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The article describes a highly trustable environmental monitoring system employing a

small scalable swarm of small-sized marine vessels equipped with compact sensors

and intended for the monitoring of water resources and infrastructures. The technological

foundation of the process which guarantees that any third party can not alter the samples

taken by the robot swarm is based on the Robonomics platform. This platform provides

encrypted decentralized technologies based on distributed ledger tools, and market

mechanisms for organizing the work of heterogeneous multi-vendor cyber-physical

systems when automated economical transactions are needed. A small swarm of robots

follows the autonomous ship, which is in charge of maintaining the secure transactions.

The swarm implements a version of Reynolds’ Boids model based on the Belief Space

Planning approach. The main contributions of our work consist of: (1) the deployment

of a secure sample certification and logging platform based on the blockchain with a

small-sized swarm of autonomous vessels performing maneuvers to measure chemical

parameters of water in automatic mode; (2) the coordination of a leader-follower

framework for the small platoon of robots by means of a Reynolds’ Boids model based

on a Belief Space Planning approach. In addition, the article describes the process of

measuring the chemical parameters of water by using sensors located on the vessels.

Both technology testing on experimental vessel and environmental measurements

are detailed. The results have been obtained through real world experiments of an

autonomous vessel, which was integrated as the “leader” into a mixed reality simulation

of a swarm of simulated smaller vessels.The design of the experimental vessel physically

deployed in the Volga river to demonstrate the practical viability of the proposed methods

is shortly described.

Keywords: unmanned surface vessel, robonomics, environmental monitoring, belief space planning, boids model,
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1. INTRODUCTION

Water resources are crucial for the maintenance of human life.
Natural water is an exhaustible, partially renewable resource.
Fresh water is used both for drinking water supply and in
industry, agriculture, transport—in almost all human activities.
Depending on the desired usage, the requirements for water
chemical composition and physical properties may be different.

Worldwide water consumption has been increasing at about
1% per year since the 1980s (World Water Assessment
Programme, 2019), and it is due to the growing demand for water
in developing countries, where population is still increasing, to
the acceleration of socio-economic development and to the fact
that consumption patterns began to evolve (Alharsha et al., 2018;
World Water Assessment Programme, 2019) in a similar way
to those of old and new industrialization countries. Agriculture
(irrigation, livestock, and aquaculture) is the largest consumer
of water, it accounts for 69% of the world’s annual water
withdrawal. The next places are occupied by industry (19%) and
household (12%) (World Water Assessment Programme, 2019).
It is estimated that the global demand for water will continue to
grow at the same pace until 2050, which will lead to an increase
of 20–30% above the current level of water usage due to the
development of the industrial and domestic sectors (Burek et al.,
2016) of the emerging countries. Thus, the impact of human
activities on the world state of water resources will further grow.

The problem of water pollution will become more and more
important, turning it into one of the largest potential disasters
for humanity in the coming century1. The irresponsible and ill-
conceived approach to industry, urbanization, agriculture and
environmental management, which humankind has adhered to
in the recent past, the lack of adequate measures to prevent and
eliminate polluting factors, as well as the lack and weakness of the
mechanisms for bringing to justice the violators of environmental
pollution, have led to the fact that water resources began to
decline rapidly.

The UN General Assembly announced (Food and Agriculture
Organization of the United Nations, 2011) that more than 1
billion (according to other estimates such as World Water
Assessment Programme, 2019, more than 2 billions) people in the
world suffer from a lack of safe water for drinking and household
needs. Although the global average water deficit is only 11%, in
31 countries the water deficit ranges from 25% (the minimum
threshold for water deficit) to 70%, and in 22 countries it exceeds
70% (United Nations Publications, 2018).

The main issues affecting the quality of natural waters (World
Health Organization, 2017) include many different points:

• Infection with pathogens is an important factor in high
morbidity and mortality from gastrointestinal diseases
(Soprani et al., 2017). It is directly dependent on the
population density and the level of its socio-economic
development. Pollution by pathogens is not fully controlled
even in developed countries.

1Woodford, C. (2019). Water Pollution: An Introduction. Available

online at: https://www.explainthatstuff.com/waterpollution.html (accessed

October 15, 2019).

• Contamination with organics (Cai et al., 2019), which enter the
water in a dissolved or suspended form, mainly with sewage
drains or unregulated household drains. Due to the oxygen
dissolved in water coming from the atmosphere because of
the turbulent nature of the flow, the rivers have a significant
self-purification ability. However, when the supply of organics
begins to exceed self-purification capability, water pollution
progressively increases. Nowadays about 80% of polluted
water resources are dumped back into oceans, rivers, and
lakes2. In addition, the oxygen content in water is inversely
proportional to its temperature; therefore, climatic conditions
also play an unfavorable role in reducing the self-purification
capability of rivers.

• Acidification is an anthropogenic natural process due to the
increasing acidic reaction of the environment (Shi et al.,
2016). It is accepted that natural waters are in a state of
acidification if the pH is equal to or less than 5.0. Acidification
is a consequence of dry and wet acidic deposition, the main
components of which are aerosols consisting of sulfur and
nitrogen oxides and ammonia, which, when interacting with
water, form acids. This leads to a reduction or disappearance
of crustacean, fish, insect, algae and zooplankton populations.
The reproductive functions of aquatic organisms are also
slowing down.

• Eutrophication enhances the biological productivity of water
bodies due to the accumulation of biogenic elements in
the water (Leaf, 2018). Excessive intake of nitrogen and
phosphorus compounds (the main source of which is
agriculture and household wastewater) leads to enhanced
growth of aquatic plants, especially microscopic algae, which
then result in the removal of large amounts of oxygen dissolved
in water. This leads to negative consequences: reduction of
fish populations, blocking of water intakes and spillways,
deterioration of water quality.

• Agricultural fertilizers lead to an increase in the concentration
of nitrates (Bouraoui and Grizzetti, 2014). Up to 15% of the
initial mass of fertilizers goes into water bodies, mainly in
groundwater. Excessive nitrate levels in drinking water can
cause health problems, especially blood disorders in children
and the risk of cancer in adults.

• Heavy metal pollution (Akpor et al., 2014): small but
hazardous concentrations enter the global water supply from
wastewater or from industrial waste landfills. Many heavy
elements, such as lead, mercury, zinc, chromium, cobalt are
toxic to both natural flora and fauna, and to humans.

As a consequence of the increasing risks and issues briefly
described above, global water resources need careful control and
monitoring. Preventing microbial and chemical contamination
of a water source is the first stage of protection against
contaminated drinking water and other public health concerns.
For governmental and public environmental monitoring

2Denchak, M. (2018). Water Pollution: Everything You Need to Know. https://

www.nrdc.org/stories/water-pollution-everything-you-need-know. [accessed

October 15, 2019]
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services, this task involves significant costs, the state-of-
the-art hardware and software, and the work of highly
qualified personnel who regularly maintain environmental
monitoring tools.

Modern monitoring systems for water bodies consist of
ground-based (stationary observations at hydrological and
expeditionary posts) and remote (aviation and satellite)
observation methods (World Health Organization, 2017; Sachse
et al., 2018). They are also divided into contactless and contact
observation methods; at the place of measurement—on portable,
transportable, and laboratory; on data processing technology—
on manual, automated and automatic procedures. In most cases,
the information received from them is presented in a different
format, even in terms of use within a single environmental
organization, and is not integrated into a single information
system (Hajdari, 2015).

