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The real world is highly variable and unpredictable, and so fine-tuned robot controllers

that successfully result in group-level “emergence” of swarm capabilities indoors may

quickly become inadequate outside. One response to unpredictability could be greater

robot complexity and cost, but this seems counter to the “swarm philosophy” of

deploying (very) large numbers of simple agents. Instead, here I argue that bioinspiration

in swarm robotics has considerable untapped potential in relation to the phenomenon

of phenotypic plasticity: when a genotype can produce a range of distinctive changes in

organismal behavior, physiology and morphology in response to different environments.

This commonly arises following a natural history of variable conditions; implying the

need for more diverse and hazardous simulated environments in offline, pre-deployment

optimization of swarms. This will generate—indicate the need for—plasticity. Biological

plasticity is sometimes irreversible; yet this characteristic remains relevant in the context

of minimal swarms, where robots may become mass-producible. Plasticity can be

introduced through the greater use of adaptive threshold-based behaviors; more

fundamentally, it can link to emerging technologies such as smart materials, which

can adapt form and function to environmental conditions. Moreover, in social animals,

individual heterogeneity is increasingly recognized as functional for the group. Phenotypic

plasticity can provide meaningful diversity “for free” based on early, local sensory

experience, contributing toward better collective decision-making and resistance against

adversarial agents, for example. Nature has already solved the challenge of resilient

self-organisation in the physical realm through phenotypic plasticity: swarm engineers

can follow this lead.

Keywords: phenotypic plasticity, reaction norms, swarm diversity, resilience, minimal robotics, swarm robotics

INTRODUCTION

The self-organized societies of social insects such as ants are well-known in swarm robotics (Şahin,
2005); yet they could be the “tip of the iceberg” of available bioinspiration. Here, I focus specifically
on the general concept of phenotypic plasticity as a powerful, complementary framework for
thinking about real-world deployment of minimal robot swarms. In fact, social insects are prime
exhibitors of phenotypic plasticity (Kennedy et al., 2017), but it is widespread and of fundamental
importance in the rest of the natural world. In brief, I argue the following main points:
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1. Plasticity is typically selected for by evolution following
a natural history of unstable environmental conditions.
In offline evolutionary swarm optimization, simulated
environments need to be more heterogeneous and hazardous
to generate and understand the value of plasticity.

2. In the context of large numbers of agents, elements of this
plasticity could be (partially) irreversible, as in nature. This
could be further enabled by cost-effective expendability, up to
and including recyclable or biodegradable robots.

3. In addition to the value of individual plasticity for responding
to environmental variation, otherwise unremarkable variation
in response thresholds (for example) can contribute
to adaptive group-level diversity; swarm engineers can
exploit this.

I first provide some background perspective on swarm
robotics before introducing the biological phenomenon of
phenotypic plasticity.

Background: The “Swarm Principle” of
Individual-Level Simplicity
Swarm robotics is predicated on the idea that large numbers
of agents working collectively can solve tasks that would
be impossible for a single individual (Hamann, 2018). It
is specifically inspired by biology in that it relies on self-
organization (Camazine et al., 2001) as the mechanism of
coordination, particularly as seen in social insects (Şahin, 2005).
This includes concepts such as stigmergy (e.g., Hunt et al.,
2019a). Closely allied to this is the reliance on emergence of
swarm problem-solving capabilities that cannot be reduced to,
or predicted from, individual-level components (Şahin, 2005;
Bjerknes et al., 2007; Brambilla et al., 2013).

