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Environments in which Global Positioning Systems (GPS), or more generally Global

Navigation Satellite System (GNSS), signals are denied or degraded pose problems for

the guidance, navigation, and control of autonomous systems. This can make operating

in hostile GNSS-Impaired environments, such as indoors, or in urban and natural

canyons, impossible or extremely difficult. Pixel Processor Array (PPA) cameras—in

conjunction with other on-board sensors—can be used to address this problem, aiding

in tracking, localization, and control. In this paper we demonstrate the use of a PPA

device—the SCAMP vision chip—combining perception and compute capabilities on

the same device for aiding in real-time navigation and control of aerial robots. A PPA

consists of an array of Processing Elements (PEs), each of which features light capture,

processing, and storage capabilities. This allows various image processing tasks to be

efficiently performed directly on the sensor itself. Within this paper we demonstrate visual

odometry and target identification running concurrently on-board a single PPA vision chip

at a combined frequency in the region of 400 Hz. Results from outdoor multirotor test

flights are given along with comparisons against baseline GPS results. The SCAMP PPA’s

High Dynamic Range (HDR) and ability to run multiple algorithms at adaptive rates makes

the sensor well suited for addressing outdoor flight of small UAS in GNSS challenging or

denied environments. HDR allows operation to continue during the transition from indoor

to outdoor environments, and in other situations where there are significant variations in

light levels. Additionally, the PPA only needs to output specific information such as the

optic flow and target position, rather than having to output entire images. This significantly

reduces the bandwidth required for communication between the sensor and on-board

flight computer, enabling high frame rate, low power operation.

Keywords: UAS, navigation, GPS denied, pixel processor array, visual odometry, SIND, Parallel Processing

1. INTRODUCTION

To achieve successful autonomous operation of UAS, it is necessary for the vehicle to maintain
an acceptable estimation of its position. However, weight and power restrictions can place a
severe limitation of the on-board sensor equipment which can be used. Sensors commonly found
on-board often include a GPS, Inertial Measurement Unit (IMU), and camera. Under most

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00126
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00126&domain=pdf&date_stamp=2020-09-29
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alex.mcconville@bristol.ac.uk
https://doi.org/10.3389/frobt.2020.00126
https://www.frontiersin.org/articles/10.3389/frobt.2020.00126/full


McConville et al. UAS Visual Odometry Using PPAs

circumstances this is sufficient as the GPS localizes position,
while the IMU determines orientation, angular velocities, and
linear accelerations. However, there are situations in which the
GNSS signals cannot be received, such as underground, indoors,
or in hostile GNSS-denied environments. Further there are
environments where GNSS signals may be degraded such as
in urban or natural canyons. In these situations additional on-
board sensors must be used to navigate and maintain knowledge
of current position. These can be based on a wide range of
technologies such as radar and LIDARs however, one key strategy
is the use of cameras for Visual Odometry (VO).

For GNSS-challenging environments, research has been
conducted onmethods to account for and overcome the degraded
signal. Sensor fusion approaches using monocular or stereo-
vision cameras alongside the Inertial Navigation System (INS)
coupled with the GNSS signal have been tested by Li et al.
(2019) and Andert et al. (2013). Other approaches have used
multiple vehicles in communication with each other to improve
navigation, using those vehicles under normal GNSS conditions
to improve the position estimation of any vehicle with poor
GNSS signal. This has been approached using a Unmanned
Ground Vehicle (UGV) by Sivaneri and Gross (2018), a similar
idea was used by Causa et al. (2018) with multiple UAS. Finally
Vetrella et al. (2018) used two UAVs in communication, a
“father” drone with good GNSS signal, and a “son” which
receives an approximate position based on the position of the
father and an estimate of distance between the two from a
visual approximation. The son uses this data to correct for
drift in its own vision based navigation. While not explicitly
focusing on GNSS-challenging environments, approach taken in
this paper could be used to help improve navigation when facing
intermittent or poor GNSS signal.

