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Given the features of a video, recurrent neural networks can be used to automatically

generate a caption for the video. Existing methods for video captioning have at least three

limitations. First, semantic information has been widely applied to boost the performance

of video captioning models, but existing networks often fail to provide meaningful

semantic features. Second, the Teacher Forcing algorithm is often utilized to optimize

video captioningmodels, but during training and inference, different strategies are applied

to guide word generation, leading to poor performance. Third, current video captioning

models are prone to generate relatively short captions that express video contents

inappropriately. Toward resolving these three problems, we suggest three corresponding

improvements. First of all, we propose a metric to compare the quality of semantic

features, and utilize appropriate features as input for a semantic detection network

(SDN) with adequate complexity in order to generate meaningful semantic features for

videos. Then, we apply a scheduled sampling strategy that gradually transfers the training

phase from a teacher-guided manner toward a more self-teaching manner. Finally, the

ordinary logarithm probability loss function is leveraged by sentence length so that the

inclination of generating short sentences is alleviated. Our model achieves better results

than previous models on the YouTube2Text dataset and is competitive with the previous

best model on the MSR-VTT dataset.

Keywords: video captioning, sentence-length-leveraged loss, semantic assistance, RNN, scheduled sampling

1. INTRODUCTION

Video captioning aims to automatically generate a concise and accurate description for a video. It
requires techniques both from computer vision (CV) and natural language processing (NLP). Deep
learning (DL) methods for sequence-to-sequence learning are able to learn the map from discrete
color arrays to dense vectors, which is utilized to generate natural language sequences without the
interference of humans. These methods produced impressive results on this task compared with
the results yielded by manually crafted features.

It has gained increasing attention in video captioning that the semantic meaning of a video
is critical and beneficial for an RNN to generate annotations (Pan et al., 2016; Gan et al., 2017).
Keeping semantic consistency between video content and video description helps to refine a
generated sentence in semantic richness (Gao et al., 2017). But few researches have explored
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methods to obtain video semantic features, metrics to measure
their quality and the relation between video captioning
performance and meaningfulness of semantic features.

Several training strategies have been used to optimize video
captioning models, such as the Teacher Forcing algorithm and
CIDEnt-RL (Pasunuru and Bansal, 2017b). The Teacher Forcing
algorithm is a simple and intuitive way to train RNNs. But it
suffers from the discrepancy between training, which utilizes
ground truth to guide word generation at each step, and
inference, which samples from the model itself at each step.
Reinforcement learning (RL) techniques have also been adopted
to improve the training process of video captioning. CIDEnt-
RL is one of the best RL algorithms, but it is extremely time-
consuming to calculate metrics for every batch. In addition, the
improvement on different metrics is unbalanced. In other words,
the improvements on other metrics are not as large as that on the
specific metrics optimized directly.

The commonly used loss function for video captioning is
comprised of the logarithm of probabilities of target correct
words (Donahue et al., 2015; Venugopalan et al., 2015). A long
sentence tends to bring high loss to the model, as each additional
word reduces the joint probability by roughly at least one order
of magnitude. In contrast, a short sentence with few words has
a relatively low loss. Thus, a video captioning model is prone to
generate short sentences after being optimized by a log likelihood
loss function. Excessively short annotations may neither be able
to describe a video accurately nor express the content of a video
in a rich language.

We propose to improve solutions to the video captioning task
in three aspects. Firstly, we use mean average precision (mAP)
as the metric to evaluate the quality of semantic information. By
virtue of the evaluation metric, we build our semantic detection
network (SDN) with a proper scale and the best inputs that
brings the best performance, and, consequently, SDN is able to
produce meaningful and accurate semantic features for a video.
Secondly, we take advantage of a scheduled sampling method to
train our video captioning model, which searches extreme points
in the RNN state space more extensively as well as bridges the
gap between training process and inference (Bengio et al., 2015).
Thirdly, we optimize our model by a sentence-length-modulated
loss function, which encourages the model to generate longer
captions with more detail.

Our implementation, available on GitHub1, is based on the
TensorFlow deep learning framework.

2. RELATED WORKS

2.1. Image Captioning
The encoder-decoder paradigm has been widely applied by
researchers in image captioning since it was introduced to
machine translation (Cho et al., 2014). It has become a
mainstream method in both image captioning and machine
translation (Mao et al., 2014; Vinyals et al., 2015). Inspired by
successful attempts to employ attention in machine translation

1https://github.com/WingsBrokenAngel/Semantics-AssistedVideoCaptioning/

tree/master

(Bahdanau et al., 2015) and object detection (Ba et al., 2015),
models that are able to attend to key elements in an image
are investigated for the purpose of generating high-quality
image annotations. Semantic features (You et al., 2016) and
object features (Anderson et al., 2018) are incorporated into
attention mechanisms as heuristic information to guide selective
and dynamic attendance of salient segments in images. RL
techniques, which optimize specific metrics of a model directly,
are also adopted to enhance the performance of image captioning
models (Rennie et al., 2017). Graph Convolutional Networks
(GCNs) have been introduced to cooperate with RNN to integrate
both semantic and spatial information into image encoders in
order to generate efficient representations of an image (Yao et al.,
2018). Stimulated by the success of the Transformer model in
machine translation, researchers extend it to a multimodal model
for image captioning (Yu et al., 2019), which utilizes multi-view
visual features to further improve the performance. Multi-level
relationships between image regions are learnt and both low-
and high-level features are exploited at the decoding stage in
the Meshed Transformer with memory for image captioning
(Cornia et al., 2019).

