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The development of soft hands is an important progress to empower robotic grasping

with passive compliance while greatly decreasing the complexity of control. Despite the

advances during the past decades, it is still not clear how to design optimal hands or

fingers given the task requirements. In this paper, we propose a framework to learn

the optimal design parameter for a fin-ray finger in order to achieve stable grasping.

First, the pseudo-kinematics of the soft finger is learned in simulation. Second, the task

constraints are encoded as a combination of desired grasping force and the empirical

grasping quality function in terms of winding number. Finally, the effectiveness of the

proposed approach is validated with experiments in simulation and using real-world

examples as well.

Keywords: soft hands, robotic grasping, soft finger design, grasp quality, grasp quality criterion

1. INTRODUCTION

Soft robotics is one of the most fast-growing area in robotics. This is in part due to the breaking idea
of building robots from highly compliant material similar as living organisms (Laschi et al., 2016).
More importantly, soft robots allows for increased flexibility and adaptability for accomplishing
complex tasks that is impossible for traditional rigid robots. Therefore, soft robots brings up the
potential to push the boundaries of current robot abilities (Laschi et al., 2016). Previous work
in this domain mostly focuses on the design of new types of soft robots (Lipson, 2014; Rus and
Tolley, 2015; Hughes et al., 2016), including novel driving actuators (Polygerinos et al., 2015b; Zhao
et al., 2016), bio-inspired structure and mechanism (Cutkosky and Kim, 2009; Lipson, 2014; Manti
et al., 2015; Hughes et al., 2016), special design and control methods (Hiller and Lipson, 2011), and
stretchable electronics (Rogers et al., 2010). Despite these achievements, the relation between given
task at hand and the correct robot embodiment for the task remains a challenge. In another word,
when designing the novel soft robots, there are few work taking the task constraints into account.

In this paper, we address the problem of optimal geometry design for a fin-ray finger given an
object to be grasped. The task constraint is encapsulated as a grasp quality function, which is a
combination of the object shape and the geometry of the deformed finger. The object feature is
modeled using superquadratics, which allows for a variety of inputs such as the point cloud and
object CAD models. The grasp quality function is chosen as the winding number that represents
how well the soft finger is surrounding the object surface. Given a new object, the best grasp quality
with different hands can be quickly predicted using the object and hand features. An overview of
the proposed framework is shown in Figure 1. The main contribution of this paper is two-fold: (1)
We first propose a framework to learn the optimal fin-ray finger design for soft grasping. This can
possibly open a new direction for the design of soft hands considering the task to be done, which is
important to move soft robots from lab to real world. (2) For soft grasping, we propose to use the
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FIGURE 1 | The pipeline of the proposed framework. The soft fin-ray hand and object feature are encoded and integrated with the grasp quality function in simulation.

Given a new object, the best hand design parameters are obtained by querying the learned hand-object database.

winding number to empirically estimate the quality of the
obtained grasp. This quality function is not limited to fin-ray
finger, but also can be used for many other types of soft robots.

The paper is organized as follows: section 2 provides a review
of the related work, mainly focusing on the modeling of soft
hands and the evaluation of soft grasping. Section 3 gives an
approach to object and hand feature encoding, along with an
empirical grasp quality function. Implementation details and
experiments results are described in section 4, followed by a
discussion of future directions and conclusion in section 5.

2. RELATED WORK

Soft hand and soft grasping have been extensively studied during
the past decades. The studies can be roughly divided into two
sub-areas. The first one is trying to use new materials and
structures to design various new hands and robots, which are
different from previous robots that are built from rigid material
including motors and links. Another direction is mainly focusing
on the planning of compliant grasping with soft hands. The
performance of the final grasping is usually demonstrated by the
real-world grasping examples. There is no grasp quality function
to guide the search for optimal grasps. The remaining part of
this section will discuss the work on soft hand design and the
performance of soft grasping, respectively.