As technology continues to develop, with ever-advancing
computer processing power andmethods in artificial intelligence,
the temptation may be to build swarms of agents that
are individually highly complex both in their hardware and
controllers. However, this would not align with the “swarm
principle” of relying on emergence to do the “heavy lifting” of
solving the task. It would also defeat the object in “complexity
engineering” of maintaining low-level understandability (Frei
and Giovanna, 2012). Finally, it may be prohibitive in terms
of cost, when real-world environments have hazards resulting
in a risk—or even an expectation—of robots being lost or
destroyed. Instead, swarm controllers are classically based on
reactive control (Hamann, 2018), based on simple reflexes to
a stimulus (e.g., Walter, 1950; Mitrano et al., 2019), or taking
into account an internal state (the model-based reflex agent of
Russell and Norvig, 1995, for example Nouyan et al., 2009). This
“behavior-based robotics” (Arkin, 1998) is in keeping with studies
of reaction thresholds in biology (Bonabeau et al., 1999). It is also
compatible with relatively simple and affordable hardware that
can be easily understood: for example the “e-puck” (Mondada
et al., 2009), “Kilobot” (Rubenstein et al., 2012), and “Crazyflie”
(McGuire et al., 2019). There is still relatively limited real-world
swarm deployment (e.g., Schmickl et al., 2011; Duarte et al.,
2016): there is a clear opportunity to shape the design principles
for minimal swarms.

Previous Examples of Adaptation in
Homogeneous Robot Swarms
There are several examples in the swarm robotics literature
in which individual robots, though identically programmed
with the same controller, end up behaving differently
according to their experience of the environment. I briefly
group these according to three prominent approaches,
before going on to explain the complementarity of the
proposed approach.

Off-Line (Pre-deployment) Evolutionary Optimization
Designing emergent (Matarić, 1993) and adaptive (Matarić,
1995) group behaviors is challenging, and so one can use
evolutionary optimization in simulation before deployment
(Dorigo et al., 2004; Trianni, 2008; Hecker and Moses,
2015; Birattari et al., 2019). In this way, adaptation of
behavior can be seen in task specialization, for example,
as an effective group-level strategy (Ferrante et al., 2015),
though its effectiveness is tuned to the particular simulated
environment. Furthermore, the simulated environments
employed in evolutionary robotics can be rather simple and
homogeneous. As a result, there can be little in the way of a
mechanism to generate plasticity, as it is not rewarded by the
artificial evolutionary process. Including sufficient heterogeneity
in the class of simulated environments is indispensable to
identifying a suitable variety and extent of plasticity for swarm
robots (Figure 1).

On-Line (On-Deployment) Evolutionary Optimization
Embodied evolutionary robotics is a promising avenue for real-
world deployment (Trueba et al., 2011; Haasdijk et al., 2014; Jones
et al., 2019) but in practice the requisite computing power may
be a step away from the minimal robotics needed for swarm
ubiquity. Evolutionary approaches (off- or on-line) could struggle
in the field, owing to unanticipated circumstances or merely
because of the so-called “reality gap” between the world and
(inner) simulation (Brooks, 1992; Jakobi et al., 1995).

Learning (On-Deployment)
Learning is an example of behavioral plasticity. For example,
if one simulates improved task performance through repetition
there can be emergent task specialization (Brutschy et al., 2012).
Task sequencing has been demonstrated at run-time without
prior knowledge of the correct ordering, demonstrating a form
of reinforcement learning, albeit with abstractions of the tasks
themselves (Garattoni and Birattari, 2018). In practice, robot
learning tends to employ (evolved) neural networks (Nolfi et al.,
1994; Floreano and Mondada, 1996; Nolfi and Floreano, 2000;
Nitschke et al., 2012; Hüttenrauch et al., 2018), so-called neuro-
evolution methods. Neural network-based approaches can have
difficulty in scaling to more complex problems (Brambilla et al.,
2013); and again, for truly minimal swarms, this may be a step
toward undue computational complexity. I suggest “personality”
adaptation as an example minimal bioinspired approach to
learning (section Behavioral Plasticity).
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FIGURE 1 | A conceptual overview of how phenotypic plasticity could be employed in a minimal robot swarm. Beginning with existing minimal robot hardware,

consider the current and potential extent of plasticity. Undertake artificial evolution of swarms in a series of heterogeneous environments, to obtain suitable

developmental reaction norms (mappings of sensory input to ranges/variations of phenotype, including one or more variable traits such as reaction thresholds, power

consumption, or “smart” body parts). Hardware may be iterated to extend or reduce/remove plasticity. Deploy into the field, and individual robot experience will

contribute to a distribution of individual phenotypes in the swarm. This should then form an adaptive swarm-level phenotype. Robots can then be collected and reset

before redeployment elsewhere, recycled/disposed of sustainably, or even biodegrade in certain contexts (“Crazyflie” drone photo CC-BY 4.0, Bitcraze AB).