2.2. Video Captioning
Though both image captioning and video captioning are multi-
modal tasks, video captioning is probably harder than the
former one, as videos show not only spatial features but also
temporal correlations.

Following the successful adoption of the encoder-decoder
paradigm in image captioning, multimodal features of videos
are fed into a sequence-to-sequence model to generate video
descriptions with the assistance of pretrained models in image
classification (Donahue et al., 2015; Venugopalan et al., 2015). In
order to alleviate the semantic inconsistency between the video
content and the generated caption, visual features and semantic
features of a video are mapped to a common embedding space
so that semantic consistency may be achieved by minimizing the
Euclidean distance between these two embedded features (Pan
et al., 2016). A model named POS generates video captions with
Part-of-Speech (POS) information and multiple representations
of video clips (Wang et al., 2019a). MARN exploits a memory
structure to explore the relation between a word and its various
visual contexts across the training data (Pei et al., 2019). JSRL-
VCT manages to generate video descriptions by corporating
visual representations and syntax representations (Hou et al.,
2019). GRU-EVE captures rich temporal dynamics in video
features by Short Fourier Transform, and extracts semantic
information from an object detector (Aafaq et al., 2019). Zheng
et al. (2020) propose a Syntax-Aware Action Targeting (SAAT)
component to learn an action and its subjects that exist in a video
for better semantic consistency in captioning.

RNN, especially LSTM, can be extended by integrating high-
level tags or attributes of video with visual features of the video
through embedding and element-wise addition/multiplication
operations (Gan et al., 2017). Yu et al. (2016) exploit a sentence
generator that is built upon an RNN module to model language,
a multimodal layer to integrate different modal information,
and an attention module to dynamically select salient features
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from the input. The output of a sentence generator is fed into
a paragraph generator for describing a relatively long video with
several sentences.

Following the attention mechanism introduced by Xu et al.
(2015), Gao et al. (2017) capture the salient structure of video
with the help of visual features of the video and context
information provided by LSTM. Although bottom-up (Anderson
et al., 2018) and top-down attention (Ramanishka et al., 2017)
have been proposed for image captioning, selectively focusing
on salient regions in an image is, to some extent, similar to
picking key frames in a video (Chen et al., 2018). Wang et al.
(2018) explore crossmodal attention at different granularity levels
and capture global temporal structures as well as local temporal
structures implied in multimodal features to assist the generation
of video captions.

Due to the lack of labeled video data and the abundance
of unlabeled video data, Pasunuru and Bansal (2017a) and Sun
et al. (2019) propose to improve video captioning with self-
supervised learning tasks or unsupervised learning tasks, such as
unsupervised video prediction, entailment generation and text-
to-video generation. Pasunuru and Bansal (2017a) demonstrate
that multi-task training contributes to sharing knowledge across
different domains, and each task, including video captioning,
benefits from the training of other irrelevant tasks. Sun et al.
(2019) take advantage of the abundance of unlabeled videos on
YouTube and train the BERT model introduced in Devlin et al.
(2018) on comparably large-scale videos, which is then used as
a feature extractor for video captioning. A large amount of pre-
training data is critical to BERT models both in video captioning
and machine translation (Devlin et al., 2018; Sun et al., 2019). By
aggregating different experts on different known activities, Wang
et al. (2019b) take advantage of external textual corpora and
transfer knowledge to unseen data for zero-shot video captioning.
A spatio-temporal graph model is built to find object interactions
and knowledge distillation mechanism is proposed to increase
stability of performance (Pan et al., 2020).

2.3. RNN Training Strategy
The traditional method to train an RNN is the Teacher Forcing
algorithm (Williams and Zipser, 1989), which feeds human
annotations to the RNN as input at each step to guide the token
generation during training and samples a token from the model
itself as input during inference. The different sources of input
tokens during training and inference lead to the inability of the
model to generate high-quality tokens in inference, as errors may
accumulate along the sequence generation.

Bengio et al. (2015) propose to switch gradually from guiding
generation by true tokens to feeding sampled tokens during
training, which helps RNNmodels adapt to the inference scheme
in advance. It has been applied to image captioning and speech
recognition. Inspired by Huszar (2015), who mathematically
proves that both the Teacher Forcing algorithm and Curriculum
Learning have a tendency to learn a biased model, Goyal
et al. (2016) solve the problem by adopting an adversarial
domain method to align the dynamics of the RNN during
training and inference. Zhang et al. (2020) propose an object
relational graph (ORG) to encode interaction features and

design a teacher-recommended learning (TRL) method to utilize
linguistic knowledge.