Rapidity of data collection is of particular importance,
especially for quick response to environmental changes in case
of technical accidents and natural disasters whether they are
or not of human origin (Wang et al., 2015). For example, oil
can originate pollution episodes at all stages of production,
transportation, processing until the final stages of consumption
and disposal of related products. Tens of petroleum spills over 7
tons occur annually3, a lot of oil gets into the water due to leakage
from pipelines, railways, oil-tankers, storage facilities.

Quick and cost effective ways of registering and logging
pollution data are also needed, because in many cases it is
necessary to determine the liabilities of the parties legally
responsible for pollution episodes (Shimshack, 2014). For
example, in most cases of noxious and unlawful waste disposal
into waters produced by industrial enterprises or other entities,
the analysis of water characteristics is performed manually by
experts, often after complaints from citizens (Sebastian et al.,
2018). The relative cost and lacking effectiveness of monitoring
activities impair the processes ofmitigation and control of human
originated pollution.

One more example: the problem of eutrophication is often
aggravated, among other things, by the unsatisfactory conditions
of municipal and industrial wastewater treatment plants; in
particular, this is especially true for reservoirs (Assemany
et al., 2019). In order to monitor and control the purification
infrastructures, it is necessary to monitor the content of nutrients
causing abnormal coloration of waters, therefore an effective and
reliable way to audit the infrastructure is required.

Another important issue is citizens’ confidence in the
monitoring systems of state and public environmental
organizations (Alkhelaiwi and Grigoras, 2015). Official data,
especially in developing countries, are often either insufficient or
of dubious quality. Environmental experts point out that this is
due to the obsolescence of the instrumental measurement base,
the low financing of the environmental monitoring activities,
political motives, and lobbying of the interests of polluting
companies. The presence of a transparent system of monitoring
the ecological state of water resources, in which the data obtained

3https://www.statista.com/statistics/268553/number-of-oil-spills-by-oil-tankers-

since-1970/

are verified and available for verification by every citizen, will
raise the level of civil society engagement in the environmental
conservation and contribute to reduce the skepticism about the
need to finance this area and prevent the spread of environmental
misconceptions (Arias et al., 2016).

As a consequence, an ideal system for monitoring the state of
water resources should:

• Be cost-effective;
• Be small;
• Collect as much environmental data as possible;
• Have a high level of automation to minimize human influence;
• Be easily deployable, flexible, and scalable.

Today compact sensory systems are commercially available (for
example, from companies like Libelium, Vaisala, Bosh) and are
capable of measuring many physical and chemical indicators.
They are able to provide researchers with quick results on
environmental measurements, and such results are automatically
sent to a secure data repository.

The work described in this paper explores the usage
of a swarm of mobile platforms for the monitoring of the
quality of water resources, capable of performing water
quality measurements in automatic mode with minimal
human participation (Shafi et al., 2018; Wang et al., 2018a,b).
Autonomous water platforms, the so-called Unmanned
Surface Vessels or Vehicles (USV), are nowadays hugely
exploited, and many of them are commercially available, such
as the PowerDolphin4, Texys Marine5, and CAT-Surveyor6

projects. These systems are small-sized, can be non-volatile
and incomparably cheaper than the previous generation
of equipment.

In this article, we describe the principles of certified collection
of environmental samples using a small vessel equipped with
sensors and connected to distributed registry for storing the
collected data; such vessel leads a group of smaller USVs taking
samples of the environment. We have performed our tests of the
“leader” vessel at field, while the follower swarm behavior has
been assessed by means of mixed reality simulation.

Robotics swarming, consisting in cooperative multi-agent
autonomous systems, has a great potential inmany field domains,
and is especially suitable for marine environment monitoring,
lending more flexibility and scalability to the overall system,
as well as resulting in a greater effectiveness. Actual robotics
swarming is not yet so widespread and exploited, due to many
technical challenges that have to be addressed and solved, as
very recently surveyed in Arnold et al. (2019)—even if such
work is more focused on aerial vehicles, many concepts can
be easily extended to other robotics application fields. This
work highlights a set of features that a swarm must own,
among which the ability to move, cooperate and/or react
to occurring events. Another very recent work describes the
deployment and exploitation of a heterogeneous robotic swarm
for marine monitoring Lončar et al. (2019); however, authors

4https://www.powervision.me/en/product/powerdolphin
5https://www.texysmarine.com/
6https://www.subsea-tech.com/cat-surveyor/

Frontiers in Robotics and AI | www.frontiersin.org 3 May 2020 | Volume 7 | Article 70

https://www.statista.com/statistics/268553/number-of-oil-spills-by-oil-tankers-since-1970/
https://www.statista.com/statistics/268553/number-of-oil-spills-by-oil-tankers-since-1970/
https://www.powervision.me/en/product/powerdolphin
https://www.texysmarine.com/
https://www.subsea-tech.com/cat-surveyor/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

present a multi-agent system with many different robots that
have very limited motion capabilities: they adopt the concept
of distributed communicating sensor networks, rather than
implementing a robotic swarm as defined above (robots are
mainly still in the neighborhood of their deployment points
and do not cooperate to gather information). The topic of
marine environmental monitoring by means of a robotics swarm
is addressed also in Duarte et al. (2016), where the issue of
scalability is faced through large-scale simulation. Finally, the
issue of aggregation is addressed in a less recent work (Soysal and
Sahin, 2005), proposing probabilistic aggregation strategies to
obtain cooperative global behavior for the swarm, by combining
basic individual behaviors. This approach traces back to the
classical Reynolds flocking model described in Reynolds (1987),
and here integrated in a Belief Space Planning strategy.

The core idea of the technological solution we propose is to
merge a distributed ledger secure storage of the data with an
effective sensor swarm. The goal is to have a shared control
network system integrating a bio-inspired swarm management
into a secure distributed ledger. Previously some authors have
proposed either pure blockchain solutions (Kapitonov et al.,
2019) or swarm solutions (Strobel et al., 2018) where each
node is a blockchain node (something that makes the swarm
operation slow).

We propose a hierarchical approach which is novel and puts
together the benefits of both. The application of distributed
ledger technologies in robotics applications is an emerging field,
Castelló Ferrer (2018). A number of workshops have been
organized in the latest few years, see footnotes7,8, and new
publications are planned by the people working in this promising
area, see footnote9. This work is related to two specific problems:
the applications of blockchain technologies in swarm robotics
and the application of blockchain technologies to networks
robotics. In Strobel et al. (2018) the distributed ledger technology
is used with the objective of guaranteeing the security of the
swarm: the distributed secure ledger of the B-C ensure that “alien
robots” do not join the network. This approach on the one hand
allows to exploit the adaptivity of swarm intelligence and its
capability to manage large numbers of robots, on the other hand
applying blockchain algorithms to all the nodes in a swarm is
at present difficult to put in practice for practical performance
reasons. In Kapitonov et al. (2019) blockchain technologies are
proposed as a tool to manage general ranging from Smart Cities
to Citizen Science in multi vendor heterogeneous environments.
However, the network robotics approach does not allow to
efficiently and effectively manage a very large number of robots
or intelligent devices and sensors.