Phenotypic Plasticity: Evolving Adaptive
Reaction Norms
Broadly defined, phenotypic plasticity is the ability of an
organism’s genotype to produce different phenotypes in response
to different environmental conditions (Kelly et al., 2012). This
includes behavioral, physiological, and morphological plasticity
as I later describe in their respective sections (see also Figure 2).
These are ordered by how rapidly an adjustment is typically
made through that plasticity mode. Plasticity varies, as we see
in social insects: some are resilient to environmental change
(e.g., invasive ants; Holway et al., 2002), while others such as
bees struggle to cope with e.g., habitat loss, novel toxins, or
pathogens (Goulson et al., 2015). Its importance may in part
depend on mobility: for instance, it is particularly important
in plants, which are unable to change their environment
(Schlichting, 1986). Early experience is often key to phenotypic
development (e.g., Weaver et al., 2004), which can be seen
as a form of “memory” of the environment to which the
organism (or agent) is exposed in the initial phase of its
life (deployment).

The term developmental reaction norm (DRN) describes
the range of phenotypes generated by a given genotype
(“controller,” smart materials, etc.) in response to experienced
environmental cues (Schlichting and Pigliucci, 1998). DRNs can
themselves be plastic or non-plastic, i.e., the phenotype can
remain fixed or change in response to changing environmental
conditions. Therefore, there are at least five attributes to DRNs:

amount of plasticity (large/small); pattern of response (e.g.,
monotonic increase/decrease or more complex reaction curves);
rapidity of response; reversibility of response; and competence
(possibility) of the developmental system to respond at a
certain stage in an organism’s (robot’s) lifetime (Schlichting
and Pigliucci, 1998). Moreover, in the “swarm” context, it is
worth noting that individuals’ experiences can affect the extent
of their plasticity at a given age (Stamps, 2016). This can also
contribute to group-level diversity in phenotypic expression.
Behavioral plasticity at the level of the whole group can be
seen in, for example, the reaction thresholds of harvester ant
colonies (Gordon et al., 2011). In social groups individual
phenotypes interact, contributing to the complexity of the
genotype and phenotype fitness landscapes (Moore et al., 1997;
Wolf et al., 1999). The various attributes of developmental
reaction norms are, in principle, subject to natural selection
(Schlichting and Pigliucci, 1998; Dingemanse et al., 2010), and
I propose that for swarm engineers, pre-deployment artificial
evolution of DRNs can establish their extent (Figure 1). Plasticity
occurs in response to environmental cues, so one must also
consider the relevant environmental features (physical and
social) that will elicit change—and how they will be sensed.
For example, local cues about resource distributions can be
used to adjust individuals’ foraging parameters (Just and Moses,
2018), and environmental heterogeneity generates variable
foraging rates through behavioral plasticity in harvester ants
(Beverly et al., 2009).
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FIGURE 2 | Top row: Examples of phenotypic plasticity, which could be enacted with simple, environmentally-reactive control rules. They are ordered left to right in the

typical speed of response. (A) Behavioral plasticity in the social spider Stegodyphus dumicola allows the colony to maintain a suitable distribution of “bold” and “shy”

individuals (photo: Bernard Dupont, CC-BY-SA 2.0). (B) Physiological plasticity is observed in the invasive cane toad Rhinella marina, as it can adjust its core

temperature to live in cool regions (photo: Sam Fraser-Smith, CC-BY-2.0). (C) Morphological plasticity in the bacterium Bacillus cereus. In the top pane it has

undergone filamentation following antibacterial treatment; bottom pane is untreated (photo: Achara Dholvitayakhun, CC BY-SA 4.0). Bottom row: Biologists study

clonal organisms to understand how phenotypic plasticity produces individual differences within social groups (“swarms”). The distribution of differences may be

adaptive for their local ecology. The individual-level “interaction rules” and resultant plasticity used in their self-organization may be instructive for swarm robot

controllers. (D) The clonal raider ant Ooceraea biroi (photo: courtesy of Daniel Kronauer). (E) the Amazon molly Poecilia Formosa (photo: courtesy of David Bierbach).