Inspired by the successful application of RL methods in
image captioning (Rennie et al., 2017; Pasunuru and Bansal,
2017b) propose a modified reward that compensates for the
logical contradiction in phrase-matching metrics as the direct
optimization target in video captioning. The gradient of the non-
differentiable RL loss function is computed and back-propagated
by the REINFORCEMENT algorithm (Williams, 1992). But
calculation of the reward for each training batch adds a non-
negligible computation cost to the training process and slows
down the optimization progress. In addition, the improvements
of RL methods on various metrics are not comparable with the
improvement on the specific metric used as RL reward.

3. THE PROPOSED APPROACHES

We consider the video captioning task as a supervised task. The
training set is annotated as N pairs of {Xi, Ŷi}, where Xi denotes
a video and Ŷi represents the corresponding target caption.
Suppose there areM frames from a video and a caption consisting
of Li words, then we have:

Xi = {xi,0, xi,1, . . . , xi,M−1},

Ŷi = {ŷi,0, ŷi,1, . . . , ŷi,Li−1},
(1)

where each x denotes a single frame and each y denotes a word
belonging to a fixed known dictionary.

A pretrained model is used to produce word embeddings,
and we obtain a low-dimension embedding of the caption Ŷi ∈

R
Li×Dw :

Ŷi = (wi,0,wi,1, . . . ,wi,Li−1)
T , wi,j ∈ R

Dw , (2)

where Dw is the dimension of the word embedding space.

3.1. Encoder-Decoder Paradigm
3.1.1. Encoder

Our encoder is composed of a 3D ConvNet, a 2D ConvNet and a
semantic detection network (SDN). The 3D ConvNet is utilized
to produce the spatio-temporal feature ei ∈ R

De for the ith video.
The 2D ConvNet is supposed to find the static visual feature ri ∈
R
Dr for the ith video. The visual spatio-temporal representation

of the ith video can then be obtained by concatenating both
features together as follows:

vi =

(

ri
ei

)

∈ R
Dv , (3)

where Dv = De + Dr .
For semantic detection, we manually select the K most

common and meaningful words, which consists of the most
frequent nouns, verbs or adjectives, from both the training set
and the validation set as candidate tags for all videos (Gan et al.,
2017). The semantic detection task is treated as a multi-label
classification task with vi as the representation of the ith video
and ŝi = {ŝi,0, ŝi,1, . . . , ŝi,K−1} ∈ {0, 1}

K as the ground truth. If
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the jth tag exists in the annotations of the ith video, then ŝi,j = 1;
otherwise, ŝi,j = 0. Suppose si is the semantic feature of the ith
video. Then, we have si = σ (f (vi)) ∈ (0, 1)K , where f (·) is a non-
linear mapping and σ (·) a sigmoid activation function. Mean
average precision is applied to evaluate the quality of semantic
features. A multi-layer perceptron (MLP) of adequate scale is
exploited to learn semantic representations from the samples.
The set of input features is determined by the experimental
results for each dataset. The SDN is trained by minimizing the
loss function:

L(si, ŝi) =
1

N

N−1
∑

i=0

K−1
∑

j=0

ŝi,j log si,j + (1− ŝi,j) log (1− si,j). (4)

A probability distribution of tags si is produced by the SDN to
represent the semantic content of the ith video in the training set,
the validation set or the test set.

3.1.2. Decoder

Standard RNNs (Elman, 1990) are capable of learning temporal
patterns from input sequences. But they suffer from the
gradient vanishing/explosion problem, which results in their
inability to generalize to long sequences. LSTM (Hochreiter and
Schmidhuber, 1997) is a prevailing variant of RNN that alleviates
the long-term dependency problem by using gates to update the
cell state, but it ignores the semantic information of the input
sequence. We use SCN(Semantic Compositional Network) (Gan
et al., 2017), a variant of LSTM, as our decoder, because it not
only avoids the long-term dependency problem but also takes
advantage of semantic information of the input video. Suppose
we have a video feature v, a semantic feature s, an input vector
xt at time step t and a hidden state ht−1 at time step t − 1.
The SCN integrates semantic information s into v, xt , and ht−1,
respectively, and obtains the semantics-related video feature v̂,
the semantics-related input x̂t and the semantics-related hidden

state ĥt−1 as follows:

x̂z,t =Wz,c · ((Wz,a · xt)⊙ (Wz,b · s)), z ∈ {c, i, f , o},

v̂z = Cz,c · ((Cz,a · v)⊙ (Cz,b · s)), z ∈ {c, i, f , o},

ĥz,t−1 = Uz,c · ((Uz,a · ht−1)⊙ (Uz,b · s)), z ∈ {c, i, f , o},

(5)

where c, i, f and o denote the cell state, the input gate, the forget
gate and the output gate, respectively.