Focusing on environments where there is no GNSS signal
available, using only an Inertial Navigation Systems (INS) can
lead to unacceptable drift during extended signal outages as
shown by Lasmadi et al. (2017). Visual odometry(VO) can
be used to combat this drift, and is attractive as on board
cameras are a regular feature of UAS. Specific integrated sensors
have also been developed to provide optical flow which can be
utilized in for odometry estimation. The PX4FLOW sensor is
one such example as shown by Honegger et al. (2013). They have
previously been used as part of an integrated navigation system,
being combined with INS andmagnetometer data in GPS-denied
environments for a Micro Air Vehicle (MAV) by Shen et al.
(2016) and also as part of a multi-sensor hover control system
for multirotors by Ma et al. (2019).

Standard cameras capture a great deal of information in
each frame, but struggle with high speed motion due to their
relatively low frame rates. Event cameras, which transmit changes
of intensity on a pixel by pixel basis (when changes occurs),
have latency in the order of microseconds and a High Dynamic

Abbreviations: GNSS, Global navigation satellite system; PPA, pixel processor

array; PE, processing element; INS, inertial navigation system; IMU, inertial

measurement unit; VO, visual odometry; VIO, visual inertial odometry; CV,

computer vision; UAS, unmanned aerial system; HDR, high dynamic range; AGL,

above ground level; MAV, micro air vehicle; EKF, extended Kalman filter.

Range (HDR) of 140 dB compared to a standard camera at 60 dB
(Vidal et al., 2018). This low latency and high dynamic range
allow such cameras to function effectively through high speed
maneuvers and under poor lighting conditions. They do however
struggle when there is limited change in intensity such as small
or slow movements. An approach combining event cameras with
standard cameras and inertial measurements to produce a more
robust result has been demonstrated by Vidal et al. (2018). Due to
the limitations of VO with conventional cameras in low light or
night time flying, methods involving multi-spectral cameras have
also been shown to be an effective approach by Beauvisage et al.
(2016).

This paper demonstrates the use of a Pixel Processor Array
(PPA) camera for Visual Odometry, working in conjunction
with inertial data gathered in flight. The potential of a PPA in
comparison with an event camera or a more traditional image
sensor is that it can run multiple algorithms directly on sensor
device, at high frame-rates, low power (≈ 2W), and without
the use of additional onboard computation power (Bose et al.,
2017). The SCAMP-5 PPA used in this work features an array
of 256 × 256 Processing Elements (PE) tightly integrated into
the sensor array. A programmable controller provides each PE
identical instructions which are carried out simultaneously on
all pixels of the image in an SIMD manner. Computer vision
algorithms can be directly computed on the pixel array without
transferring the image data out of the device, allowing for higher
frame rates than conventional systems, potentially making VO
through high speed maneuvers possible. Many VO solutions
such as that performed by the SCAMP-5 in this paper, are
based on the optical flow of the ground beneath the vehicle. As
such they require the distance to the surface below to convert
visual flow into distance traveled. Therefore, systems such as
ultrasonic distance sensors or a laser rangefinder are often used
determine height.

In GPS denied environments the appeal of VO is clear for
both indoor and outdoor use as argued by Chowdhary et al.
(2013). In particular GPS canyons or jamming can pose serious
challenges for a platform that relies on only that information.
There are a number of ways to approach VO and determine
the ego-motion of the system. One popular approach for drones
is to rely on monocular vision as discussed in Weiss et al.
(2013). Direct VO performs image alignment as the vehicle
moves, often working directly on the pixels, allowing distance
traveled to be determined. For real time applications GPUs
are often used to give the required performance (Shan et al.,
2016) however, these bring with them additional weight and
power requirements. Feature based VO relies onmatching salient
features instead of attempting to match an entire image, tracking
these features acrossmultiple frames in order to determine sensor
motion. Outside of purely visual odometry, approaches using
combinations of sensors such as in Visual Inertial Odometry
(VIO), where VO is combined with IMU data, have been used
to overcome some of the weaknesses associated with both inertial
and visual odometry. This was previously used on a vehicle with
stereo visual odometry and IMU, producing tracking with an end
point distance of 1% of the track length from the ground truth
(Kelly et al., 2007). VIO can be used to develop a more robust
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FIGURE 1 | (A) Architecture of the SCAMP-5 vision system, with each pixel having storage and processing capabilities (Bose et al., 2017), (B) Block diagram of the

system (Greatwood et al., 2018).

system as done so by Bloesch et al. (2015) through the use of an
Extended Kalman Filter (EKF).