In this work we do some steps to bridge the two approaches.
Our platform shares the security features of distributed ledger
technologies with the adaptivity and scalability of the swarm
robotics approach. There are several benefits coming from the

7International Workshop on Blockchain Technologies for Robotic Systems

(BCT4ROS’2019), https://researchers.pagesperso-orange.fr/bct4ros2019/.
8Proceedings of the First Symposium on Blockchain and Robotics, 2018, Ledger

Journal, http://ledgerjournal.org/.
9Decentralized AI and Robotics Using Blockchain Technology, Frontiers Research

Topic, https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-

robotics-using-blockchain-technology.

exploitation of a robotics swarm in a formation around the
leader vessel:

• Many different measurements (of the same physical
parameters) along the chosen path in only one mission.
Having a cluster of measures around one point rather than
just one is helpful in building up a measurement map more
complete and reliable;

• Having more than one vehicle carrying sensors guarantees
more robustness to the mission completion in terms of
possible failures either of the vehicle or of the sensor;

• The follower USVs can be heterogeneous, i.e., equipped with
sensors measuring different physical parameters in the current
considered point along the chosen path.

Summarizing, a swarm operating in formation around the leader
can provide more measurements (both in terms of quantity
and in terms of different types), in a more reliable way, being
equal the required mission time. The swarm approach provides
higher levels of adaptivity and scalability with respect to other
network robotics approaches with a limited pre programming
and computational effort. Implementing it by means of an
inherently stochastic planning motion method like BSP makes
the solution comparatively robust. Moreover, in the foreseen
overall system, the leader is the only one (having Internet access)
in charge of storing themeasures on the trustable platform; hence
the vehicles around can share with it their gathered data, to be
then integrated and aggregated by the leader to build up a map of
the surveyed area.

This paper is organized as follows. Section 2 presents the
idea of certified sampling based on distributed ledger technology
and the related implementation based on the Robonomics
platform. In section 3 the architecture and processes of such
platform are detailed. Section 4 describes the “leader” vessel:
its design, equipment, sensors, software, and the algorithms
governing it. In section 5, the experimental results of water
quality measurements obtained by the vessel are presented and
analyzed. In section 6, we describe our Belief Space Planning
implementation of Reynolds’ Boids Model. Section 7 presents the
results of the experimental tests of swarm behaviors in mixed
reality simulation. Conclusions and discussion on future work
are drawn in the last section.

2. CERTIFIED SAMPLING

The term “certified sampling” refers to the quality control of
a biological or chemical sample for compliance with certain
official criteria (Schreiber et al., 2006). The criteria, as a rule, are
established by authorized legal entities or public authorities in
the form of standards, regulations and sometimes laws, and the
verification procedure itself is carried out by accredited specialists
according to established rules and complying with established
procedures. In theory, precisely this rigor of the sampling
activities and the authority of the bodies performing them should
foster public confidence in the obtained data. However, due
to the high bureaucratization, the high cost of carrying out
inspections and the concentration of control over them in the
hands of legal bodies that are not always transparent, the public
confidence in environmental data is decreasing (Jacques, 2016).

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2020 | Volume 7 | Article 70

https://researchers.pagesperso-orange.fr/bct4ros2019/
http://ledgerjournal.org/
https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-robotics-using-blockchain-technology
https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-robotics-using-blockchain-technology
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

In addition, the disclosure of serious corporate frauds (such as
diesel emissions scandal10) have contributed to impair citizen
trust in the “official” data.

The main requirements of certified sampling are standardized
and registered execution procedures (on which all participants in
the process agree) and confidence in the data received. The result
of the audit is a formal certificate, whose format and content are
legally defined, so that the change or forgery of the sample is
often prosecuted as a crime. We propose a solution to reduce and
mitigate the issues coming from bureaucracy, complexity and
cost of inspections, as well as corruption.

The practical usage of mobile and stationary cyber-physical
systems (CPS) that take environmental samples in automatic
mode is growing (Mois et al., 2016). However, until recently,
a general and reliable mechanism for automatically logging the
actions of these devices was not proposed. Such a mechanism
should not only save data, that device receives and sends. It
should also guarantee their immutability and prevent collected
data forgery. To this aim, we need to protect both the device
executable code and their datasets (Bijani and Robertson, 2014).

In our setting the leader vessel acts as the centralization hub of
the swarms samples and take care of the secure logging of the
data by interacting with the Ethereum blockchain. The swarm
collective behaviors are governed by our implementation of the
BSP based flocking model. This allows to have at the same
time a secure and certified log of the samples and an efficient
management of the robot swarm, see 6. In this section we focus
on the secure certification processes.

The foundations for the development of a distributed
certification mechanisms have been actively studied by
researchers and developers over the past decade: the blockchain
technology. A blockchain provides a sequential chain of blocks
built according to certain rules, and protected by cryptographic
algorithms (Xu et al., 2016; Castelló Ferrer, 2018). The technology
allows to create a peer-to-peer decentralized network of many
nodes that exchange secure transactions. The main point of
the technology is that it prevents data from being changed in
transactions, but at the same time preserves the publicity of
relations among the nodes in the network. Such a network of
nodes will be protected from incorrect or malicious changes
caused by a faulty data source, being this last either one of the
nodes or an external attacker. Moreover, the blockchain allows to
implement smart contracts—generated by a software program,
placed on the blockchain with a guarantee of its implementation
(Christidis and Devetsikiotis, 2016). Thanks to smart contracts,
the operation of autonomous devices can be organized so that the
program logic is executed only under the particular conditions
specified in the transactions, and the data can be stored in an
practically immutable registry.

The Ethereum blockchain (Dannen, 2017) smart contracts
have been used to create the secure Robonomics platform11 and
for the interaction of various autonomous devices.

10Schiermeier, Q. (2015). The science behind the Volkswagen emissions

scandal. Available online at: https://www.nature.com/news/the-science-behind-

the-volkswagen-emissions-scandal-1.18426
11Lonshakov, S., Krupenkin A., Kapitonov, A., Radchenkoet, E., Khassanov, A.,

and Starostin, A. (2018). The Robonomics Platform Has Been Designed for the

Integration of Cyber Physical Systems into Human Economy. Available online at:

The central idea of the Robonomics platform is to organize
the relationship between nodes in the form of offer and
demand requests and to negotiate between them by using an
internal currency.

The platform is based on a number of pillars:

• The Robot Operating System (ROS) (Koubaa, 2018). Due
to the heterogeneity in term of system architectures and
middleware of robotic systems and Internet of Things devices
system interfaces and software, we used ROS to facilitate their
interoperability and coordination. ROS makes it easier, in our
case, to integrate new types of devices into a common network
system architecture.

• The InterPlanetary File System (IPFS)12. We integrated IPFS
into the platform to store the large amount of information that
devices collect during their operations.

• Liability Market. This is the part of the platform in charge of
matching Offer and Demand among the nodes of the system.
The Liability Market transactions are organized through
IPFS messages.

• Liability Contracts. They are Ethereum smart contracts
made by cyber-physical systems (robots, intelligent agents,
IoT devices and other artificial agents) with each other or
with humans.

• Tokens. Since the interaction among the agents is based on
market mechanisms, we need a “currency” in the network, and
this is provided by “Tokens.”

The advantages of this approach for trustable measurements by
USV are:

• This approach ensures that the data is collected and sent by
specific USV.