Then input gate it , forget gate f t and output gate ot at
time step t are calculated, respectively, in a way similar to the
standard LSTM:

it = σ (x̂i,t + ĥi,t−1 + v̂i + bi),

f t = σ (x̂f ,t + ĥf ,t−1 + v̂f + bf ),

ot = σ (x̂o,t + ĥo,t−1 + v̂o + bo),

(6)

where σ denotes the logic sigmoid function σ (x) = 1
1+e−x

∈

(0, 1) and b is a bias term for each gate.
The raw cell state at the current step t can be computed

as follows:

ĉt = tanh (x̂c,t + ĥc,t−1 + v̂c + bc), (7)

where tanh denotes the hyperbolic function tanh (x) = ex−e−x

ex+e−x
∈

(−1, 1) and bc is the bias term for the cell state. The input gate it is
supposed to control the throughput of the semantic-related input
x̂t , and the forget gate f t is designed to determine the preservation
of the previous cell state ct−1. Thus, we have the final cell state ct
at time step:

ct = f t ∗ ct−1 + it ∗ ĉt . (8)

The output gate controls the throughput ratio of the cell state ct
so that the cell output ht can be determined by:

ht = ot ∗ tanh (ct). (9)

The semantics-related variables x̂t , v̂, ĥt−1, and ĉt are dependent
on semantic feature s so that the SCN takes semantic information
of the video into account implicitly. The forget gate f t is a key
component in updating ct−1 to ct , which, to some degree, avoids
the long-term dependency problem. The overview of the SCN
unit is showed in Figure 1.

3.2. Training Method
In the context of the RNN trained with the Teacher Forcing
algorithm, the logarithmic probability P(Yi|Xi;2) of a given
triplet of input/output/label (Xi,Yi, Ŷi) and given model
parameters 2 can be calculated as:

P(Yi|Xi;2) =

Li−1
∑

t=0

log P(yi,t|ŷi,0, · · · , ŷi,t−1,Xi;2), (10)

where Li is the length of output.
In the case of SCN, the joint logarithmic probability can be

computed as:

P(Yi|Xi;2) =

Li−1
∑

t=0

log P(yi,t|ŷi,0, · · · , ŷi,t−1, si,Xi;2),

=

Li−1
∑

t=0

log P(yi,t|hi,t−1, ci,t−1, ŷi,t−1, si,Xi;2),

(11)

where hi,t , ci,t , and si are the output state, the cell state and the
semantic feature of the ith video, respectively.

To some extent, hi,t and ci,t can be viewed as the aggregation
of all the previous information. We can compute them using the
recurrence relation:

hi,t =

{

f (Xi, hi,t−1, ci,t−1, si,Xi;2) if t = 0,
f (ŷi,t−1, hi,t−1, ci,t−1, si,Xi;2) if t > 0,

ci,t =

{

g(Xi, hi,t−1, ci,t−1, si,Xi;2) if t = 0,
g(ŷi,t−1, hi,t−1, ci,t−1, si,Xi;2) if t > 0,

(12)

where hi,−1 = 0, ci,−1 = 0. In inference, we need to replace ŷi,t
with yi,t , whichmay lead to the accumulation of prediction errors.

In order to bridge the gap between training and testing in
the Teacher Forcing algorithm, we train our video captioning
model with scheduled sampling. Scheduled sampling transfers
the training process gradually from using ground truth words
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FIGURE 1 | The figure of SCN unit. σ , φ, semantic fusion (f ) denotes a sigmoid function, a tanh function and Equation (5), respectively. ⊙ and ⊕ in a circle denote

element-wise product and element-wise addition, respectively.

Ŷi for guiding to using sampled words Yi for guiding at each
recurrent step. The commonly used strategy to sample a word
from the output distribution is argmax. But the search scope
is limited to a relatively small part of the search space, since it
always selects the word with the largest probability. For the sake
of enlarging the search scope, we draw a word randomly from the
output distribution as a part of the input for the next recurrent
step. In this way, words with higher probabilities are more likely
to be chosen. The randomness of the sampling procedure will
enable the recurrent network to explore a relatively large range
of the network state space. In addition, the network is less likely
to get stuck in a local minimum. In the perspective of training
machine learning models, the multinomial sampling strategy
reduces overfitting of the network; in other words, it acts like
a regularizer.

Our method to optimize the language model consists of two
parts: the outer loop schedule the sampling probability at each
recurrent step (Algorithm 1), while the algorithm inside the RNN
(Algorithm 2) specifies the procedure to sample from the output
of a model with a given possibility as a part of the input for the
next step of the RNN.

3.3. Sentence-Length-Related Loss
Function
What is a good description for a video? A good description
should be both accurate and concise. In order to achieve this
goal, we design a sentence-length-modulated loss function for
our model as follows:

Algorithm 1: Scheduling Algorithm: schedule the ǫ across
epochs.

Require: EPOCH: max epoch number, STEPS_PER_EPOCH:
steps per epoch, feature: necessary features

1: ǫlist ← generate_epsilon() {Generate epsilon for each epoch
by a predeterminate strategy.}

2: output← 0

3: for i = 0 to EPOCH do

4: for j = 0 to STEPS_PER_EPOCH do

5: outputi,j ← function(featurei,j, ǫlist[i]) {Run RNN}
6: optimize the network with an optimizer
7: extend output with outputi,j
8: end for

9: end for

10: return output

Loss(ŷi, si,Xi;2) = −

bs−1
∑

i=0

1

L
β
i

Li−1
∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2),

(13)
where bs is the batch size and β >= 0 is a hyper-parameter that is
used to keep a balance between the conciseness and the accuracy
of the generated captions. If β = 0, it is a loss function commonly
used in video captioning tasks:

Loss(ŷi, si,Xi;2) = −

bs−1
∑

i=0

Li−1
∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2).