Emerging Technologies Favoring (Partially)
Irreversible Plasticity
In the context of model-based reflex behaviors, if internal
reaction thresholds are computer variables there is no design
requirement to make their setting irreversible; though this may
be suitable for time and geography-limited missions, where
robots can be retrieved and reset for redeployment. Several
emerging technologies favor irreversible plasticity, however. For
example, the field of “soft” robotics employs soft structures
to flexibly interact with unpredictable environments (Kim
et al., 2013). Robot intelligence can be “outsourced” from
the computer “brain” to the robot “body” (morphology) and
its nonlinear responses, exploiting “embodied intelligence”
(Bongard, 2011). This outsourcing can go a step further in
collectives, as phenotypic diversity in soft swarms could result
merely from past sensitivity (hysteresis) to exposure temperature,
strain and other conditions. Moreover, soft robots raise the
possibility of biodegradability (Rossiter et al., 2016), further
relaxing constraints on ubiquitous deployment. Another exciting
development is the possibility of “autonomous” or “robotic”
materials (McEvoy and Correll, 2015), smart composites that
can autonomously change shape, stiffness, appearance and
other properties. In electronics, the idea of a “memristor”—
a resistor with “memory” of the charge flowing through
it—raises the possibility of “neuromorphic computing” that
parallels in some way the synaptic plasticity of a brain

(Zidan et al., 2018; Wang et al., 2019). At smaller length scales,
exciting possibilities exist for micro-scale swarms (e.g., Martel
et al., 2009; Yigit et al., 2019). As robot swarms aim toward
large numbers, and possibly smaller scales, the heterogeneity
and stochasticity associated with minimal robots may become
inevitable. Rather than seeing this as an engineering nuisance,
swarm designers can embrace its possibilities (White et al., 2004;
Ramachandran et al., 2018; Scholz et al., 2018; Li et al., 2019),
and (partially) irreversible plasticity could contribute toward
adaptation to field conditions.

SWARM-LEVEL STRENGTH IN
INDIVIDUAL-LEVEL DIVERSITY

Phenotypic plasticity can produce helpful individual-level
adaptations: for example, a suitable threshold to switch behaviors.
Even more significantly in a swarm context, though, is the
possibility of producing emergent functionality for the group.
Even in what appear to be superficially similar units in
cooperative biological groups there can be a surprising level of
diversity (Blodgett et al., 2016); this heterogeneity is increasingly
recognized as an adaptive group trait (Clobert et al., 2009;
Kennedy et al., 2017). Thus, while plasticity in a certain trait
may actually make a small or negligible contribution to the direct
fitness of the individual, it may be nevertheless an important
indirect contribution to the fitness of the swarm.
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Diversity as a Shield Against Adversity
Robustness is frequently claimed for swarm robot systems, but
if a homogeneous controller results in homogeneous behavior
the swarm may be liable to systematic failure if it encounters
unexpected environmental conditions or faulty or malicious
agents (Higgins et al., 2009). This might be compared to
inbreeding in biology, which is a cause of disease vulnerability.
Conversely, diversity can help resistance (Ugelvig et al., 2010).

Fault tolerance in swarms is an important precondition for
scalability (Winfield and Nembrini, 2006; Bjerknes and Winfield,
2013) and phenotypic plasticity may paradoxically help the
swarm to cope with the unexpected. This is because it can
result in a range of subtle—or substantial—individual differences,
which will need to be made compatible with agent—agent
interaction as a matter of course.

Diversity for Homeostasis
In biological systems phenotypic diversity can also promote
positive collective success: for example in honeybees diversity
in reaction thresholds for their cooling behavior promotes
stability in nest thermoregulation (Jones et al., 2004). Although
this example is driven by genetic heterogeneity, it could
equally be designed in a robot context as a result of
phenotypic plasticity.

Diversity for Decision-Making
If a swarm is to be autonomous it also needs to be capable
of making collective decisions. Again, diversity of reaction
thresholds or option assessment behavior, as seen in ants, may
help this process (Masuda et al., 2015; O’Shea-Wheller et al.,
2017). Such studies highlight the importance of heterogeneity
among individuals, rather than precise calibration, for effective
collective decision-making.