• Once the data has been collected and sent to the network, it
cannot be changed.

• The data remains open for verification by third party.
• There is an exact reference to the time when the digital

signature of the data was sent to the distributed registry.
• Easy scaling of system. Thanks to integration with ROS, it’s

quite simple to add additional agents to the system, no matter
what structure and mechanism of measurements.

• The unity of machine-to-machine and human-to-machine
interaction in the context of ordering measurements.

These advantages enable the creation of a trusted communication
environment which could potentially grow into a united
ecological information systemwith a high level of trust. However,
we should indicate the limitations of this approach:

• The need for internet access. IPFS and Ethereum require that
the device always has access to these networks. The fourth
generation mobile access network is sufficient for the stable
operation of the system.

• Sending information to the blockchain requires monetary
funds (since blockchain miners and some nodes of
Robonomics network require a fee for their work).

https://robonomics.network/robonomics_white_paper_en.pdf (accessed October

15, 2019).
12https://ipfs.io/
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It should also be noted that at the measurement stage, it is
possible to physically intervene in the process. This problem can
be solved by developing the proper USV design. For example,
USV can record its activity in a photo or video and similarly save
this information into Robonomics network.

In previous work of some of the authors, successful operation
of several unmanned aerial vehicles on the Robonomics
platform was demonstrated (Kapitonov et al., 2019); in
the current research we are extending the approach to
monitor the state of the environment, in particular of water
quality. In this article we describe the operation of a small
swarm of marine surface autonomous vehicles equipped with
sensors in charge of performing water quality measuring,
guided by a “leader” autonomous marine vessel managing a
distributed secure registry of the samples by means of the
Robonomics platform.

3. THE ROBONOMICS PLATFORM

The platform is based on a middleware software called AIRA
(Autonomous Intelligent Robot Agent)13 which enables the
connection of ROS-based systems and devices with Ethereum
and IPFS.

In general, following entities are required in the Robonomics
network to complete a task:

• The Promisee, a node that assigns a task. This can be either a
human or an artificial agent.

• The Promisor, a node that performs a task. It can be associated
with physical or software tasks.

• The Liability Market, as mentioned above, is a platform for
offer and demand messages published via IPFS.

• The Provider, a node that monitors the messages of the
Liability Market and matches an offer and a demand for a
small fee. The Providers of a “message channel” are managed
by the “Lighthouse”—a special smart contract, which performs
a transaction when the Provider establishes a market match
between the Promisor and the Promisee.

• New liabilities in the form of smart contracts are concluded in
the Ethereum network only via the Provider.

• The AIRA client is required for the Promisor to have access to
the Liability Market and to get information about the task.

• The Validator (not shown), an optional node which may be
specified in the demand message. If it is specified, only the
Validator node (for a fee) can finalize liability contracts after
checking them.

The task performing process is organized in three stages,
as depicted in Figure 1. At the first stage (Negotiation), the
Promisee sends a demand message to the Liability Market in
IPFS. In the following, the mainmessage fields are reported (refer
to Table 1).

• The “model” field—it uniquely identifies the
cyber-physical system.

13https://github.com/airalab/aira

• The “objective” field—it contains dynamic parameters specific
for the operation to be performed (as arguments for functions
in programming languages). This is an IPFS hash indicating
the rosbag file. Such rosbag file contains ROS-topics and
their details.

• The “token” field—the token used to pay for the service of the
cyber-physical system.

• The “cost” field—the cost in tokens from previous
“token” field.

• The “lighthouse” field—the name of the Lighthouse which
manages the desired Providers.

• The “validator” field—the address of the Validator.
• The “validatorFee” field—validator fee for its work.
• The “deadline” field—block number until which the demand

is valid.
• The “sender” and the “signature” fields—they are

automatically filled and identify the Promisee.

The demand goes to the Provider, and then to the agent that is
able to perform the task. CPS can accept the offer or submit a
counter offer, in the same way, the Promisee can send counter-
demand. This stage ends when offer/demand messages are equal
in the model, objective, token, cost, and lighthouse fields. In this
case, a new smart contract is created in the Ethereum Blockchain
by the Provider.

When the Ethereum smart contract is created the requested
task enters the Execution stage, during which the AIRA software
waits for a message confirming the liability creation and passes
the fields with the information to the agent. The CPS subscribes
to the indicated ROS topics to obtain the necessary information;
after this, the task execution begins.

In the last stage (Finalization), the CPS notifies the
AIRA software of the completion of the requested task,
and AIRA collects all the operation logs into the Result
message. This message is then sent to the IPFS. If a Validator
has been specified, it first checks the Result message and
validate it. At the end the Provider sees the notification
in the Result message and register the final transaction
to Ethereum.

4. DESCRIPTION OF THE AUTONOMOUS
MARINE VESSELS

The vessels are solar-powered water surface catamaran, with
two hulls and a MPPT (Maximum Power Point Tracker) energy
harvesting system with a lithium-ion battery.

Each vessel is equipped with:

• Two Bluerobotics T200 thrusters14;
• A waterproof case for electronics;
• A battery pack: LiFePO4 300 W·h, ∼2,000 charge cycles;
• Photovoltaic panels: 200 W max, 30-60 W while

cloudy weather.

The vessel main characteristics are listed in the following.
Figure 2 illustrates its design.

14https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster/

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2020 | Volume 7 | Article 70

https://github.com/airalab/aira
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

FIGURE 1 | Nodes interaction in Robonomics network. Offer and demand messages between different nodes may vary in format (JSON in IPFS, ROS messages in

AIRA client), but the information they provide remains the same.

• Max velocity: 5–7 km/h.
• Cruise velocity: 2–3 km/h.
• Dimensions: 1,200× 1,200× 500 mm.
• Weight: up to 38 kg (depending on the number of sensors).

Photovoltaic panels provide enough energy for daytime
operations on cruise velocity, as well as 3–5 h of operations
without light. The navigation and motion control system

is based on Pixhawk and PX4 autopilot15. The choice
of this controller is due to the fact that Pixhawk and
PX4 are among the most popular tools for the navigation
controller that natively supported operations with two motors
without a steering device. The on-board computational unit

15https://pixhawk.org/
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TABLE 1 | An example of a typical “Demand” message (without a Validator).

Field Type Description Example

model ipfs_common/Multihash CPS behavioral model identifier QmYb81uDNDHCnu9EZtYV 4eoBDKRBAwJeNy1LT3p5Zb c357

objective ipfs_common/Multihash CPS behavioral model parameters in rosbag file Qmea8XkcSXmvLDKES7D88 6pfimsWh9Vjh1ZJsoHm9MW G4C

token ethereum_common/Address Operational token address 0xC02aaA39b223FE8D0A0e5 C4F27eAD9083C756Cc2

cost ethereum_common/UInt256 CPS behavioral model implementation cost 0,1 WETH

lighthouse ethereum_common/Address Lighthouse address 0xa1b60ED40E5A68184b3ce4 f7bEf31521A57eD2dB1

validator ethereum_common/Address Validator address 0x000000000000000000000 0000000000000000000 (No)

validatorFee ethereum_common/UInt256 Validator commission 0

deadline ethereum_common/UInt256 Deadline block number 6393332

sender ethereum_common/Address Message sender address 0xB819d9BC2E665962BCa62 Cd859059875BABB134c

signature std_msgs/UInt8[] Sender’s digital signature —

The offer message looks similar. Part of the fields is an IPFS hash on which significant information about the mission is located, another part refers to the node addresses in Ethereum

network. Promisee exchanges such messages with Promisor until matching is reached between them. Between the layers, the messages change in the format (in IPFS it is JSON, in

the AIRA client — ROS message), but the information remains the same.