(14)
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Algorithm 2: Random Sampling Algorithm: specific procedures
in RNN.
Require: vi: video feature, si: semantic feature, xi: input array, ǫ:

sampling probability, STEP: max time step
Ensure: hi: output state, ci: cell state
1: hi,0 ← 0

2: ci,0 ← 0

3: hi ← 0

4: ci ← 0

5: embed← xi,0
6: for t = 1 to STEP do

7: hi,t , ci,t ← recurrent_step(hi,t−1, ci,t−1, vi, si, embed)
8: extend hi with hi,t
9: extend ci with ci,t
10: prob← random(0, 1)
11: if prob < ǫ then

12: prob_disti,t ← word_dist_map(hi,t) {Map output state
to word probability.}

13: word_index← multinomial(prob_disti,t) {Sample from
the word distribution.}

14: embed ← lookup_embed(word_index) {Use an
embedding vector to represent the word.}

15: else

16: embed← xi,t
17: end if

18: t← t + 1
19: end for

20: return hi, ci

In this loss function, a long sentence has greater loss than a short
sentence. Thus, after minimizing the loss, the RNN is inclined
to generate relatively short annotations that may be incomplete
in semantics or sentence structure. If β = 1, all words in the
generated captions are treated equally in the loss function as well
as in the process of optimization, which may lead to redundancy
or duplicate words in the process of generating captions.

Thus, we have the following optimization problem:

2 = argmin
2
−

N−1
∑

i=0

1

L
β
i

Li−1
∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2),

(15)
where N is the size of the training data and 2 is the parameter of
our model.

GNMT,Google’s NeuralMachine Translation system, employs
a similar length-normalization technique in the beam search
during test, but not during training (Wu et al., 2016). In contrast,
our model abandons beam search in the decoder, and the model
parameters are optimized by the sentence-length-modulated
loss function (13). Note that beam search makes the decoding
process slower.

The overall structure of our model is visualized in Figure 2.
Our SDN and visual feature extractors in the encoder component
share the same 2D ConvNet and 3D ConvNet in practice.

4. EXPERIMENTS

We evaluate our model on two popular video captioning datasets
to show the performance of our approach. We compare our
results to other existing methods.

4.1. Datasets
4.1.1. YouTube2Text

The YouTube2Text or MSVD (Chen and Dolan, 2011;
Guadarrama et al., 2013) dataset, published in 2013, contains
1970 short YouTube video clips. The average length of them is
about 10 seconds. We get roughly 40 descriptions for each video.
We follow the dataset split setting used in prior studies (Pan et al.,
2016; Yu et al., 2016; Gan et al., 2017), in which the training
dataset contains 1200 clips, the validation dataset contains 100
clips, and the rest of them belong to the test dataset. We
tokenize the captions from the training and validation datasets
and obtain approximately 14,000 unique words. Twelve thousand
five hundred and ninety-two of them are utilized for prediction,
and the remaining words are replaced by < unk >. We add the
token < eos > to signal the end of a sentence.

4.1.2. MSR-VTT

MSR-Video to Text (MSR-VTT) (Pan et al., 2016; Xu et al., 2016)
is a large-scale video benchmark, first presented in 2016. In its
first version, MSR-VTT provided 10k short video segments with
200k descriptions in total. Each video segment was described by
about 20 independent English sentences. In its second version,
which was published in 2017, MSR-VTT provides additional 3k
short clips as a testing set, and video clips in the first version can
be used as training and validation sets. Because of lacking human
annotations for the test set in the second version, we perform
experiments on the first version. We tokenize and obtain 14,071
unique words that appear in the training set and validation set of
MSR-VTT 1.0more than once. Thirteen thousand seven hundred
and ninety-four of them are indexed with integer numbers
starting at 0, and the rest are substituted by < unk >. < eos >,
which signifies the end of a sentence, is added to the vocabulary
of MSR-VTT.

4.2. Overall Score
Based on the widely used BLEU, METEOR, ROUGE-L, and
CIDEr metrics, we propose an overall score to evaluate the
performance of a language model:

Soverall =
B-4

top1(B-4)
+

C

top1(C)
+

M

top1(M)
+

R

top1(R)
∈ [0, 1],

(16)
where B-4 denotes BLEU-4, C denotes CIDEr, M denotes
METEOR, R represents ROUGE-L and top1(·) denotes the best
numeric value of the specific metric. We presume that BLEU-4,
CIDEr, METEOR, and ROUGE-L reflect one particular aspect of
the performance of a model respectively. First, we normalize each
metric value of a model, and then we take the mean value of them
as an overall measurement for that model (16). If the result of a
model on each metric is closer to the best result of all models,
the overall score will be close to 1. If and only if a model has the
state-of-the-art performance on all metrics, the overall score is 1.
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FIGURE 2 | Overall framework of our model. A 3D ConvNet, a 2D ConvNet and a Semantic Detection Net (SDN) constitute the encoder component of our model.