Other approaches to navigation without GNSS include using
cameras to localize position using natural landmarks of known
position alongside visual odometry as shown for high altitude
UAS in Caballero et al. (2014) and on small UAS in GPS denied
environment in Wang et al. (2012). Simultaneous Localization
and Mapping (SLAM), while more computationally expensive,
is another potential approach to overcoming this problem. A
single camera alongside an IMU has previously been used
to determine real time 6 degrees of freedom localization,
navigation, and obstacle avoidance in a forest environment
by Langelaan and Rock (2005). Other approaches to SLAM
use a scanning LiDAR to build a 2D or 3D point cloud or
occupancy map of the environment, has been used alongside
IMU data to produce a more integrated navigation system by
Li et al. (2014).

Beyond the continuous state estimation of world and platform
as performed in SLAM, other works have started to combine
visual state estimation with recognition. One well integrated
competence is re-localization, which is a form of object
recognition when treating space as a 3D object to be detected
as in Martinez-Carranza et al. (2013) and Martínez-Carranza
et al. (2016). In Bartholomew et al. (2012), object materials
are visually recognized to predict landing behavior. Recent
approaches also extend visual localization combining VO or
SLAM with neural networks. Neural networks have been used
to overcome a wide variety of challenges involved in visual
localization, from coping with dust and fog occlusion (Kubelka
et al., 2019), changes in environment due to lighting and weather
(von Stumberg et al., 2020), and improving depth estimation
(Feng and Gu, 2019).

This paper demonstrates the use of visual odometry and
target identification running on-board the SCAMP-5 PPA during
flight. Multiple runs are shown, with direct comparison of
the VO estimation against the baseline GPS results. Whilst
computing VO, the PPA also runs a target identification
algorithm in parallel. This target identification allows the

position estimate to be updated when located, and demonstrates
the use of multiple algorithms running on-board a single
PPA chip. In future work further additional algorithms
could be included, such as perspective correction (Greatwood
et al., 2018), all without the need for additional computation
hardware. Results are also given for the commercially available
PX4FLOW optical flow sensor, showing SCAMP-5 can provide
comparable VO results while offering the potential for significant
additional capabilities.

2. METHODS

2.1. Hardware
2.1.1. SCAMP-5 Pixel Processor Array
Figure 1 illustrates the architecture of the PPA and how it is
integrated into the multirotor. Each Processing Element (PE) in
the 256×256 array is able to capture, store, and process visual
data. These effectively act as a simple “microprocessors” for every
pixel in the array. The PEs have a photo-sensor, local analog and
digital memory, and are able to perform logic and arithmetic
operations with data transfer between PEs also possible (Bose
et al., 2017). By only transmitting data such as the sensor’s ego-
motion out of the array, while running computation internally,
required bandwidth and power are significantly reduced. This
allows visual tasks to be carried out at high frame rates, greater
than 1,000Hz (Bose et al., 2017). The flight test speeds however
did not require such a frame rate, and so frequency was reduced
to 200 Hz for our experiments to reduce the size of recorded
data logs. However, the capability to function at such high frame
rates allows SCAMP to be used at significantly greater flight
speeds and through high speed maneuvers experiencing minimal
image motion blur. The complete SCAMP-5 system requires
approximately 2 watts of power (Bose et al., 2017), making
the PPA an excellent option for computer vision algorithms on
smaller low power vehicles. The unit is currently housed in a
3D printed case weighing 100 g and measuring 82mm × 77mm
23mm without the lens.
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FIGURE 2 | Multirotor platform used as the SCAMP-5 test-bed, with ODROID XU4 and PX4FLOW sensors.