FIGURE 2 | Top (A), front (B), and side (C) views of the main vessel.

is an Intel NUC; the water surface vessel has 2 slots for
installing Libelium Waspmote Smart Water and Smart Water
Ions platforms16.

Sensors are immersed with a winch. Such system is able
to measure:

• pH
• Dissolved oxygen (DO), %
• Oxidation-reduction potential (ORP), mV
• Conductivity, µS/cm
• Temperature, ◦C
• Turbidity

16Libelium (2018). Drones, Sensors and Blockchain for Water Quality Control in

the Volga River to Promote Trustworthy Data and Transparency. Available online

at: http://www.libelium.com/drones-sensors-and-blockchain-for-water-quality-

control-in-the-volga-river-to-promote-trustworthy-data-and-transparency/

(accessed October 15, 2019).

Moreover, it is possible to detect ions presence, in particular:
ammonium (NH4+), bromide (Br−), calcium (Ca2+),
chloride (Cl−), cupric (Cu2+), fluoride (F−), iodide (I−),
lithium (Li+), magnesium (Mg2+), nitrate (NO3−), nitrite
(NO2−), perchlorate (CIO4−), potassium (K+), silver (Ag+),
sodium (Na+).

In actual swarm configurations it is possible to integrate
smaller and cheaper (sometimes expendable vessels) equipped
with different and cheaper sensors.

4.1. Leader Vessel Hardware/Software
Architecture
As told above, we plan to sample the environmental data by
means of a small fleet of autonomousmarine vessels. The “leader”
vessel is in charge of the secure logging of the samples and
leads the small swarm of vehicles performing the samples. In the
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following, we describe the “leader” vehicle on-board software.
That software is based on the AIRA cyber-physical distribution
kit running on Intel NUC. AIRA allows developers to implement
“robotic tasks as a service” and allows the specification of a
number of user parameters to customize the service itself. In
the case of the vessel, the required “services” are the measuring
and sampling missions. The user parameters of the mission
are, in our case, the waypoints defining the vessel path and a
list of sensors that should perform measurements during the
robot motion along the requested path. The sensor samples are
published via the IPFS network and are accessible by hash. This
guarantees that the sampled data cannot be tampered and that
they can be accessed by authorized persons (in our views the
citizens, but in general different data accessibility schemes are
possible).

The system software includes:

• General purpose Robonomics communication stack—
standard set of components needed for connecting a CPS to
the Robonomics platform:

– Ethereum ROS API—vessel connection with the blockchain
via ROS.

– IPFS ROS API—vessel connection with IPFS via ROS.
– Liability listener/Message signer—auxiliary services for

liability: subscription to the Liability Markets, confirmation
of the finalization of the liability.

• Application specific components:

– Sensor data reader—reading and sending data from
Libelium sensors.

A B

FIGURE 3 | Measurement results. (A) Vessel traveled route: planned path in white, real path in black. (B) Example of temperature measurements: the colored cells

show the averaged measurements of the temperature.
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FIGURE 4 | Direct Transcription is a special kind of Non-linear Programming Optimization method. The control variables are discretized as piecewise-constant

trajectories while the state variables are represented by linear segments. The optimization is performed by considering the discrete values of the variables representing

the control and the state at each segment endpoint.
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– Navigation package—motion control based on
PX4 autopilot.

– Trader node—the node that is responsible for possible
“economic” behaviors (accept the request for measurements
or not on the basis of an agreed price of the service).
In our tests, the vessel accepts any orders, as we are
exploiting the Ethereum distributed ledger as a secure
ledger. In general, it is possible to describe any economic
behavior (for example, in real world settings, there might
be more vessel fleets offering the same service; agents
may have to choose which are the most advantageous
offers, etc.)

The measurement algorithm works as follows:

1. The user sends the demand for the execution of the
measurement mission. The “model” field determines the
type of service requested, while the parameters for its
execution are transferred in the “objective” field. These
parameters are added to the “objective” rosbag-file directly
or in a string message containing an IPFS hash link. In
our case, the waypoint file with a description of the path
and stopping time at each of the points is transmitted in
the ROS-topic “/waypoints” by a hash reference. The
“/sensors” topic contains a line with a list of sensors,
whose readings should be transmitted according to the
result of the mission. The boolean topic “/virtual”
contains the permission to perform the measurement mission
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FIGURE 5 | Overall path followed by the vehicle swarm in nominal conditions with (A) n = 4 companion robots, (B) n = 8 companion robots.
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virtually—to load the sensor readings as a result of the
mission, measured previously at the points described in the
“/waypoints” path. The “expiration” topic (Duration
type) contains the expiration date ofmeasurements for use in a
virtual mission.

2. The demand is broadcast over the Robonomics
network, AIRA software checks the parameters and
sends an offer with the same parameters for order
acceptance: model, objective, payment token, price
and validator.

3. Both messages fall into the network and remain in the queues
of providers of Robonomics. Matching offer and demand
allows one of the providers to create a liability contract based

on a delayed transaction mechanism17. The appearance of a
contract in the blockchain, under which the vessel undertakes
to execute a model with parameters from the “objective”
field, confirms the appearance of an economically significant
transaction (reservation of the customer’s funds). This is a
signal for the vessel to start working.

4. The vessel executes the contract: it loads the model and the
objective from IPFS and starts the extraction of data from
the “objective.” The navigation and motion planning system

17Krupenkin, A. (2018). Delayed Transactions for Solidity [Russian]. Available

online at: https://github.com/akru/blog/blob/master/posts/2018-02-09-delayed-

transaction.markdown (accessed October 15, 2019).
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instants are depicted.
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receives waypoints and stop time intervals for measuring data
on each points. The measuring system receives a signal about
which sensors should be turned on. During the work, the data
is written to a file on the vessel’s on-board computer.

5. When the last waypoint is reached and the measurement is
taken, the measurement mission is completed. The archive
with readings of water quality sensors and geodata are added
to IPFS. IPFS hashes are written to the result file in the rosbag
format. Its IPFS hash is sent in a transaction to a liability
contract with a digital signature.

The distributed ledger implementation protects the monitoring
data from counterfeiting or from the hiding the fact itself of

having performed the measurements. The location of the hash of
the measurement file signed by the private key of the robot in the
automatically guaranteed repository (the blockchain) makes the
verification of data authenticity simple: we just need to check the
IPFS hash of the file and verify it with that recorded in the “result”
field of the liability contract. If these hashes do not coincide, it is
obvious that the robot received another counterfeited file.

The code of the vessel with Robonomics part is available here,
in the footnote.18

18Water Drone with Robonomics, GitHub repository, URL: https://github.com/

Fingerling42/frontiers-vessel-code.
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n = 8 companion robots. Note the rhomboid and double rhomboid formations kept by the swarm in the two different cases.
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The “follower” robots will implement the BSP algorithms in
order to be able to follow the leader and to keep the formation.