S-LSTM stands for a semantics-assisted variant of LSTM which takes a semantic feature, a visual feature and a word embedding as inputs at each step. The word fed

as the input to the decoder is sampled from human annotations or the model itself randomly, and then is embeded with the pretrained weights.

If a model is much lower than the state-of-the-art result on each
metric, the overall score of the model will be close to 0.

4.3. Training Details
Our visual feature consists of two parts: a static visual feature
and a dynamic visual feature. ResNeXt (Xie et al., 2017), which
is pretrained on the ImageNet ILSVRC2012 dataset, is utilized as
the static visual feature extractor in the encoder of our model.
The ECO (Zolfaghari et al., 2018), which is pretrained on the
Kinetics-400 dataset, is utilized as the dynamic visual feature
extractor for the encoder in our model. More specifically, 32
frames are extracted from each video clip evenly. For each video,
we feed 32 frames as input to ResNeXt, take the conv5/block3
output, and apply average pooling to these outputs along the
time axis. The newly obtained 2048-dim feature vector is
taken as the 2D representation of that video. What’s more,
we take the 1536-way feature of the global pool in ECO as
the 3D representation of each video. Global Vectors for Word
Representations (GloVe) (Pennington et al., 2014) is used as the
pretrained word embedding model in our experiments. And it is
fixed during our training processes.

We set the initial learning rate to 2 × 10−4 for the
YouTube2Text dataset and 4 × 10−4 for the MSR-VTT dataset.
In addition, we drop the learning rate by 0.316 every 20,350 steps
for the MSR-VTT dataset. Batch size is set to 64, and the Adam
algorithm is applied to optimize the model for both datasets. The
hyper-parameter β1 is set to 0.9, β2 is set to 0.999, and ǫ is set
to 1 × 10−8 for the Adam algorithm. Each model is trained for

50 epochs, in which the hyper parameter sample probability ǫ is
set as ep × 0.008 for the epth epoch. We fine-tune the hyper-
parameters of our model on the validation sets and select the
best checkpoint for testing according to the overall score of the
evaluation on the validation set.

4.4. Comparison With Existing Models
Empirically, we evaluate our method on the
YouTube2Text/MSVD (Guadarrama et al., 2013) and MSR-VTT
(Xu et al., 2016) datasets. We report the results of our model
along with a number of existing models in Tables 1, 2.

4.4.1. Comparison on the YouTube2Text Dataset

Table 1 displays the performance of several models on
YouTube2Text. We compare our model with existing methods,
including LSTM-E (Pan et al., 2016), h-RNN (Yu et al., 2016),
aLSTMs (Gao et al., 2017), SCN (Gan et al., 2017), MTVC
(Pasunuru and Bansal, 2017a), ECO (Zolfaghari et al., 2018),
SibNet (Liu et al., 2018), POS (Wang et al., 2019a), MARN
(Pei et al., 2019), JSRL-VCT (Hou et al., 2019), GRU-EVE
(Aafaq et al., 2019), STG-KD (Pan et al., 2020), SAAT (Zheng
et al., 2020), and ORG-TRL (Zhang et al., 2020). Our method
outperforms all the other methods on all the metrics by a large
margin. Note that many of them were published after our initial
submission of the present work in the end of May in 2019.
Specifically, compared with ORG-TRL (Zhang et al., 2020), the
previous state-of-the-art model on this dataset, BLEU-4, CIDEr,
METEOR, and ROUGE-L are improved relatively by 14.9, 15.2,
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TABLE 1 | Result comparison with existing models on the YouTube2Text dataset.

Model B-4 C M R Overall (16)

LSTM-E (V+C3D) (Pan et al., 2016) 45.3 31.0

h-RNN (V+C3D) (Yu et al., 2016) 49.9 65.8 32.6

aLSTMs (I-3) (Gao et al., 2017) 50.8 74.8 33.3

SCN (R-152+C3D) (Gan et al., 2017) 51.1 77.7 33.5

MTVC (I-4) (Pasunuru and Bansal, 2017a) 54.5 92.4 36.0 72.8 0.8961

ECO (R-152+E) (Zolfaghari et al., 2018) 53.5 85.8 35.0

SibNet (I-1) (Liu et al., 2018) 54.2 88.2 34.8 71.7 0.8740

POS (IR+I3D) (Wang et al., 2019a) 53.9 91.0 34.9 72.1 0.8811

MARN (R-101+R3D) (Pei et al., 2019) 48.6 92.2 35.1 71.9 0.8633

JSRL-VCT (IR+C3D) (Hou et al., 2019) 52.8 87.8 36.1 71.8 0.8762

GRU-EVE (IR+C3D) (Aafaq et al., 2019) 47.9 78.1 35.0 71.5 0.8264

STG-KD (R-101+I3D) (Pan et al., 2020) 52.2 93.0 36.9 73.9 0.8975

SAAT (IR+C3D) (Zheng et al., 2020) 46.5 81.0 33.5 69.4 0.8110

ORG-TRL (IR+C3D) (Zhang et al., 2020) 54.3 95.2 36.4 73.9 0.9078

Our model 62.4 109.7 39.0 77.0 1.0000

V, C3D, I-n, R-n, E, IR, I3D and R3D denote VGG19, C3D, n-version Inception, n-layer ResNet, ECO, Inception-ResNet-v2, I3D and 3D-ResNeXt features, respectively. The boldness

denotes the best value in the corresponding column.

