristic search

algorithms: To investigate whether feature scoring can
generalize to other search approaches, we integrate feature
scoring with two additional heuristic search algorithms.
Specifically, we present results combining feature scoring with
weighted A∗ and enforced hill-climbing with the fast-forward
heuristic (Hoffmann and Nebel, 2001).

3. Adaptability of task plans to objects in the robot’s

environment: We evaluate whether the robot can adapt
its task plans to appropriately use the constructed tool,
as the objects available to the robot for tool construction
are modified. This measures whether the robot can
flexibly generate task plans in response to the objects in
the environment.

For all our experiments, we use a test set consisting of 58
previously unseen candidate objects for tool construction (shown
in Figure 1). These objects consist of metal (11/58), wood
(12/58), plastic (19/58), paper (2/58), and foam (14/58) objects.
Only the foam and paper objects are pierceable. Prior to planning,
the robot scans the materials of the objects for material scoring
and attachment predictions. For our results, we evaluate the
statistical significance where it is applicable, using repeated
measures ANOVA with post-hoc Tukey’s test. We discuss each
experiment in more detail below, along with the results for each.

4.1. Performance of Feature Guided A*
In this section, we evaluate the performance of feature guided A∗

against three baselines: (i) standard A∗, where f (s) = g(s)+ h(s),
(ii) feature guided uniform cost search, where f (s) = g(s)+ 2.0−

6In this work, we pre-specify the trajectories to be followed when combining the

objects to construct the tool.

φ(s), and (iii) standard uniform cost search, where f (s) = g(s).
In (ii), we use 2.0 − φ(s) to add a positive value to g(s) since,
0 ≤ φ(s) ≤ 2. As a heuristic with A∗, we use the cost optimal
landmark heuristic (Karpas and Domshlak, 2009). We also vary
the sensor trust parameter, and present results for the two cases
where the robot is not allowed to change the trust parameter
(trust always set to true, i.e., lines 33–34 of Algorithm 1 not
executed), and for the case where the robot is allowed to change
it to false when no plan is found.

For the evaluation, we create six different tasks, two tasks each
for wood-working, cooking and cleaning. Each task requires the
construction of one specific tool for its completion, e.g., one of
the tasks in wood-working requires construction of a hammer,
and the other requires construction of a screwdriver. For each
task we created 10 test cases, where each test case consisted of 10
objects chosen from the 58 in Figure 1, that could potentially be
combined to construct the required tool. We report the average
results across the test cases for each task type (total 10 × 2 cases
per task type with 10 candidate objects per case). We create each
test set by choosing a random set of objects, ensuring that only
one “correct” combination of objects exists per set. The correct
combinations are determined based on human assessment of the
objects. For each task, we instantiate the corresponding domain
and problem definitions in PDDL7.

The metrics used in this experiment include (i) the number
of nodes expanded during search as a measure of computational
resources consumed, (ii) the number of failed construction
attempts before a working tool was found (also referred to as
“attempts” in this paper), and (iii) the success rate indicating
the number of times the robot successfully found a working
tool. Ideally, we would like the number of nodes expanded and
the number of failed construction attempts to be as low as
possible. Note that the brute force number of failed construction
attempts for 10 objects is 89, since there are 10P2 possible object
permutations for m = 2, with 89 incorrect possibilities. Ideally,
we would like the number of failed construction attempts to
be 0. The success rate should be as high as possible, ideally
equal to 100%.

Table 2 shows the performance of feature guided A∗ (where
f (s) = g(s) + h(s) − φ(s), denoted by “FS+H”) compared to
the different baselines: “H” denotes standard A∗ (where f (s) =

g(s) + h(s)), “FS” denotes feature guided uniform cost search
(where f (s) = g(s) + 2.0 − φ(s)), and “UCS” denotes standard
uniform cost search (where f (s) = g(s)). The values reported
per task are the average performances across the test cases
where tool constructions were successful. As shown in Table 2,
incorporating feature scoring (FS, FS+H) helps significantly
reduce the number of failed construction attempts compared
to the baselines without feature scoring (H, UCS), with p <

0.001. Since heuristics can help reduce the search effort in terms
of number of nodes expanded, we see that approaches that
do not use heuristics (FS and UCS) expand significantly more

7In the planning problem definition, the objects are instantiated numerically

through “obj0” to “obj9,” where each literal is manually assigned to one of the 10

objects during planning time. Our planning and domain definitions are available

at: https://github.com/Lnair1993/Tool_Macgyvering.
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FIGURE 1 | Dataset of 58 objects used for the experiments, made of different materials.