2.1. Soft Hands Design and Modeling
Many researchers have attempted to use different materials,
structures, sensors, and actuators to design novel robots and
hands. Hannan and Walker (2003) developed a continuum style
robot mimicking an elephant’s trunk, where the kinematics is
formulated using curvatures of the robot’s shape. A universal
gripper is developed based on jamming of granular material, with
the goal to pick up unfamiliar object of widely varying shapes
and surface properties (Brown et al., 2010; Amend et al., 2012). A
wearable robotic glove is designed with soft actuators consisting

of molded elastomeric chambers with fiber reinforcements that
induce specific bending, twisting, and extending trajectories
under fluid pressurization (Polygerinos et al., 2015a). The
parameters are specifically selected to match the motion of
human hands. Deimel and Brock (2016) describes the design
and testing of an inexpensive, modular, under-actuated soft robot
hand with pneumatically actuated fiber-reinforced elastomer
fingers. The usage of various soft hands for exoskeletons is
presented in Shahid et al. (2018). Internal sensing capability
is further incorporated with a soft robot hand for robust
proprioceptive grasping and object identification (Homberg
et al., 2019). Abondance et al. (2020) presents a design of a
prototype hand with dexterous soft fingers capable of moving
object within the hand using several basic motion primitives.

There are some studies attempting to build the kinematic or
kinetostatic models for soft robots and hands. The kinematics
of constant curvature continuum robots is modeled and
summarized in Webster and Jones (2010). A generic geometry-
based framework is proposed to compute the deformation of
soft robots within the range of linear material elasticity, namely
linear stress–strain relation (Fang et al., 2020). The first-order
dynamic modeling and control of soft robots is studied in
George Thuruthel et al. (2020). For a fin-ray effect soft finger
(Hosale and Kievid, 2010; Corporate, 2011; Pfaff et al., 2011),
the kinetostatic model of a general multi-crossbeam finger is
established (Shan and Birglen, 2020). A comprehensive survey
on soft robotic gripper is given in Shintake et al. (2018) that
categorize the soft gripping in three types: actuation, controlled
stiffness, and controlled adhesion.

As discussed above, most of the previous work focus on the
specific design of new soft hands and the analytical performance
modeling of the designed hands. In this paper, one of the main
motivations comes from the challenge that how to design a
proper soft hand given the desired task requirement. To this
end, two basic components are necessary: how to model the
hand (in terms of kinematics, dynamics) and how to model the
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task requirements. In this paper, we choose to use the fin-ray
finger as a testing example for our proposed framework, but
also noticing that our approach is not limited to this specific
type of fingers. Rather than using an analytic model to formulate
the kinematics, the pseudo-kinematics of the finger is directly
simulated using Ansys Workbench R© due to its generality. For
the task requirements, we choose stable grasping as the goal
while some other more complex task requirements (e.g., object
identification, dexterous manipulation) can be also considered.
The performance of soft grasping is reviewed in the next part.

2.2. Quality of Soft Grasping
Unlike its counterpart of multi-fingered robotic hands where
various metrics have been proposed to evaluate the quality of
a given grasp, the grasping quality using a soft hand is usually
much more difficult to evaluate. This is mainly due to the fact
that the assumption of point contact is not valid in the case of
soft grasping as mentioned in Shintake et al. (2018). The contact
during soft grasping is continuously deformable in an infinity of
possible shapes through interaction with objects. Several quality
measures (Cloud Quality, Closure Index, and Net Force) are
used in order to extract the grasp affordances for a soft hand
(Bonilla et al., 2014). There are also some works that design the
hand to simply mimic the structure or functionality of human
hands (Deimel and Brock, 2016). Implicitly, in these cases the
actual grasp quality is assumed to be the feasibility to achieve the
human grasp taxonomy. Later, a co-design strategy is proposed
to design the hand morphology with specific structure (Deimel
et al., 2017). The grasp quality here is evaluated by a soft hand
grasping simulator.

In this paper, we proposed to use the winding number
to evaluate the quality of a soft grasp. Based on this quality
function and the object shape geometry, the optimal finger
design parameters can be selected. Compared with other grasping
quality function, winding number inherently represents the total
number of times that a curve travels around an object. This
quality function is more generic and can be extend to many other
soft robots with different kinematics.

3. HAND-OBJECT FEATURE ENCODING
AND GRASPING QUALITY

As shown in Figure 1, the problem can be formulated as finding
a mapping from a given task to a desired hand design, namely
M : T → H(φ), where T and H represent the task requirement
and hand design space, respectively. The task requirement in this
paper is chosen as the quality of the final grasp and the hand
design space depend on the design parameters of the hand φ.

3.1. Hand Feature Encoding
A soft fin-ray finger is chosen as an example in this paper (see
Figure 2), where the design parameters φ include the thickness
a and the spacing distance h. Note that some other more
complex parameters (angle, morphology) are not considered here
for simplicity.