TABLE 2 | Result comparison with existing models on the MSR-VTT dataset.

Model B-4 C M R Overall

MTVC (I-4) (Pasunuru and Bansal, 2017a) 40.8 47.1 28.8 60.2 0.9223

CIDEnt-RL (I-4) (Pasunuru and Bansal, 2017b) 40.5 51.7 28.4 61.4 0.9435

SibNet (I-3) (Liu et al., 2018) 40.9 47.5 27.5 60.2 0.9137

HACA (R-152+A) (Wang et al., 2018) 43.4 49.7 29.5 61.8 0.9608

TAMoE (I3D) (Wang et al., 2019b) 42.2 48.9 29.4 62.0 0.9505

POS (IR+I3D) (Wang et al., 2019a) 41.3 53.4 28.7 62.1 0.9611

MARN (R-101+R3D) (Pei et al., 2019) 40.4 47.1 28.1 60.7 0.9162

JSRL-VCT (IR+C3D) (Hou et al., 2019) 42.3 49.1 29.7 62.8 0.9576

GRU-EVE (IR+C3D) (Aafaq et al., 2019) 38.3 48.1 28.4 60.7 0.9119

STG-KD (R-101+I3D) (Pan et al., 2020) 40.5 47.1 28.3 60.9 0.9192

SAAT (IR+C3D+Ca) (Zheng et al., 2020) 39.9 51.0 27.7 61.2 0.9303

ORG-TRL (IR+C3D) (Zhang et al., 2020) 43.6 50.9 28.8 62.1 0.9628

Our model 45.8 53.2 29.3 63.6 0.9957

A and Ca denote audio and category features, respectively. The boldness denotes the best value in the corresponding column.

7.1, and 4.2%, respectively. Our model has the highest overall
score as defined in (16).

4.4.2. Comparison on the MSR-VTT Dataset

Table 2 displays the evaluation results of several video captioning
models on the MSR-VTT. In this table, we compare our model
with existing models, including MTVC (Pasunuru and Bansal,
2017a), CIDEnt-RL (Pasunuru and Bansal, 2017b), SibNet (Liu
et al., 2018), HACA (Wang et al., 2018), TAMoE (Wang et al.,
2019b), POS (Wang et al., 2019a), MARN (Pei et al., 2019), JSRL-
VCT (Hou et al., 2019), GRU-EVE (Aafaq et al., 2019), STG-
KD (Pan et al., 2020), SAAT (Zheng et al., 2020), ORG-TRL
(Zhang et al., 2020). According to the overall score defined in
(16), ORG-TRL is the best among existing models. Our model

achieves higher values on all metrics than thismodel. Twomodels
POS and JSRL-VCT achieve slightly higher CIDEr value and
METEOR values than our model, respectively, but their other
metric values are clearly lower than our results.

Our model achieves better results on both the YouTube2Text
dataset and the MSR-VTT dataset. Note that our model is only
trained on a single dataset without an attention mechanism, and
it is tested without ensemble or beam search.

5. MODEL ANALYSIS

In this section, we discuss the utility of the three improvements
on our model.
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5.1. Analysis on Semantic Features
Semantic features are the output of a multi-label classification
task. Mean average precision (mAP) is often used to evaluate
the results of multi-label classification tasks (Tsoumakas and
Katakis, 2007). Here, we apply it to evaluate the quality of
semantic features.

5.1.1. Semantic Features Predicted With Different

Sets of Input Features

Figures 3, 4 demonstrate the quality of semantic features, using
different sets of feature maps as inputs, with respect to the
training epochs. Figure 3 shows that, on the YouTube2Text
dataset, themAP values are proportional to training epochs.With
the same number of training epochs, the qualities of semantic
features are in the order: ECO-ResNeXt > ResNeXt > ECO,
where ECO-ResNeXt, ResNeXt, and ECO denote the models
trained with visual features from ECO-ResNeXt, ResNeXt, or
ECO, respectively. Figure 4 demonstrates that, on the MSR-VTT
dataset, both mAP values of semantic information decline after

FIGURE 3 | The quality of semantic features predicted with different sets of

input features evaluated by mAP on the YouTube2Text. “ResNeXt,” “ECO,”

and “ECO-ResNeXt” denote that the semantic models are trained and the

semantic features are predicted with visual features produced by ResNeXt,

ECO, both ECO and ResNeXt, respectively.