TABLE 2 | Table comparing feature guided A∗ (“FS+H”) with baselines.

Cleaning Cooking Wood-working

FS+H H FS UCS FS+H H FS UCS FS+H H FS UCS

# Nodes 5187 5187 9061 9061 329 604 36237 36213 7264 6936 28606 28734

# Failed

attempts
2 46 3 49 3 48 4 40 2 45 2 37

The other notations: “H”—standard A∗; “FS”— feature guided uniform cost search; “UCS”—standard uniform cost search. This table reports the average number of failed attempts per

task, across test cases where tool construction was successful. Note that the max number of failed attempts possible is 89 (brute force). Bold highlights the best performance values

for the different metrics.

FIGURE 2 | Graphs highlighting the success rates for the two different modes of feature scoring based on sensor trust parameter, in relation to the number of failed

attempts. Note that X-axis highlights the actual number of attempts across all test cases for wood-working, cooking, and cleaning put together. (A) Graph showing

the success rate compared to the number of attempts when sensors are fully trusted. (B) Graph showing the success rate vs. the number of attempts when sensors

are not fully trusted.
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nodes than FS+H and H, with p < 0.001. Note that there
is no statistically significant difference in the number of nodes
expanded between H and FS+H. Thus, using feature scoring
with heuristics (FS+H) yields the best performance in terms
of both number of nodes expanded, and the number of failed
construction attempts. To summarize, these results show that
feature scoring is informative to heuristic search by significantly
reducing the average number of failed construction attempts to
≈ 2 compared to ≈ 46 without it (brute force number of failed
attempts is 89).

Further, in Figures 2A,B, we plot the success rate vs. the
resource budget of the robot in terms of the permissible number
of failed attempts. That is, the robot is not allowed to try any
more than a fixed number of attempts, indicated by the resource
budget. Figure 2A considers the case where the sensor trust
parameter is always set to true, and Figure 2B considers the case
when the robot is allowed to switch the trust to false, if a solution
was not found. Note that in contrast to Table 2, the graphs report
actual number of failed attempts, across all tasks, whereas Table 2
reports the average number of failed attempts across the test
cases per task, for tool constructions that were successful. In
Figure 2A, we see that FGS (FS+H and FS) achieves a success
rate of 86.67% (52/60 constructions) within a resource budget
of ≈ 8 failed attempts to do so. This indicates that 13.33% of
the valid constructions were treated as false negatives by material
and attachment predictions, and were completely removed from
consideration (unattempted). Thus, increasing the permissible
resource budget beyond 8, does not make any difference.Without
feature scoring, H and UCS achieve a success rate of 87%
with a budget of 71 attempts, and 100% after exploring nearly
every possible construction (max resource budget of 89 failed
attempts). In contrast, when the robot is allowed to switch the
trust parameter, the robot uses shape scoring alone to continue
guiding the search. As shown in Figure 2B, FGS (FS+H and FS)
achieves 100% success rate within a budget of ≈ 39 attempts,
since the robot does not eliminate any object combinations from
consideration. The performance is also significantly better than
the baselines that do not use feature scoring. This is because
shape scoring guides the search through the space of object
combinations based on the objects’ shape fitness, compared to H
andUCS that do not have anymeasure of the fitness of the objects
for tool construction. To summarize, feature scoring enables the
robot to successfully construct tools by leveraging the sensor
trust parameter, while significantly outperforming the baselines
in terms of the resource budget required.

In order to understand which tools were more challenging
for feature scoring, Table 3 shows a tool-wise breakdown in
performance for feature guided A∗ for the two different sensor
trust values. The notation “trust” denotes the case where sensors
are fully trusted, and “∼trust” denotes case where they are not
fully trusted. When the sensors are fully trusted, rakes were
a particularly challenging test case, as indicated by the lowest
success rate of 7/10. In contrast, hammers and ladles have a
success rate of 10/10. The failure cases for each tool arises from
incorrect material and attachment predictions. While not fully
trusting the sensors (∼trust) leads to a 100% success rate (60/60
cases), using shape score alone leads to more failed construction

attempts when compared to combining shape with material and
attachment predictions since shape alone is less informative
(e.g., for rake, ∼trust has 7 failed attempts vs. 3 failed attempts
for trust).