Diversity for Foraging and Search
Finally, variation in individual behavior can be important for
foraging and search in systems as diverse as ants and immune
systems (Beverly et al., 2009; Fricke et al., 2016).

BEHAVIORAL PLASTICITY

Behavioral plasticity allows organisms to make relatively
rapid adjustments in their function to adapt to changing
environmental conditions. Learning, which shapes behavior,
can be seen as a form of plasticity (Agrawal, 2001) and
allows “culture”—inter-generational transmission of behaviors
through social learning (Whiten et al., 2017). In robot
swarms this has been demonstrated in robot societies through
imitation learning (Winfield and Erbas, 2011), and can
arise simply from robot and sensor noise (Erbas et al.,
2013). Perhaps the most obvious opportunity for ready
transposition into robot swarms, though, is seen in animal
“personality” differences.

Animal and Robot “Personalities”
Modeling work in biological collective behavior often assumes
agents are homogeneous in their characteristics, but there is

increasing recognition that consistent individual differences
in behavior (“personality”) among group members can be
important for group function in local ecologies (Dall et al.,
2012). Examples of significant personality axes include: risk-
taking behavior (boldness—shyness), exploratory behavior
(neophilic—neophobic), activity levels (active—inactive),
sociability (social—asocial), and aggression (aggressive—
non-aggressive) (Réale et al., 2007). This can be observed at
the level of the individual or the whole group, giving rise
to the notion of collective personalities (Jandt et al., 2014).
While early development is important to the formation of
personality, it can be somewhat plastic over an individual’s
lifetime (Groothuis and Trillmich, 2011). As a result, group-
level plasticity in personality is also observed (Norman
et al., 2017). In Stegodyphus social spiders (Figure 2A),
there is a link between social interactions and boldness
change (Hunt et al., 2018); the group-level distribution
of boldness is important for their collective performance
(Hunt et al., 2019b).

In relation to swarm robotics, the notion of personality
maps readily to adaptive threshold-based behaviors, for example
the likelihood of switching behaviors in probabilistic finite
state machines (Liu and Winfield, 2010; Castello et al., 2016).
It can also map to very simple adaptations such as variable
waiting times in response to changing swarm density (Wahby
et al., 2019), which one might term “sociability,” for example.
Simpler still, the decision to be active or inactive, which may
make little sense at the level of the individual robot with a
mission to complete, can be adaptive to a swarm that might
need to keep some units in reserve; the identification of “lazy
ants” (Charbonneau and Dornhaus, 2015) suggests plasticity
in activity may be valuable. Thus, the growing literature on
animal personality research—particularly on its ontogeny in
social groups—may indicate simple behavioral mechanisms
(“interaction rules”) that can be adapted in the context of self-
organizing robots.

The Relevance of Highly Related and
Clonal Animals
In social insects, caste determination (e.g., worker or queen)
is driven by a varying combination of “nature” (genotype)
and “nurture” (environment) (Schwander et al., 2010). To
try and understand how the environment (particularly
the social environment) shapes such phenotypic plasticity,
biologists study highly related or even clonal organisms,
which controls for the effect of genetics. Social spiders
(Figure 2A) are highly inbred; and two emerging model
organisms are the clonal raider ant Ooceraea biroi (e.g., Ulrich
et al., 2018) and the Amazon molly Poecilia Formosa, a small
freshwater fish (e.g., Bierbach et al., 2017) (Figures 2D,E).
As well as being prime candidates to answer fundamental
questions in ecology and evolution (Laskowski et al.,
2019), such organisms could provide important bio-
inspiration to the development of homogeneous swarm
controllers that can result in heterogeneity that is adaptive at
the swarm-level.
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PHYSIOLOGICAL AND MORPHOLOGICAL
PLASTICITY

An example of physiological plasticity in nature is the invasive
cane toad Rhinella marina (Figure 2B). It succeeds as an invader
into unfamiliar environments, at least in part, because it can
adjust its core body temperature to new climates (McCann et al.,
2018). It is also somewhat plastic in its social behavior (Gruber
et al., 2017): an example of successfully combining multiple
modes of plasticity. Physiological plasticity in a robotics context
could mean something as simple as the availability of different
power consumption modes: for example, a high energy mode
for exploration and data transmission, and a standby mode for
in situ monitoring of an environment. This could be critical to
long-term swarm resilience.