5. EXPERIMENTS AND ANALYSIS OF
VESSEL SAMPLES

In the field experiments, the marine vessel measured dissolved
oxygen (%), temperature (◦C), pH level, and electrical
conductivity (µS/cm) in the surface water layer of the coastal
part of the Volga river in Kuibyshev reservoir near the storm
drains of Avtozavodsky district, Togliatti, Samara region, Russia.
Sensor immersion depth: 1.5–2 m.

Date and time (local time — GMT+4):

• Beginning — 4/25/2019, 7:12:52 PM.
• Ending — 4/25/2019, 9:46:30 PM.
• Total: 154 min.

The route was set in the Ardupilot GUI19, which formed a file
with waypoints. The planned and real routes are presented in
Figure 3A.

As a result of measurements, the vessel sent data in the form
of GPS and sensors data with Unix-timestamp. The Python
programming language was chosen for working with data due

19http://ardupilot.org/

05400405300305200205100105005-

X [m]

-300

-200

-100

0

100

200

300

Y
 [

m
]

Rhomboid formation - 4 vehicles - additional Gaussian noise w=0.5

Reference Path

Leader Real Path

V1

V2

V3

V4

05400405300305200205100105005-

X [m]

-300

-200

-100

0

100

200

300

Y
 [

m
]

Rhomboid formation - 8 vehicles - additional Gaussian noise w=0.5

Reference Path

Leader Real Path

V1

V2

V3

V4

V5

V6

V7

V8

A

B

FIGURE 8 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4 companion robots, (B) n = 8 companion robots.
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to its ease of use, good performance and the presence of a
wide range of libraries for file management, and data processing
and visualization.

Measurements took place over long periods of time; they,
together with GPS coordinates, were recorded discretely.
Therefore, it was necessary to reduce such data into one structure,
choosing from GPS only those coordinates that corresponded to
the logs. The reconciliation was done using Unix timestamps.
After extracting the data on the concentration of oxygen in
water, it became clear that the representation of oxygen as a
percentage is not enough for an adequate analysis of water
quality, since in most cases it is necessary to translate the
oxygen concentration in mg/l. Such a translation is non-trivial

because it requires knowledge of the water temperature, normal
oxygen concentration at normal atmospheric pressure at a
given temperature, and atmospheric pressure in a given area.
For that purpose, a dedicated software was developed. The
data were visualized using the Folium Python library20, as
in Figure 3B.

All obtained data and an interactive map with the
measurement results is available in the footnote link21. Also the
raw data that was sent to IPFS is available at the following links:

20https://python-visualization.github.io/folium/
21Marine vessel data processing, GitHub repository, URL: https://github.com/

Fingerling42/frontiers-vessel-data-processing

054004053003052002051001050

X [m]

-300

-200

-100

0

100

200

300

Y
 [

m
]

Rhomboid formation - 4 vehicles - additional Gaussian noise w=0.5

Reference Path

Leader Real Path

V1

V2

V3

V4

054004053003052002051001050

X [m]

-300

-200

-100

0

100

200

300

Y
 [

m
]

Rhomboid formation - 8 vehicles - additional Gaussian noise w=0.5

Reference Path

Leader Real Path

V1

V2

V3

V4

V5

V6

V7

V8

A

B

FIGURE 9 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4 companion robots, (B) n = 8 companion robots.

Only selected time instants are depicted.
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• Geodata: https://gateway.ipfs.io/ipfs/QmPvULEGfDE2Roscy4
zGpKpBE8s3sBwjiXJVQNS3sBxWDC

• Measurement data from sensors: https://gateway.ipfs.io/ipfs/
QmWRjFcQi4Xcisqi8FP3AbGS3PB3gNHgtnfzbcpodKKCBP.

5.1. Analysis of Environmental Data
In this subsection, we provide a short summary of the
investigated reservoir collected data.

5.1.1. pH Value
The concentration of hydrogen ions is of great importance for
chemical and biological processes occurring in natural waters.
In accordance with the requirements for the composition of
water bodies in recreation areas and fishery reservoirs, the pH
should not go beyond the range of 6.5–8.5. Based on the obtained
data, the territory of the reservoir in terms of pH is more

related to neutral and slightly alkaline waters and only a few
segments are characterized by a high pH (alkaline waters with
pH= 8.5 . . . 9.5).

5.1.2. Electrical Conductivity
According to the electrical conductivity level of natural water,
we can evaluate the mineralization of water. The conductivity
in the studied area does not exceed the standards: the average
value of the conductivity is 338.9 µS/cm, which corresponds to
169.45 mg/dm3 mineralization level. The studied water area can
be attributed to the ultra fresh water category. It should be noted
that electrical conductivity increases with distance from the coast.
The conductivity results correspond to the regular dependence
of electrical conductivity and temperature, with a correlation
coefficient r = 0.77 at p = 0.05, which characterizes a strong
positive coherence.
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FIGURE 10 | Insight of the formation at selected instants of the path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4

companion robots, (B) with n = 8 companion robots. Note the rhomboid and double rhomboid formations kept by the swarm in the two different cases.
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5.1.3. Oxygen
For dissolved oxygen, World Health Organization does not offer
any value for indications of its effect on health. However, a sharp
decrease in the oxygen content in water indicates its chemical
and/or biological pollution. In the obtained data, the amount of
dissolved oxygen varies from 0 to 12.9 mg/dm3. During statistical
processing, the data were divided into two groups: in the intervals
[0; 1.7] and [8.5; 13.6] with an average value of 6.759 mg/dm3.
The obtained intervals characterize the level of water pollution in
the studied reservoir as dirty waters (interval [0; 1.7]) and clean
waters (interval [8.5; 13.6]).

Since the content of oxygen dissolved in water depends on the
temperature of the water and its mineralization, a pair correlation
analysis was performed to determine the relationships: with a
sample size of n = 1194, the critical value of the Pearson
correlation coefficient rxy = 0.06 at p = 0.05.

Accordingly, the values of the concentrations of oxygen
dissolved in water have very weak dependence on temperature
(correlation coefficient −0.091), a weak positive dependence
on pH (correlation coefficient 0.156), and no dependence
on conductivity.

6. REYNOLDS’ BOIDS SWARM
IMPLEMENTATION BY MEANS OF A
BELIEF SPACE PLANNING APPROACH

Swarm behaviors were developed by following the approach
proposed by some of the authors in Bonsignorio et al. (2019).
Such work extended and applied the approach proposed in Platt
et al. (2010) to robotic swarm control. Older work on BSP
(Belief Space Planning) by those authors dealt with the trajectory
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FIGURE 11 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.9 and (A) n = 4 companion robots, (B) n = 8 companion robots.
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planning and control of a robotic 3D-printed manipulator
with deliberately poor joint accuracy and actuation with no
joint feedback (Zereik et al., 2015), as well as in the motion
planning of a marine companion robot for diver assistance and
support (Zereik et al., 2014). Belief Space Planning methods
allow to concurrently reduce the uncertainty (expressed by the
state estimate measure covariance) and reach the desired state.
Those features make them very suitable to perform tasks in
unstructured environments characterized by significant measure
noise. A trajectory in the “Belief Space” for a vehicle moves it
from its current state (for example a given position/orientation),
represented as a Gaussian PDF (Probability Density Function),
to a goal state PDF with the desired mean value and lower

covariance. The system state is modeled as the sum of a signal
component and a Gaussian noise part.