During the hand object interaction, different selection of the
design parameters will lead to different level of deformation

FIGURE 2 | The fin-ray finger with its design parameters and its deformation

during interaction with object.

and therefore different task performance. To compute these
deformations, a dataset of the hand deformation is collected in
simulation using Ansys Workbench R©. The parameters a, h, and
the applied force F are all chosen with fixed spacing and range.
The material we used is TPU 95A with Young’s modulus 26 MPa,
yield strength 8.6 MPa, breaking strength 39 MPa, and Poisson
ratio 0.481. Some of the results are shown in Figure 2. After the
simulations, a dataset of Nh hand feature is collected as: Dh =

{Fi
f
, hi, ai, di, xin, y

i
n, z

i
n}

i=1..Nh , where superscript represents the

order of the hands. Fi
f
represents the contact force between the

hand and the object, and di represents the maximal deformation.
xin, y

i
n, z

i
n represents the coordinates of the nodes Pn after

deformation as shown in Figure 3. As discussed above, note that
some other analytical methods can be also used here to compute
the deformation as presented in Fang et al. (2020).

3.2. Object Feature Encoding
A superquadratics model is used to represent the object shape
(Jaklič et al., 2000), which is consisting of five parameters, namely
a1, a2, a3, e1, e2. In our case, we only consider a two-fingered
grasping and the section that z = 0 is considered as the grasping
plane. Therefore, e1 and a3 are not required. Together with the
allowed grasping force Fo, the dataset of object feature can be
encoded as: Do = {Fio, a

i
1, a

i
2, e

i
1, e

i
2}

i=1..No .

(

(

x

a1

)
2
e2
+

(

y

a2

)
2
e2

)

e1
e2

+

(

z

a3

)
2
e1

= 1 (1)

Note that in this paper, we will assume that the parameters of the
object feature are known in advance. However, it is still possible
to extract these parameters from either object point cloud or the
CAD model (El Khoury et al., 2012; El-Khoury et al., 2013; Li
et al., 2016).

1https://freddieflip.s3.us-west-2.amazonaws.com/uploads/sites/28/2018/03/

28133640/Plural_Elasto95A_Data_Sheet-2.pdf
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FIGURE 3 | (Left) D represents the fixed constraints during simulation and C represents the area to apply forces. (Right) The resulting deformation with different

design parameters.

3.3. Soft Grasping Quality
The task we consider here is stable soft grasping. To evaluate
the quality of the grasp, a topological grasp quality measure is
adopted, i.e., the winding number that counts the number of
times that a curve wraps around a point (Pokorny et al., 2013;
Li, 2016). In our case, this quality intuitively measures how
well the fingers wrap around the approximated superquadratics.
Mathematically, given a piecewise-linear curve that connects
points, p1, p2, pi = [pi1, p

i
2]

T · · · , pn ∈ R
2, the winding number

can be computed as (Hormann and Agathos, 2001), as illustrated
in Figure 4,

w =
1

2π

n−1
∑

i=0

{tan−1

(

pi+1T(pi+1 − pi)

Di

)

+ tan−1

(

pi
T
(pi − pi+1)

Di

)

} (2)

where Di = pi1p
i+1
2 − pi2p

i+1
1 . Note that the winding number

changes sign if the curve change direction. For our cases, we
use two fin-ray finger for soft grasping. Therefore, we define the
quality of a soft grasp G as,

wG = |wl| + |wr| (3)

where wl,wr corresponds to the winding number of the left
and right finger, respectively. Since these two fingers are
symmetric, wG = 2|wl|.

3.4. Desired Parameters Selection
Given a dataset of the hand feature Dh and the object feature Do,
the pairwise grasping quality can be computed using Equation

(3). w
i,j
G
, i = 1..Nh, j = 1..No represents the grasping quality

that grasping the jth object in Do using the ith hand in Dh. For
jth object in the dataset, we can choose the best hand design as

FIGURE 4 | The illustration of winding number for soft grasping. The red dots

represent the nodes of the beams, which are used for computing the winding

number.

argmini w
i,j. The similarity of a new object and the object dataset

is defined as:

Q
new = min{α‖Fio − Fnewo ‖+ β

2
∑

k=1

(‖aik − anewk ‖+ ‖eik − enewk ‖)}

(4)
where α and β are the scaling parameters. Given a manually
selected threshold σ , ifQnew < σ , this new object is considered as
similar enough to the objects in the dataset and the hand design is
selected accordingly. WhenQnew > σ , the object to be grasped is
considered as unknown before, the procedure to find the optimal
design parameters is summarized in Algorithm 1.
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FIGURE 5 | The YCB objects used in the experiments and their approximated superquadratics, including v8, red_cup,red_bull,pringles,krylon_short_cuts,honey_roast

ed_almonds,krylon_crystal_clear,crest_minty_fresh.