FIGURE 4 | The quality of semantic features predicted with different sets of

input features evaluated by mAP on the MSR-VTT dataset.

the models are trained for more than 800 epochs with ResNeXt
feature maps or ECO-ResNeXt feature maps as inputs.With ECO
featuremaps as inputs, the performance of the semantic detection
model is still proportional to the training epochs.

TABLE 3 | Results of scheduled sampling methods (multinomial sampling) on the

YouTube2Text dataset with different sets of semantic features.

Semantic features (mAP) B-4 C M R Overall

0.3295 53.9 90.5 35.8 73.4 0.8896

0.5977 60.5 102.7 38.0 75.9 0.9663

0.7414 62.4 109.7 39.0 77.0 1.0000

A larger mAP implies a better representation of semantic meanings. The boldness denotes

the best value in the corresponding column.

TABLE 4 | Results of scheduled sampling methods (multinomial sampling) on

MSR-VTT data with different sets of semantic features.

Semantic feature (mAP) B-4 C M R Overall

0.2072 40.5 46.8 27.2 62.7 0.9292

0.2913 44.0 50.7 28.9 62.6 0.9878

0.3827 44.9 51.8 28.8 63.12 0.9996

The boldness denotes the best value in the corresponding column.

TABLE 5 | Results of different training strategies on YouTube2Text data with the

best semantic features.

Training method B-4 C M R Overall

Teacher Forcing 61.93 108.56 38.96 76.75 0.9942

argmax 62.16 109.31 38.98 76.81 0.9972

Multinomial 62.35 109.71 39.04 77.04 1.0000

The boldness denotes the best value in the corresponding column.

TABLE 6 | Results of different training strategies on MSR-VTT data with the best

semantic features.

Training method B-4 C M R Overall

Teacher Forcing 45.05 50.25 29.12 62.72 0.9771

argmax 45.83 53.16 29.28 63.64 1.0000

Multinomial 44.94 51.77 28.82 63.12 0.9826

The boldness denotes the best value in the corresponding column.

TABLE 7 | Average length of the captions in the test set.

Model β = 0 β = 0.7 β = 1 Ground truth

mLen1 5.12 5.18 5.80 7.01

mLen2 6.27 6.69 6.99 9.32

mLen1 stands for the mean length of YouTube2Text, and mLen2 stands for the mean

length of MSR-VTT. Ground Truth denotes the human annotations for the test set.
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FIGURE 5 | Examples of machine-generated captions and human annotations (GT).

5.1.2. Models Trained With Different Semantic

Features

Tables 3, 4 list the performance of our model trained by
scheduled multinomial sampling with different semantic
features on the YouTube2Text and MSR-VTT datasets,
respectively. The results clearly show that a better multi-label
classification enables a better video captioning model. Semantic
features with higher mAP provide more appropriate potential
attributes of a video for the model. Thus, the model is able
to generate better video annotations by comprehensively
considering semantic features, spatio-temporal features, and
contextual information.

5.2. Analysis on the Scheduled Sampling
Tables 5, 6 show the comparison among the Teacher Forcing
algorithm, scheduled sampling with the argmax strategy
and scheduled sampling with the multinomial strategy on
YouTube2Text and MSR-VTT datasets, respectively. Teacher
Forcing utilizes human annotations to guide the generation of
words during training and samples from the word distribution
of the output of the model to direct the generation during
inference. The argmax strategy switches gradually from the
Teacher Forcing way to sample words with the largest possibility
from the model itself during training. The Multinomial strategy

is similar to the argmax strategy but samples words randomly
from the distribution of the model at each step. As we
can infer from Tables 3, 4, the scheduled sampling with the
multinomial strategy yields a better performance than the
other two methods on the YouTube2Text dataset and the one
with the argmax strategy yields the best performance on the
MSR-VTT dataset. Our method explores a larger range of
RNN state space and thus is likely to find a better solution
during training.

5.3. Analysis on the Length Normalization
of the Loss Function
As demonstrated in Table 7, the average length of human
annotations is larger than those generated by models with β =

{0, 0.7, 1} (13), respectively. But Figure 5 displays the tendency of
redundancy in captions generated by the β = 1 model, which
deteriorates the overall quality of model-generated sentences.
The average caption length of the model with β = 0.7 is greater
than that of the model with β = 0, whereas it is smaller than that
from the model with β = 1. The model with β = 0.7 generates
relatively long annotations for videos without suffering from
redundancy or duplication of words, and we therefore consider
it the optimal choice.
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6. CONCLUSION

We suggest three improvements for solving the video
captioning task. First, mAP is applied to evaluate the
quality of semantic information, and a SDN with adequate
computation complexity and input features is used to extract
high-quality semantic features from videos, which contributes
to the success of our semantics-assisted model. Second,
we employ a scheduled sampling training strategy. Third,
a sentence-length-modulated loss function is proposed to
keep the model in a balance between language redundancy
and conciseness. Our method achieves results that are
superior to the state-of-the-art on the YouTube2Text
dataset. The performance of our model is comparable to
the state-of-the-art on the MSR-VTT dataset. In the future,
we may obtain further improvements in video captioning
by integrating spatio-temporal attention mechanisms with
visual-semantics features.
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