The trajectory planned in the belief space for the vehicle is
linearly approximated by a series of segments in the belief space.
The initial and end points of each segment are determined by
Direct Transcription. Such discretization method is depicted in
Figure 4; for further details refer to (Platt et al., 2010) and (Betts,
2010).

The algorithm moves on the Belief Space trajectory piece-
wise, segment by segment. The needed control actions to move
from one segment extreme to the beginning of the following
one are computed through a Linear Quadratic Regulator (LQR).
The procedure is iterated on the segments of the linearized
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trajectory until the vehicle reaches its final goal in the belief
space, represented by a vector of Gaussian PDFs with desired
mean values for the end point and orientation, as well as

a reduced covariance of the point and orientation expected
measures. When a single vehicle follows a requested path, at
each step, the current reference trajectory point is sent to
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the vehicle controller that drives the robot in the requested
intermediate position. The final goal in the belief space is
reached by iterating this process. At each step, the algorithm
verifies if the current calculated intermediate end point of the
computed segment of the plan is good enough to approach
the final position and, if not, re–plans intermediate point.
In our case, all companion autonomous vessels follow the
trajectory of the leader vessel—the one managing the measure
certification functions—by maintaining a predefined distance
(some of them in terms of the cross-track error, some in terms
of distance along the path). In this way, the whole robotics
swarm system maintains a rhomboid formation while following
the required trajectory. All the swarm vessels follow the leader,
which is in charge of managing the certification of the samples

by means of the distributed ledger processes provided by the
blockchain platform.

Since all actions in the belief space actually weigh the objective
to move the robot in the desired position with the objective of
reducing the observation covariance in the mid waypoints and at
the end point, they can be seen as information gathering actions
(as they reduce the uncertainties on the vehicle position). The
planning occurs in a state space which is inherently non-linear
and has a higher number of dimensions than the physical state
space; as a consequence the resulting dynamic is significantly
underactuated (as the number of control input affecting the
physical system is lower than the dimensions of the belief
space). The problem can be simplified by the assumption of
maximum likelihood of observations, as in the present paper,
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in our previous work and in Platt et al. (2010). This maximum
likelihood assumption asserts that the current system state is
the most likely state according to the past observations and
the performed actions; this means that the performed actions
achieve their intended purpose, leading the system to the desired
state. Our simulations (in various application contexts) confirm
that this assumption is usually correct. In Platt et al. (2010),
a formal proof is provided about its optimality under linear
Gaussian process assumptions. Here, the observations zt ∈ Z

of the distance between the goal and the vehicle position are
modeled as a non-linear stochastic function of the vector xt ∈ X,
representing the (not directly observed) state of the system and
of the environment

zt = g (xt)+ ξ (1)

where g is a deterministic function of the measurement and ξ is a
zero mean Gaussian noise with covarianceWt , dependent on the
state. The deterministic function f links the new state to the older
one under the control action ut

xt+1 = f (xt , ut) (2)

where f and g are assumed to be differentiable functions of xt
and ut . The controller is assumed to know the state through
a probabilistic density function P(x). The parameters of such a

distribution are the “belief state” bt =
[

mT
t sTt

]T
, where mt is

the mean of the belief state and s =
[

sT1 , · · · , s
T
d

]T
is a vector

composed by the d columns of the covariancematrix6. If a linear
Gaussian dynamics is assumed, the belief state can be updated by
rules of the form

xt+1 = At (xt −mt)+ f (mt , ut) (3a)

zt = Ct (xt −mt)+ g
(

f (mt , ut)
)

+ ξ (3b)

where At and Ct are the Jacobian matrices At =
δf
δx (mt , ut),

Ct =
δg
δx (mt). The Gaussian distribution is given by:

6t : P (x) = N
(

x
/

mt ,6t

)

(4)

In these hypotheses, and assuming maximum likelihood of the
observations, it can be proved that it is possible to derive by
iteration a series of segments with an associated set of control
actions by minimizing the cost function J

J
(

bτ :T , uτ :T

)

=

k
∑

i=1

wi

(

n̂Ti 6tn̂i

)2
+

T−1
∑

t=τ

m̃T
t Qm̂t+ũTt Rũt (5)

where bτ :T is the subset of the state space, uτ :T are the
corresponding actions for a given state space trajectory, Q and
R are weight matrices, and the ni are the versors of belief
space along which the optimization is performed. Finally, 6T

is the covariance matrix at the end of the segment, and mT
t

the value of the mean of the Gaussian of the measures. The
function J is minimized by a standard SQP (Sequential Quadratic

Algorithm 1 : BSP Algorithm

Input : b0, bgoal
Output: u1 : s

1 initBSP ();
2 for i = 1 to N do

3 (m̄1 : s, ū1 : s) = CreatePlan(m0,mgoal);

4 for j = 1 to s− k do
5 k = r + j;
6 ut = LQR(ūt , m̄t ,mt);
7 zt = g(xt)+ ξ ;
8 mt+1 = EKF(mt , ut , zt);
9 if ‖m̄t −mt‖ < thr1 then

10 while et > thr2 do
11 ηt = DriveVehicle (mt);

12 else

13 r = r + j− 1;

Programming) algorithm; after this, a linear quadratic regulator
is applied to move along the segments.

The procedure is summarized in Algorithm 1. The BSP
strategy needs to know the initial belief state and final goal b0
and bgoal, and returns the sequence u1 : s of the control actions.
As a preliminary step all the variables of the algorithm are
initialized to proper values via the function InitBSP (line 1 of
Algorithm 1). The procedure is then executed for a predefined
number of steps N. At each step, a plan is calculated via the
CreatePlan function (line 3), obtaining the two sequences
(m̄1 : s, ū1 : s). This plan is executed for s steps; in case the planned
steps do not converge to the final goal, variable k and counter
r (line 13) are in charge of managing the eventual re–planning.
In this phase, three values are calculated (lines 6–8): ut is
returned by the LQR control, while zt is the noisy perceived
position measurement (see Equation 1); finally the value mt+1

is propagated through an Extended Kalman Filter (EKF). If the
resulting error between the mean of the current reference belief
state m̄t and the mean of the current belief state mt is under a
given threshold thr1 (line 9), the algorithm sends the commands
to the underlying vehicle low-level control system. The algorithm
drives the robot, via the function DriveVehicle, toward the
desired intermediate point in the trajectory (line 11), allowing
the Cartesian error et to converge under a given threshold thr2
(line 10). The function DriveVehicle returns as output the
necessary vehicle trajectories ηt . Finally, if the error ‖m̄t − mt‖

is greater than thr1, the counter r is updated in order to proceed
with a necessary re–planning step (line 13).

The adoption of LQR standard control improves the efficiency
of BSP planning: the evaluation of the optimal control action
for the system leads to the stabilization of the trajectory
in spite of the non-linear dynamics of the system. Indeed,
LQR control is able to handle small divergences from the
planned motion, and thus minimizes the number of re–planning
steps the system must calculate, improving in this way the

Frontiers in Robotics and AI | www.frontiersin.org 20 May 2020 | Volume 7 | Article 70

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

computational efficiency. Previous experimental tests within a
different application described in Zereik et al. (2015) showed that
the statistical LQR calculation produces a decrease in computing
time of about 70%. Hence, it is clear that the use of LQR in the
algorithm leads to a smoother, and hence more efficient, motion
of the robots.