FIGURE 6 | (Left) The grasping quality for object v8 with different hand design parameters. (Right) The hand object interaction for different final grasp qualities.

4. EXPERIMENTS AND RESULTS

In the experiments, we demonstrated the results both in
simulation and with real-world objects.

4.1. Results in Simulation
For the examples with simulated object, 8 objects from
the YCB object dataset are used (Calli et al., 2015), as
shown in Figure 5. The approximated superquadratics for
each object is learned through constrained optimization
(Jaklič et al., 2000).

We take the first object v8 as an example and the desired
force is set to 2N. The grasp qualities for different hand

parameters is shown as follows (see Figure 6). The best
grasp quality is 0.3621 and the corresponding parameters
are a = 0.5mm and h = 11mm. For another object
pringles, the desired force is set to 3N and the best hand
design parameters (a = 0.7mm and h = 10mm)
are shown in Figure 7. For another object cre_minty_fresh,
the desired force is set to 3N and the best hand design
parameters (a = 1.0mm and h = 11mm) are shown
in Figure 8.

4.2. Results With Real-World Objects
The 3D-printed fin-ray finger used for grasping two real-
world objects is shown in Figure 9. The true deformations
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FIGURE 7 | (Left) The grasping quality for object pringles with different hand design parameters. (Right) The hand object interaction for different final grasp qualities.

FIGURE 8 | (Left) The grasping quality for object crest_minty_fresh with different hand design parameters. (Right) The hand object interaction for different final grasp

qualities. The red circles stand for over-shot deformation and thus the quality is set to w = 0.

for current examples are hard to measure. Therefore, we
cannot directly compute the grasp quality in the real-
world example. However, in the future work, we are
planning to integrate tactile sensing with the soft finger,
which allows us to estimate the grasp quality from previous
experience (Li et al., 2014).

5. DISCUSSION AND CONCLUSION

5.1. Discussion and Limitations
The functionality of soft hands is highly dependent on the
inherent compliance from the structure and the material.
Therefore, it is important to select the proper design parameters
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FIGURE 9 | The 3D-printed fin-ray finger used for grasping two real-world objects.

Algorithm 1: The algorithm to find the optimal hand
design parameters for a new object.

Data: Dh, Do, a new object to be grasped: Dnew
o

Result: Find the optimal hand design parameters in Dh

i = 1 wq = 0t = 1;
while i = 1..Nh do

i++ ;

Compute wi,new;
if wi,new > wq then

wq = wi,new;
t = i;

else

go back to the beginning of current section;

return t, wq

for a given task or a set of tasks. The complete searching space of
the design parameters is usually embedded in a high dimension
space. This paper only studies the case of a fin-ray finger where
the design parameters are simplified as thickness of the beam and
the spacing between beams. The performance of the soft grasping
is evaluated using winding number, which can be computed in
simulation. A much larger grasping dataset can be created in the
future to enlarge the search space for different tasks.

There are some limitations of the current proposed
framework. First, the task constraints for soft grasping is
quantified using winding number. This is a geometric metric and
it does not reflect the information from sensors and actuators.
It is possible to co-design the structure and control algorithm
together by taking into account the external sensing information
(Deimel et al., 2017; Homberg et al., 2019). Second, the design
space is simplified as a two-dimensional vector space in this
paper. However, the morphology of the soft hand is a much more
complicated space. It will be interesting to study the mapping
between this morphology space to the final task performance.
For example, in the fin-ray finger design, the beams are located

with constant distance in parallel. It will be very useful to extend
the space of the design parameters, especially by leveraging the
power of big data and deep learning. This is part of our planned
future work.

5.2. Conclusion
In this paper, we proposed a framework to learn the optimal
fin-ray finger design for soft grasping. The hand feature is
learned in simulation to encode the deformation of the finger
during interaction. The object feature is represented using
superquadratics and a topological metric is used to quantify the
final task performance. Given a new object, the desired hand
parameters can be quickly selected using the hand and object
feature representation, under the guidance of the grasp quality
function. For the future work, more complex hand design space
and task quality function will be studied by leaveraging the power
of big data and deep learning.
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