Figure 3 shows sample task plans generated by the robot in
cooking and cleaning tasks. In the case of cooking, the robot
needed a spatula to flip the eggs, and used a flat piece (obj4)
with tongs (obj5) to construct the spatula via grasp attachment.
For cleaning, the robot needed a squeegee to clean the window,
and used a foam block (obj1) and screwdriver (obj6) to construct
the squeegee via pierce attachment. Without the constructed
tools, the actions highlighted in red would fail, i.e., the “flip”
action would fail without the constructed spatula. Hence, FGS
enables the robot to replace missing tools through construction.
To summarize, the key findings of this experiment indicate that
feature scoring is highly informative for heuristic search by
reducing the number of nodes expanded by ≈ 82%, and the
number of failed construction attempts by ≈ 93%, compared
to the baselines. Further, allowing the robot to switch the trust
parameter when a plan is not found, helps achieve a success
rate of 100% within a budget of ≈ 39 attempts, significantly
outperforming baselines that do not use feature scoring.

4.2. Feature Scoring With Other Heuristic
Search Algorithms
To demonstrate that feature scoring generalizes to other search
approaches, in this section we present results for combining
feature scoring with weighted A∗ (Pohl, 1970), and enforced
hill-climbing using the fast-forward heuristic (Hoffmann and
Nebel, 2001). We use the same experimental setup and metrics
as described in section 4.1. In addition, we also measure the
output plan length to investigate the optimality of the different
approaches. For weighted A∗, feature scoring is incorporated
as f (s) = g(s) + w ∗ (h(s) − φ(s)), where w indicates a
weight parameter8. For enforced hill-climbing, the cost function
is computed as f (s) = h(s) − φ(s). For both weighted A∗ and
enforced hill-climbing, we use the fast-forward heuristic, which
has been shown to be successful for planning tasks in prior work
(Hoffmann and Nebel, 2001).

InTable 4, we present the results for feature scoring combined
with A∗ and the cost-optimal landmark heuristic (“A∗+LM”),
weighted A∗ with fast-forward heuristic (“wA∗+FF”), and
enforced hill-climbing with fast forward heuristic (“eHC+FF”).
Compared to A∗+LM, wA∗+FF and eHC+FF reduce the
computational effort (fewer nodes expanded) in return for
sub-optimal solutions (longer plan lengths). This is expected
of weighted A∗ and enforced hill-climbing since they are
inadmissible algorithms. There is no statistically significant
difference between # failed construction attempts in each case.
To summarize, the key finding of this experiment is that feature
scoring can be applied to other planning heuristics such as fast-
forward, and other heuristic search algorithms like weighted
A∗ and enforced hill-climbing, to further reduce computational
effort, albeit at the cost of optimality in terms of plan length.

8Weight was set to 5.0.
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TABLE 3 | Table showing tool-wise breakdown in performance for feature guided A∗.

Cleaning Wood-working Cooking

Squeegee Rake Hammer Screwdriver Spatula Ladle

Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust

# Failed

attempts
0 1 3 7 2 2 2 8 3 7 2 2

# Success 9/10 10/10 7/10 10/10 10/10 10/10 8/10 10/10 8/10 10/10 10/10 10/10

This table reports the average number of failed attempts per tool, across cases where tool construction was successful. The notation ∼trust indicates cases where sensors are not fully

trusted. Note that max # failed attempts is 89.

FIGURE 3 | (Left) A sample task plan where a spatula must be constructed for a cooking task, and the planner uses the flat piece (obj4 in the problem definition), and

tongs (obj5 in the problem definition). The action “join-spatula” refers to the construction of the spatula using obj4 and obj5. Similarly, (right) a squeegee is

constructed from obj1 (foam block) and obj6 (screwdriver) for the cleaning task. Without tool construction (highlighted in green) the actions underlined in red would fail.

TABLE 4 | Table showing performance of feature guided Weighted A∗ (wA∗) and feature guided Enforced Hill-Climbing (eHC) with the fast-forward heuristic (FF).