2.1.2. PX4FLOW Sensor
Optical flow cameras work by tracking the motion of objects,
edges, or surfaces within the frame. This particular sensor was
chosen for comparison with the SCAMP-5 sensor, having a
native resolution of 752×480 pixel and using 4× binned and
cropped area at 400Hz to trackmotion. Integrated on-board is an
ultrasonic distance sensor however the upper limit to the range
of this sensor is in the region of 3.5 m, limiting its value for our
application where the trials were carried out at a heights of 5
or more meters Above Ground Level (AGL). Data gathered by
laser rangefinder was therefore used in place of this sonar when
comparing the results.

2.1.3. Multirotor Platform
A custom multirotor platform shown in Figure 2 was developed
for testing the VO system, allowing the SCAMP-5 sensor to be
attached facing forwards or vertically downwards as desired. The
multirotor weighs 1 kg with SCAMP-5 installed and measures
400mm diagonally between rotors. For the following work the
SCAMP-5 was deployed in the downward facing configuration.
On-board the multirotor, an ODROID XU4 single board Linux
computer which enables both SCAMP-5 and the Pixhawk flight
controller to be integrated. It should be noted that the primary
role of this computer is that of communication and that the
VO and target identification is being carried out on board the
SCAMP-5 PPA chip itself. Additionally a laser rangefinder has
been added to the frame to allow the height above ground to
be determined.

2.2. SCAMP-5 Algorithms
This section briefly describes the visual odometry algorithm
executed upon the SCAMP-5 sensor, based upon the previous
work of Bose et al. (2017), along with the algorithm used to
identify and extract a specific target pattern as previously used
in Greatwood et al. (2017).

2.2.1. Image Alignment Based Visual Odometry
The visual odometry used in this work was conceived to
investigate what tasks are possible to conduct entirely on-sensor
using a PPA without relying on external hardware for processing.
As such it does not provide a full 6DOF odometry solution,
instead providing 4 readings related to how the observed image
content rotates, scales and translates from one frame to the
next. The rotation measurement is related to sensor roll, and
the scaling measurement to forward and backward translation
along the sensor’s axis. The measurements for how the image
is translating between frames can be associated with both
changes in sensor orientation or sensor translation parallel to
the image plane. These last two measurement thus require either
constraints on sensor motion, or additional information to solve
this ambiguity (In this work specifically, IMU data is used to
address this issue).

The SCAMP-5 sensor is mounted facing downwards under
the vehicle observing the ground below. In an ideal situation
where the sensor’s orientation remains locked facing normal to
the ground, the translation measurements from the odometry
correspond to X and Y translation parallel to the ground plane,
rotational component to vehicle yaw (sensor roll), and scaling
to sensor height. However, in practice the vehicle will change
orientation during flight breaking this assumption of fixed sensor
orientation. For example changes in roll and pitch of the vehicle
will result in the sensor’s view sweeping across the ground
creating false measurements of translational motion from the
visual odometry. Because of this the vehicle’s IMU sensor data
must be combined with the visual odometry output during
flight to correct for such ambiguities. In practice this is done
by converting the IMU rotation that occurred in a time step
into the distance covered using knowledge of height h using
the following equation where 1θ is the change in pitch of the
vehicle and 1φ is the roll, while ωx and ωy are the distance
perceived in the respective body axes caused by vehicle rotation.
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FIGURE 3 | Diagram showing the steps of the image alignment process performed upon SCAMP-5. First the transformation which achieved alignment for the

previous frame is applied to the current frame. Many small adjustment transformations are then evaluated, those which improve alignment are then applied. This

process is repeated until alignment strength is deemed acceptable.

FIGURE 4 | (Left) Overexposed image captured by SCAMP-5. (Right) A binary image resulting from HDR edge extraction being performed during the capture of the

left image.

A laser range finder on the vehicle is also used to convert the
odometry’s translation estimate from pixel measurements, to
actual distance traveled.