The BSP approach is here integrated with the classical
Reynolds flockingmodel. Reynolds has shown in Reynolds (1987)
that flocking behaviors can be implemented by imposing to the
individual agents a surprisingly simple set of rules:

1. Separation—Avoid crowding neighbors (short
range repulsion).

2. Alignment—Steer toward average heading of neighbors.
3. Cohesion—Steer toward average position of neighbors (long

range attraction).

In our system, agents target the school of (robot) fishes center
(rules 2, 3) and keep distance among themselves (rule 1).

7. BSP-BASED SWARM MIXED REALITY
SIMULATION

Using the BSP-based swarm approach described above, a swarm
of vehicles has been simulated, with a different number n of
companions, namely n = 4 and n = 8. The boat in charge of
the sample collection and certification has been considered as
the “leader” and the other vehicles have been requested to keep a
rhomboid formation with the boat at the center, while following
the master path. Note that the boat position at each instant is
assumed to be known by the vehicle swarm. This is reasonable in
a real application: indeed, the swarm and the boat move together
along the reference path, so that the boat can easily communicate
its current position to the vessel swarm, e.g., through a long-
range WiFi or radio connection. Furthermore, each vehicle has
its own GPS+IMU localization system on-board, in such a way to
be able to determine its own relative position with respect to the
main boat.

The tests of the swarm have been performed in a mixed
reality simulation setting as the trajectory of the leader has
been obtained by field tests of the vessel described above.
We assume zero latency in the sample transmission from the
follower vessels to the leader one. This assumption is realistic
in comparison to the sampling rate and Ethereum typical
transaction rate. The BSP swarm strategy is simple but very
effective, since (as already stated) it allows each vehicle to follow
the requested path while keeping the desired formation and,
in the meantime, reducing uncertainty due to both inaccurate
measurement and environmental disturbance. To this aim,
in order to test robustness of the approach, beside the first
simulation in nominal conditions, an additional Gaussian-
distributed noise has been injected in the system, to stress
the algorithm. In particular, the noise has been generated as
a normal distribution with zero mean and covariance equal
to wWi, where w is a tunable scalar coefficient and Wi is the
corresponding diagonal component (x, y or ψ) of the covariance
matrix W ∈ R

3×3 (each noise component is assumed to be

independent and uncoupled from the other). For the angular
component ψ , there is a further scale factor (equal to 0.1)
to adjust noise values with respect to radians. Each diagonal

element of matrix W is equal to

√

∑

i

(

ξi − ξ
∗
i

)2
(where ξi

is the single component of the Cartesian error and ξ∗i is the
related goal value for that component) if the Cartesian error
is below a given threshold, or equal to a larger constant value
rg otherwise.

For each formation type (n = 4 or n = 8 companion vehicles),
two different values of w have been tested, namely w = 0.5 and
w = 0.9; 10 simulation runs for each category were successfully
executed, thus resulting in a total of 40 successful experiments.

Figure 5 shows the path followed by the vehicle swarm
in nominal conditions (no additional noise injected in the
system), while Figure 6 depicts only selected time instants of the
path following execution, highlighting the rhomboid formation
maintained by the swarm. Figure 7 provides a zoomed insight of
a part of the simulation, showing the formation at some of the
previous selected time instants.

The same organization is kept for the next figures: again,
Figure 8 depicts the overall path followed by each vehicle when
an additional noise with w = 0.5 is injected in the system, while
Figure 9 shows only selected time instants of the path following
execution, highlighting the rhomboid formation maintained by
the swarm. Figure 10 provides a zoomed insight of a part of
the simulation, showing the formation at some of the previous
selected time instants.

Finally, relatively to the case with additional noise with
w = 0.9, Figure 11 depicts the overall paths followed by the
vehicle swarm. Figure 12 shows only selected time instants of the
path following execution, highlighting the rhomboid formation
maintained by the swarm. Figures 13A,B provide a zoomed
insight of a part of the simulation, showing the formation at some
of the previous selected time instants. Figure 13C highlights a
particular time instant of the simulation, in order to show that
vehicles are not colliding.

An assessment of good performance can be obtained by
analyzing Figure 14. The evolution of mean norm of error
posterior variance and of mean norm of the state covariance
matrix 6t , computed on-line by the BSP algorithm, can be
compared from Figures 14A,B in both noisy cases. From this
analysis, it is clear that the BSP strategy strongly reduces the
covariance matrix on the system state and keeps it low during
the whole simulation run, even if the Cartesian error is large. A
zoom of the initial part of the graph is provided for both cases,
for which the very fast reduction of the covariance matrix mean
norm is clear. Boxplots of Figures 14C–F show the mean angular
and linear error norm of all vehicles throughout all experiments.
The related dataset can be found here: https://github.com/cyber-
chicca/Swarm-BSP.

8. CONCLUSIONS AND FUTURE WORK

We have developed a system that allows certified and trustable
environmental sampling and logging by joining a sample
certification scheme based on blockchain technologies and
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swarm behaviors based on a BSP implementation of Reynolds’
Boids. Our experiments at field, integrated by extended mixed
reality simulation, show the viability of the approach.

This article describes a new platform for trustable
environmental monitoring based on citizen-led certification
of the samples by means of distributed ledger technologies.
This constitutes a further step in “Citizen Science.” The idea
of citizen science, see Hippel (1991); Gura (2013); Hand
(2010) is usually implemented by sharing with the public
experimental data collected by one or more public or private
organizations. In our case the citizens, thanks to intelligent
robotics technologies integrated within a distributed ledger
framework, have under their control the collection of the data
themselves. This is particularly important for sensitive issues
related to environmental quality, but can be relevant in many
other societal relevant issues, for example the geographical
distribution of infected people during a pandemic. We have
shown that this conceptual approach can be implemented on top
of the Ethereum blockchain network in a robust way and scalable
way. Our platform allows to merge the benefits of distributed
certification of the samples, made possible by the blockchain
technology, with the adaptivity and scalability of swarm
architecture. It separates the processes related to the sample
certification, managed by the leader vessel, from the processes
related to the optimization of sample collection performed
by means of a potentially heterogeneous swarm of smaller
vessels dedicated to the physical execution of the sampling
activities. We have shown how mixed reality simulation can be a
valuable tool for the design of specific system architectures for
specific applications. Simulation technologies cannot substitute
field experiments. However, they allow a greater and more
systematic set of test runs than usually possible in the field. The
experiments that we have performed in the field, where we have
equipped the leader vessel with the set of sensors that in future
implementations will be spread among the smaller vehicles, have
shown the trustability of the certification of the samples. The
purpose of the swarm simulation was to show that it is possible

to implement the swarming behaviors that we have devised and
provide guidance for future developments of the platform and
its deployment in the field.

In the future, we will develop and perform two-ways mixed
reality simulation in order to refine the system design and we will
then proceed to the implementation of real world swarms at field.

Our approach is scalable since we can manage more
swarms with different leader vessels. We will also consider the
implementation of the BSP swarming approach to a fleet of leader
vessels and other approaches based on Gaussian Processes and
information gain. We will also consider the possible benefits of
Deep Reinforcement Learning methodologies for the platform
described in this paper.
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