Cleaning Cooking Wood-working

A∗+LM wA∗+FF eHC+FF A∗+LM wA∗+FF eHC+FF A∗+LM wA∗+FF eHC+FF

# Nodes 5187 21 21 329 23 35 7264 25 38

# Failed

attempts
2 2 4 3 3 4 2 1 2

Plan length 20 22 22 19 19 19 11 15 15

4.3. Adaptability of Task Plans
In this section we evaluate the adaptability of our FGS approach
to generate task plans based on objects in the environment, to
appropriately use the constructed tool. We create three tasks, one
task each for wood-working, cooking, and cleaning. In each of
the tasks, either of two tools can be constructed to successfully
complete the task, but there is only one ground truth depending
on the objects available for construction. That is, the available
objects only enable the construction of one of the two tools. Thus,
the robot has to correctly choose the tool to be constructed. In

addition, the robot must adapt the task plan to appropriately use
the constructed tool. For the wood-working task either a hammer
(with action “hit”) or a screwdriver (with action “tighten”) can be
used to attach two pieces of wood; for the cooking task either a
spatula (with action “flip”) or a ladle (with action “scoop”) can
be used to flip eggs; and for the cleaning task, either a squeegee
(with action “reach”) or a rake (with action “collect”) can be used
to collect garbage.

For the evaluation, we create three different tasks, one each
in wood-working, cooking, and cleaning. For each task, either
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FIGURE 4 | Graph highlighting the number of times the correct object combination was chosen, compared to the random selection baseline. FGS significantly

outperforms random baseline (p < 0.01).

FIGURE 5 | This figure shows the results for two of the test cases in wood-working. The task plans are adapted based on the constructed tool (i.e., hammer or

screwdriver), to either “hit” or “tighten” to attach the two pieces of wood p0 and p1. Arrows denote the parts of the task plan that are adapted.

one of two tools can be used to complete the task as described
above. For each task, we created 10 different test sets of random
objects, similar to the experiment described in section 4.1. In each
case, only one “correct” combination exists. Thus, the robot has
to correctly identify which of the two tools can be constructed
for accomplishing the task, given the set of objects. We evaluate
the performance of feature guided A∗ in each case alongside a
random selection baseline to demonstrate the difficulty of the
problem. The random selection baseline randomly chooses one
of the two tool construction options for each task. Note that for
each task, the domain and problem definitions are unchanged

across the 10 test cases of objects. This indicates that the task
plan adaptability does not require any manual modifications by
the user, instead is the direct result of the sensor inputs received
by the robot.

The key metric used in this experiment includes the number
of times the robot chose the correct tool to construct for each
task. Thus, if the robot chose to construct a hammer, when the
correct combination was to construct a screwdriver, the attempt
is considered to have failed. We also present qualitative results
showing some of the sample task plans and tools constructed by
the robot for different sets of objects.
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FIGURE 6 | Collage indicating sample tool constructions output for two test cases per task. The solid and dashed brackets indicate the test set of objects provided in

each case, along with the tool constructed for it. As the objects are changed, the corresponding constructed tool and action is different. Note that the problem and

domain definitions are fixed for each task, and unchanged across the test cases per task.

Figure 4 shows the performance of feature guided A∗

compared to the random selection baseline. We see that feature
guided A∗ chooses the correct tool for 27/30 cases, and
significantly outperforms the random selection baseline (p <

0.01). The failure cases in the wood-working task arise due to
noisy material detection. In the case of cooking task, the noisy
point clouds sensed by the RGBD camera leads to incorrect
choices, e.g., the concavity of bowls was not correctly detected
for some ladles.

In Figure 5, we show two task plans that are generated within
the task of wood-working. For the same task, either a hammer or
a screwdriver can be used to attach two pieces of wood p0 and p1.
Depending, on the objects available in the environment, the robot
chooses to construct one of the two tools and adapts the task plan
to use the corresponding tool for completing the task. As shown
in the left of Figure 5, the robot chose to construct a hammer to
“hit” and attach the two pieces of wood. Whereas, shown in the
right of Figure 5, the robot chose to construct a screwdriver to
“tighten” and attach the two pieces of wood. Similar adaptations
are observed for the remaining two tasks as well: “scoop” with

ladles vs. “flip” with spatulas in the cooking task, and “reach”
with squeegees vs. “collect” with rakes in the cleaning task. Thus,
the constructed tool depends on the objects in the environment,
which in turn adapts the generated task plan to appropriately use
the constructed replacement tool.