[

ωx

ωy

]

=

[

tan(1θ)
tan(1φ)

]

h (1)

This PPA odometry utilizes a image alignment based approach,
whereby each captured image of the ground below is aligned with
a previously captured “key-frame” image. The transformation
determined to achieve this alignment consists of rotation,
scaling, and translation components, each associated with
a different form of sensor motion as described previously.
The process of determining this alignment transformation,
is conducted entirely upon the SCAMP-5’s PPA array using
an iterative approach similar to gradient descent, described
in greater detail in Bose et al. (2017). In each alignment
iteration four pairs of small adjustment transformations are
then tested, each pair being in opposite “directions.” These
transformations being left and right image translations, up and
down image translations, clock-wise and anti clockwise image

rotations, and up-scaling and down-scaling transformation.
Each transformation in a pair is evaluated to determine which
of the two possible transformations would improve image
alignment, using the strength metric described below. As
multiple small transformations are applied the resulting image
transformation converges toward one which aligns the two
images. Note that in practice the alignment transformation
determined for the previous frame is used as the initial
transformation to start from in the current frame, this allows
image alignment to be typically achieved in a single iteration.
The steps of this alignment process are illustrated in Figure 3.
Combined with the fact the entire process is performed
upon the SCAMP-5 PPA, this visual odometry approach can
achieve frame rates in excess of 1,000Hz given sufficient
lighting conditions.

Rather than raw images, this process makes use of HDR edge
images as shown in Figure 4, which are both more invariant
to changes in lighting conditions and result in fewer incorrect
local minima for the alignment process to converge toward.
Evaluating the “strength” of alignment between two HDR edge
images involves some measure of edges shared between both
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FIGURE 5 | Target extraction algorithm stages, showing the result of performing 4 “flood and invert” operations starting from an initial image on the left, until only the

center region of the target remains in the fifth frame, and an image of the artificial target in position during testing.

images, present in the same locations. The approach we use
involves first performing an AND operation between the two
edge images on SCAMP-5, eliminating all white pixels that are
not shared between both images. These remaining shared edge
pixels can then be counted and divided by the total number of
white edge pixels from the key-frame image giving a measure of
the alignment strength.

In practice the visual odometry is triggered to start once the
vehicle has taken off and put into a hover state, capturing an
initial key-frame of the ground below. As the vehicle moves
through the environment each new frame is aligned to the
current key-frame and the strength of alignment evaluated. Once
alignment strength has fallen below a given threshold a new key-
frame is acquired, replacing the existing one and allowing the
odometry estimation to continue.

2.2.2. SCAMP-5 Target Extraction
The target pattern and extraction algorithm used in this work is
designed to exploit one of the native features of the SCAMP5-
PPA: fast parallel pixel flooding, performing a flood fill operation
on a stored binary image. Beginning from a set of selected pixels,
this flooding operation spreads across any connected region of
black pixels, setting their content to white. The target extraction
algorithm performs flooding starting from all pixels along the
borders of the image. This effectively eliminates all regions that
are not enclosed by a boundary of white pixels. By inverting
the image and repeating this process, all regions that were not
enclosed within two distinct boundaries in the original image
will be filled in. By repeating this sequence of flood and invert
operationsN times, all regions not contained withinmore thanN
boundaries are filled in and effectively eliminated from the image.
Thus, by using a target pattern consisting of a large number of
boundaries, repeated flood and invert operations can reliably be
used to eliminate all content from the image except some inner
region of the target, even in visually cluttered environments.
This concept is illustrated in Figure 5. The bounding box of
this remaining region can then be extracted from the image,
providing the target’s location.

Note this same approach could be modified to track multiple
targets, each consisting of a different number of boundaries.
This would involve first performing sufficient flood and invert
operations such that any remaining image content belongs to a
target. The bounding boxes of each remaining target can then be
extracted to give their target’s location. Performing further flood

FIGURE 6 | GPS way point path shown overlaid at the test location with target

location identified—approximately 50 m × 25 m.

and invert operations will then eliminate the remaining targets
from the image, starting with that of the fewest boundary layers.
Each target present in the image can then be identified by the
number of flood and inverts operations performed to eliminate it.