Examples of morphological plasticity in nature include the
water flea Dapnia lumholtzi (Green, 1967), which can respond
drastically to the presence of predators by developing a sharp
helmet and extended tail spine (Agrawal, 2001); or in bacteria
that undergo filamentation (elongation) in response to stress
(Figure 2C; Justice et al., 2008). At the group level, a form of
collective mechanical adaptation is observed in honeybee swarms
(Peleg et al., 2018). In swarm robotics research so far, a form
of morphological plasticity is possible through self-assembly
into connected groups of various forms (Brambilla et al., 2013).
Examples of this include the “s-bot” which can physically attach
to each other (Mondada et al., 2004), conceptual demonstrations
in “Kilobots” (Rubenstein et al., 2014; Slavkov et al., 2018;
Carrillo-Zapata et al., 2019), or the idea of a “mergeable nervous
system” (Mathews et al., 2017). More broadly, one can design
robots to adapt their own morphology (Divband Soorati et al.,
2019; Hauser, 2019; Kriegman et al., 2019); in combination such
“multi-robot organisms” (Levi and Kernbach, 2010) may self-
organize a wide range of adaptations.

DISCUSSION

Swarm robotics relies on the power of emergence to produce
engineered systems that are capable of “more than the sum of
their parts”. This is possible even with very simple agents. As
we take robot swarms into the field, the temptation may be to
move away from the principle of individual-level simplicity in
hardware and controllers. Instead, a different way forward may
be to re-focus on the ingenuity of nature in building resilient
social systems. Increasingly, phenotypic plasticity is recognized

as center-stage in producing adaptive biological variation, and
would seem to be similarly indispensable in embodied collective
artificial intelligences. We can, and should, attempt intensive off-
line optimization of swarm controllers (Birattari et al., 2019), but
this could be combined with possibilities to manifest plasticity
in behavior, “physiology” and morphology in heterogeneous
simulated environments. Their respective impact on swarm-level
functions might be analyzed with respect to information flow
(Pitonakova et al., 2016). In a “bottom-up” approach to swarm
design (Crespi et al., 2008) a moderate amount of plasticity
across these modes could be added with very limited cost,
but potentially far-reaching implications for swarm resilience,
contributing toward the practical realization of “dependable
swarms” (Winfield et al., 2004).

For biologists, robots can be used as tools for understanding
biological evolution (Doncieux et al., 2015). The systematic
addition of various forms of “phenotypic plasticity” to robots
could also contribute toward this aim. Meanwhile, for engineers,
with plasticity and mass-producible minimal robots, the
approach of sending large numbers of cheap and expendable
units on missions (“fast, cheap and out of control”; Brooks and
Flynn, 1989) might have a better chance of success. A review
across plasticity modes and relevant organisms (e.g., for air, water
or land) could become a routine part of a swarm design process.
The symbiosis between biology and engineering seen in the field
of swarm robotics can go from strength to strength.
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Matarić, M. J. (1995). Designing and understanding adaptive group behavior.

Adapt. Behav. 4, 51–80. doi: 10.1177/105971239500400104
Mathews, N., Christensen, A. L., O’Grady, R., Mondada, F., and Dorigo,

M. (2017). Mergeable nervous systems for robots. Nat. Commun. 8, 1–7.
doi: 10.1038/s41467-017-00109-2

McCann, S. M., Kosmala, G. K., Greenlees, M. J., and Shine, R. (2018).
Physiological plasticity in a successful invader: rapid acclimation to cold occurs
only in cool-climate populations of cane toads (Rhinella marina). Conserv.
Physiol. 6:cox072. doi: 10.1093/conphys/cox072

McEvoy, M. A., and Correll, N. (2015). Materials that couple sensing,
actuation, computation, and communication. Science 347:1261689.
doi: 10.1126/science.1261689

McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., and de Croon,
G. C. H. E. (2019). Minimal navigation solution for a swarm of tiny
flying robots to explore an unknown environment. Sci. Robot. 4:eaaw9710.
doi: 10.1126/scirobotics.aaw9710

Mitrano, P., Burklund, J., Giancola, M., and Pinciroli, C. (2019). “A minimalistic
approach to segregation in robot swarms,” in 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (New Brunswick, NJ: IEEE), 105–111.
doi: 10.1109/MRS.2019.8901068

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009).
“The e-puck, a robot designed for education in engineering,” in Proceedings of
the 9th Conference on Autonomous Robot Systems and Competition. 1, 59–65.
Available online at: https://infoscience.epfl.ch/record/135236 (accessed January
27, 2018).

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D.,
Deneubourg, J. L., et al. (2004). Swarm-bot: a new distributed robotic concept.
Auton. Robots 17, 193–221. doi: 10.1023/B:AURO.0000033972.50769.1c

Moore, A. J., Brodie, E. D. III, and Wolf, J. B. (1997). Interacting phenotypes
and the evolutionary process: I. direct and indirect genetic effects of social
interactions. Evolution 51, 1352–1362. doi: 10.1111/j.1558-5646.1997.tb01458.x

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2012). Evolving behavioral
specialization in robot teams to solve a collective construction task. Swarm Evol.

Comput. 2, 25–38. doi: 10.1016/j.swevo.2011.08.002
Nolfi, S., and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,

and Technology of Self-Organizing Machines. Cambridge, MA: MIT press.
Nolfi, S., Miglino, O., and Parisi, D. (1994). “Phenotypic plasticity in evolving

neural networks,” in Proceedings - From Perception to Action Conference 1994

(Lausanne: IEEE), 146–157. doi: 10.1109/FPA.1994.636092
Norman, V. C., Pamminger, T., and Hughes, W. O. H. (2017). The effects of

disturbance threat on leaf-cutting ant colonies: a laboratory study. Insectes Soc.
64, 75–85. doi: 10.1007/s00040-016-0513-z

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009). Teamwork
in self-organized robot colonies. IEEE Trans. Evol. Comput. 13, 695–711.
doi: 10.1109/TEVC.2008.2011746

O’Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B., and Franks, N. R.
(2017). Variability in individual assessment behaviour and its implications
for collective decision-making. Proc. R. Soc. B Biol. Sci. 284:20162237.
doi: 10.1098/rspb.2016.2237

Peleg, O., Peters, J. M., Salcedo, M. K., and Mahadevan, L. (2018). Collective
mechanical adaptation of honeybee swarms. Nat. Phys. 14, 1193–1198.
doi: 10.1038/s41567-018-0262-1

Pitonakova, L., Crowder, R., and Bullock, S. (2016). Information flow
principles for plasticity in foraging robot swarms. Swarm Intell. 10, 33–63.
doi: 10.1007/s11721-016-0118-1

Ramachandran, R. K., Elamvazhuthi, K., and Berman, S. (2018). “An optimal
control approach to mapping GPS-denied environments using a stochastic
robotic swarm,” in BT - Robotics Research, vol. 1, eds. A. Bicchi andW. Burgard
(Cham: Springer International Publishing), 477–493.

Réale, D., Reader, S. M., Sol, D., McDougall, P. T., and Dingemanse, N. J. (2007).
Integrating animal temperament within ecology and evolution. Biol. Rev. 82,
291–318. doi: 10.1111/j.1469-185X.2007.00010.x

Rossiter, J., Winfield, J., and Ieropoulos, I. (2016). Here today, gone tomorrow:
biodegradable soft robots. Electroact. Polym. Actuators Devices 2016:97981S.
doi: 10.1117/12.2220611

Rubenstein, M., Ahler, C., and Nagpal, R. (2012). “Kilobot: a low cost scalable
robot system for collective behaviors,” in 2012 IEEE International Conference

on Robotics and Automation (ICRA) (Saint Paul, MN: IEEE), 3293–3298.
doi: 10.1109/ICRA.2012.6224638

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). Programmable self-assembly
in a thousand-robot swarm. Science 345, 795–799. doi: 10.1126/science.
1254295

Russell, S. J., and Norvig, P. (1995). Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice Hall.
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