In Figure 6, we present some qualitative results for six
different tools constructed by the robot for six of the test cases.
The solid and dashed parentheses highlight the input test set.
For example, given the metal bowl and metal pliers, the robot
chooses to construct a ladle (and use the “scoop” action in the
task plan). In contrast, when the pliers and bowl are replaced
with a plastic handle and a flat plastic piece, the robot chooses
to construct a spatula instead (and use the “flip” action in the
task plan). Given that the problem and domain definitions are
unchanged for the two cases, this shows that the robot is able to
adapt the task plan in response to the objects in the environment.
To summarize, the key finding of this experiment is that the
robot is able to successfully adapt the task plan to construct and
use the appropriate tool depending on the objects available for
construction, with an accuracy of 90% (27/30 cases).
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5. CONCLUSION AND FUTURE WORK

In this work, we presented the Feature Guided Search (FGS)
approach that allows existing heuristic search algorithms to be
efficiently applied to the problem of tool construction in the
context of task planning. Our approach enables the robot to
effectively construct and use tools in cases where the required
tools for performing the task are unavailable. We relaxed key
assumptions of the prior work in terms of eliminating the need
to specify an input action, instead integrating tool construction
within a task planning framework. Our key findings can be
summarized as follows:

• FGS significantly reduces the number of nodes expanded by
≈ 82%, and the number of construction attempts by ≈ 93%,
compared to standard heuristic search baselines.

• The approach achieves a success rate of 87% within a resource
budget of 8 attempts when sensors are fully trusted, and 100%
within a budget of 39 attempts, when the sensors are not
fully trusted.

• FGS enables flexible generation of task plans based on objects
in the environment, by adapting the task plan to appropriately
use the constructed tool.

• Feature scoring can also be effectively combined with other
heuristic search algorithms such as weighted A∗ and enforced
hill-climbing.

Our work is one of the first to integrate tool construction
within a task planning framework, but there remain many
unaddressed manipulation challenges in tool construction that
are beyond the scope of this paper. Tool construction is a
challenging manipulation problem that involves appropriately
grasping and combining the objects to successfully construct
the tool. That is, once the robot has correctly identified the
objects that need to be combined (focus of this paper), the robot
would then have to physically combine the objects, and use the
constructed tool for the task. Currently, our work pre-specifies
the trajectories to be followed for tool construction, although
existing research in robot assembly can be leveraged to potentially
accomplish this (Thomas et al., 2018). Further, a key question
to be addressed is, how can the robot learn to appropriately use
the constructed tool? Future work could address this problem
by leveraging existing research in tool use (Stoytchev, 2005;
Sinapov and Stoytchev, 2007, 2008), and trajectory-based skill
adaptation (Fitzgerald et al., 2014; Gajewski et al., 2019). Upon
successful construction of the tool, the research problem reduces
to that of using the tool appropriately. In this case, the robot
can either learn how to use the tool as described in Stoytchev
(2005), Sinapov and Stoytchev (2008, 2007) or, the robot can
adapt previously known tool manipulation skills to the newly
constructed tool as described in Fitzgerald et al. (2014) and
Gajewski et al. (2019). Addressing these challenges is important
to further ensure practical applicability of tool construction.

Additionally, creation of tools through the attachment types
discussed in this work is currently restricted to a limited
number of use cases, in which two objects that have the specific
attachment capabilities already exist, and are available to the

robot. In the future, we seek to expand to more diverse types of
attachments, including gluing or welding the objects together, as
well as creation of tools from deformable materials, in order to
improve the usability of our work. We further seek to expand
on this work by investigating the application of feature scoring
to domains other than tool construction. In particular, we seek
to investigate the different ways in which feature score can be
effectively combined with the cost function for other domains
involving tool-use such as tool substitution. While our proposed
cost function is dependent on the values of the feature score and
is shown to perform well for tool construction, it is important
to further investigate the cost function and its influence on
the guarantees of the search to allow for a more generalized
application of FGS.

FGS enables the robot to perform high-level decision making
with respect to the objects that must be combined in order to
construct a required tool. In this work, we use physical sensors
(RGBD sensors and SCiO spectrometer) that produce partial
point clouds and noisy spectral scans, leading to some challenges
that commonly arise in the real world. Nevertheless, there are
several open research questions that need to be addressed before
this work can be deployed in a real setting. Thus, FGS is the first
step within a larger pipeline, and we envision this work to be
complementary to existing frameworks that are aimed at resilient
and creative task execution, such as Antunes et al. (2016) and
Stückler et al. (2016). In summary, FGS presents a promising
direction for dealing with tool-based problems in the area of
creative problem solving.
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