2.3. Flight Tests
Outdoor flight paths were tested to evaluate the SCAMP-5 visual
odometry for use on UAS. Initial flight tests involved flying
automated rectangular paths, yawing 90 degrees at each corner at
5m AGL and at 3m·s−1. The flights took place over a field shown
in Figure 6, which itself could pose a difficulty for the SCAMP-5’s
imaging capabilities as the ground may appear to be featureless
or too feature dense depending on altitude. The SCAMP-5 VO
data was post processed to include the yaw, pitch and roll
captured by the IMU to account for the rotation of the vehicle,
with the odometry running at 200 Hz. Additionally the target
extraction algorithm was run alongside the visual odometry, with
the parallel processing capabilities of the SCAMP-5 allowing both
algorithms to run at 200Hz. This was used to correct the SCAMP-
5 odometry, by having the target positioned at a known location.
The target in question was an artificial pattern not a natural
feature as shown in Figure 5.

All data was converted into an North-East-Down (NED)
inertial frame for comparison between the PX4FLOW and GPS.
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FIGURE 7 | Diagram showing the sensor orientations and a diagram highlighting the system approximations used to determine the distance value of each pixel.

FIGURE 8 | Scaled flight path completing circuit four times and absolute error plot.

Figure 7 shows the orientations of the sensors relative to the
body frame.

2.3.1. SCAMP-5 Vision System
The odometry data computed by the SCAMP-5 system is in the
sensor’s reference frame and given as pixels moved since the last
reading. These pixels were converted to distances by using the
Field of View (FOV) of the lens (≈ 50◦), a scaling function and,
the sensor size (256 × 256 pixels) to determine the distance each
pixel represents. Fx and Fy are the field of view of the lens in the x
and y directions of the SCAMP frame respectively,f (h)x and f (h)y
represent the non-linear scaling function that varies with height,
while dxO and dyO are distance values in the x and y directions

traveled in the SCAMP frame since the previous reading, and xO
and yO are the pixel distances moved since the previous reading.
The attitude of the body is assumed to be small throughout
the flight and is therefore ignored allowing us to use equation
(2) based on the second image shown in Figure 7 and simple
trigonometry we are able to determine an approximation for the
distance value of a pixel for the SCAMP system at a given time.
This does not take into account perspective effects, and other
sources of error which we correct for using the scaling function.

[

dxO
dyO

]

=

h

128

[

tan(0.5Fx)
tan(0.5Fy)

] [

xO
yO

] [

f (h)x
f (h)y

]

(2)
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As previously described by Equation (1) ωx and ωy are the
components of motion produced by the rotation of the body.

[

dxVIO
dyVIO

]

=

[

dxO
dyO

]

−

[

ωy

ωx

]

(3)

To convert the data into the inertial frame the following
transformation is applied, consisting of the standard rotation
matrix about the z axis as seen in McRuer et al. (1973). The
transformation has been adjusted to account for the difference
in reference frame between the SCAMP and the IMU.

[

dIxVIO
dIyVIO

]

=

[

−cos(ψ), sin(ψ)
−sin(ψ),−cos(ψ)

] [

dxVIO
dyVIO

]

(4)

TABLE 1 | Sensor performance on circuits after scaling is applied.

Circuit no. Track length diff

(%)

Mean Abs

error (m)

End point dist

(m)/(% track

length)

1 −5.12 1.63 0.61/0.39

2 −3.01 1.30 1.07/0.69

3 −3.40 1.38 1.43/0.92

4 −4.15 2.81 3.76/2.47

1–4 Combined −3.90 1.63 3.53/0.57

Finally to determine the position throughout the flight xIVIO and
yIVIO the steps dIxVIO and dIyVIO are summed.

[

xIVIO
yIVIO

]

= 6t

[

dIxVIO
dIyVIO

]

(5)

The resulting path following the IMU correction and
transformation through the IMU yaw could be considered
a type of Visual Inertial Odometry (VIO) and is referred to as
such from here on. A similar transformation is carried out on
the PX4FLOW data captured during the flight however IMU
correction is not performed as the PX4FLOW has a gyroscope
built in, and a different scaling factor was determined.

2.4. Visual Odometry and Target Extraction
Tests were performed running both visual odometry and target
extraction upon SCAMP-5 to determine the effect of running
two algorithms simultaneously. The same flight path from the
initial odometry tests were used, however a target as shown in
the final frame of Figure 5 is placed by one corner of the path as
shown in Figure 6. The purpose of this test is to both demonstrate
the capability of the work done by Greatwood et al. (2017), and
demonstrate multiple algorithms running on-board the SCAMP-
5. We correct the position of the odometry when the target is
detected, using for demonstration purposes an assumed target
position and zero error in the distance estimation upon detection.

We note that while the current SCAMP resolution and lens
used results in an approximate 0.2◦ per pixel, which may appear
low, it is an order of magnitude higher than other successful
flying platforms such as honey bees that also demonstrate
navigation and recognition (Avargues-Weber et al., 2010).

FIGURE 9 | Plot showing testing of target extraction algorithm in flight. Target location shown with a green circle, and magenta indicating when SCAMP identified the

target.
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FIGURE 10 | Using a known target location to remove current SCAMP VO error.

FIGURE 11 | Comparison of results for SCAMP-5, SCAMP-5 with Target Correction and, PX4FLOW against GPS.

3. RESULTS

3.1. Flight Tests
Whilst an approximation for VO contributions due to rotations

of the vehicle can be directly calculated, it is more difficult

to calculate from fundamentals the non-linear relationships

that exists between the VO measured by the SCAMP sensor

and the true distance covered by the aircraft. Factors which

contribute to this scaling include lens effects, both across the
sensor plane and as a function of height; any misalignment with
the body axes of the aircraft and any inherent differences of the
sensor related to the optic flow direction and perspective effects.
Because of this, an experimental approach was taken in order
to find the nonlinear scaling function to account for sources of
error in the SCAMP-5 system and lens combination. This non-
linear scaling function was determined by manually scaling data
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that was not used in the analysis to match the GPS track at
different altitudes, the scaling factors at these altitudes where
then used to develop a scaling function that varied with height.
A scaling factor was also applied to the PX4FLOW data which
was determined in the same way as each individual scaling factor
for the SCAMP, this was required as the operating altitude of 5
m AGL was outside of the PX4FLOW sensors range capability.
However, a height scaling function was not developed for the
PX4FLOW as the comparison was completed for a run at an
approximately consistent 5 m altitude. Note that accurate state
knowledge is required to determine this factor initially, but the
same factors were applied to all data analyzed. Further work
could be done to define a function for this sensor and lens
combination in future however, that is outside the scope of
this work.

A rectangular path of 50 m × 25m was repeated four times
as shown in Figure 8. Each loop was assessed independently

TABLE 2 | Comparison of results between SCAMP-5, SCAMP-5 w/ Target

correction and, PX4FLOW.

System Track length diff

(%)

Mean error

(m)

End point dist

(m)/(% track

length)

SCAMP-5 −3.79 1.27 0.98/0.31

PX4FLOW −1.76 1.54 2.10/0.67

SCAMP-5 w/ Target Cor −2.58 1.57 1.59/0.51

and then combined to demonstrate the performance of the
system over a longer time period as shown in Figure 8,
the right hand side of which shows the error to increase
slowly, remaining below 4 m over a total distance of 620
m. All flight tests over this rectangular path involved a 90
degree yaw at each corner, and were flown at 3m·s−1. The
results of each lap and the combined track are summarized
in Table 1.

3.2. Visual Odometry and Target Extraction
For the next set of results shown in Figure 9, the SCAMP-
5 was given a second algorithm, target extraction, to run
concurrently with the VO each running at 200Hz. It should
be noted that the term concurrently in this context means
sequentially for each algorithm is applied to each individual
frame. The multirotor followed the same predefined path used
to test the visual odometry in isolation however, a target shown
in the final frame of Figure 5 approximately 1m in diameter
was placed on the ground by one corner of the flight path.
This target extraction was previously integrated into the control
loop of a multirotor to track and follow a moving target
(Greatwood et al., 2017). Figure 9 shows a flight path with the
region where the target is identified in parallel with the VIO
track being estimated. When the SCAMP detects the target
its pixel coordinates in image frame are returned to the on-
board computer. For this run, the VIO error is increasing
slowly, but it is clear when the SCAMP can identify the target
in view. For the next set of results detection of the target is

FIGURE 12 | Diagram showing the SCAMP-5 systems performance against GPS at following a complex flight path of approximately 790 m in length.
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used to correct the current drift error of the VIO estimate
of position.

If the position of the target is known, then the error that has
built up in the VIO estimate can be reduced to the uncertainty in
the position of the target whenever it is detected by the SCAMP.
For the results shown in Figure 10 perfect knowledge of the
target position was assumed and used to correct the odometry
position to that of the GPS whilst the target was visible—as can
be see in the right hand plot in Figure 10. We envision possible
future operations, in which a sensor array including PPA based
vision chips can be used to generate the estimated position during
flight, which is updated as known markers, locations, or objects
are identified. This may be through simple target detection as
done here or through more complex approach such as neural
network based identifiers.

Figure 11 has three sets of data for comparison. It has the
initial SCAMP-5 VIO estimate in black—which is comparable
with data captured using the PX4FLOW sensor on the same
flight. Both sensors have similar levels of performance, however
the SCAMP-5 PPA also performs target detection, as shown in
the red where target detection is used to remove the drift in the
estimate twice as the vehicle passed over the target. These results
are summarized in Table 2. In this case the mean error is slightly
increased by including the target correction. Though the main
purpose of this was to show the SCAMP system running multiple
algorithms concurrently, the increase in error is likely caused by
a combination of the track being cyclical and direction of the
drift in the data. If this test was carried out over a long distance
track with multiple targets this target correction may prove be
of more significant use. As shown in the table, the performance
of all three approaches is very similar, each maintaining a mean
absolute error of between 1 and 2 m.

For Figure 12 a more complex path was flown. The VIO
estimate of the position is show in conjunction with the GPS
baseline and the absolute error can be seen steadily increases but
remains below 20 m over the entire track length of 0.79 km, with
and end point distance of just over 15 m.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that the SCAMP-5 PPA
sensor can be used for position estimation in outdoor flight,
potentially enabling navigation and recovery in GNSS-denied
environments. The results collected demonstrate performance
similar to that of a commercially available PX4FLOWVO sensor,
yet offering significant advantages in terms of running additional
algorithms at reduced power and weight requirements. On a
long, complex track the SCAMP-5 VIO estimate of position was
shown to be approximately 2.5% percent of the overall track
length of approximately 0.8 km, which could be of use in many
scenarios involving the use of UAS in challenging environments.

The SCAMP enables us to complete two tasks using the
same sensor. The overall VIO performance did not suffer during

the multi-algorithm test due to the high frame rates that were
achieved. The use of a second localization algorithm has also been
shown to offer the opportunity to reduce or remove positional
errors when known targets can be identified. It should be
noted though that additional experimental and modeling work
is required in order to create a robust nonlinear scaling function
for the VIO that is insensitive to significant changes in vehicle
orientation, and alignment errors.

By making use of the SCAMP-5’s multi-functional capability
we can further improve the vehicles navigation capabilities and
offer a single low power (≈ 2W) sensor that can provide a
wide range of functionality. This has been demonstrated by
works on HDR imaging (Martel et al., 2016), feature extraction
(Chen et al., 2017), neural network classifiers (Bose et al.,
2019), and other on-sensor algorithms which can potentially
be used to enhance future VO functionality, creating extremely
capable, low weight, low power multi functional sensors. As
a proof of concept, this paper demonstrates the potential for
use of PPAs in GNSS denied or challenging environments.
Future work will focus on reducing the overall integration size
and weight, refining the VO algorithm, flight testing using
the VO and feature localization as the primary means of
navigation; and flight at much higher altitudes and over longer
path lengths.
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