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As robots make their way out of factories into human environments, outer space,

and beyond, they require the skill to manipulate their environment in multifarious,

unforeseeable circumstances. With this regard, pushing is an essential motion primitive

that dramatically extends a robot’s manipulation repertoire. In this work, we review the

robotic pushing literature. While focusing on work concerned with predicting the motion

of pushed objects, we also cover relevant applications of pushing for planning and

control. Beginning with analytical approaches, under which we also subsume physics

engines, we then proceed to discuss work on learning models from data. In doing so,

we dedicate a separate section to deep learning approaches which have seen a recent

upsurge in the literature. Concluding remarks and further research perspectives are given

at the end of the paper.
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1. INTRODUCTION

We argue that pushing is an essential motion primitive in a robot’s manipulative repertoire.
Consider, for instance, a household robot reaching for a bottle of milk located in the back of the
fridge. Instead of picking up every yogurt, egg carton, or jam jar obstructing the path to create space,
the robot can use gentle pushes to create a corridor to its lactic target. Moving larger obstacles out of
the way is even more important to mobile robots in environments as extreme as abandoned mines
(Ferguson et al., 2004), the moon (King, 2016), or for rescue missions, such as for the Fukushima
Daiichi Nuclear Power Plant. In order to save cost, space, or reduce payload, mobile robots are
often not equipped with grippers, meaning that prehensile manipulation is not an option. Even in
the presence of grippers, objects may be too large or too heavy to grasp.

In addition to the considered scenarios, pushing has numerous beneficial applications that come
to mind less easily. For instance, pushing is effective at manipulating objects under uncertainty
(Brost, 1988; Dogar and Srinivasa, 2010), and for pre-grasp manipulation, allowing robots to bring
objects into configurations where they can be easily grasped (King et al., 2013). Dexterous pushing
skills are also widely applied and applauded in robot soccer (Emery and Balch, 2001).

Humans perform skilful manipulation tasks from an early age, and are able to transfer behaviors
learned on one object to objects of novel sizes, shapes, and physical properties. For robots, achieving
those goals is challenging. This complexity arises from the fact that frictional forces are usually
unknown but play a significant role for pushing (Zhou et al., 2016). Furthermore, the dynamics
of pushing are highly non-linear, with literal tipping points, and sensitive to initial conditions (Yu
et al., 2016). The large body of work on robotic pushing has produced many accurate models for
predicting the outcome of a push, some analytical, and some data-driven. However, models that
generalize to novel objects are scarce (Kopicki et al., 2017; Stüber et al., 2018), highlighting the
demanding nature of the problem.
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In this paper, we review the robotic pushing literature.
We focus on work concerned with making predictions of the
motion of pushed objects, but we also cover relevant applications
of pushing for planning and control. This work is primarily
targeted at newcomers to robotic pushing, such as Ph.D. students,
interested in understanding the evolution of the field. While the
main body of this paper focuses on a qualitative analysis of the
presented methods, the mathematical treatment is delivered as a
set of mini-lectures in the figures. We use the figures to “draw”
on the blackboard, thus providing a geometrical intuition for
important formalizations used across the literature. Each figure
is accompanied by a caption explaining themathematical content
in an accessible yet careful way.

Related to our work is the survey conducted by Ruggiero
et al. (2018) which covers the literature on planning and control
for non-prehensile dynamic manipulation. Pushing is one of
the motion primitives which they consider, among throwing,
catching, and others.

In the next section, we provide the problem statement of
this survey (section 2). Subsequently, we present the existing
literature, beginning with analytical approaches (section 3),
under which we also subsume physics engines. We then proceed
to discuss data-driven approaches (section 4), including deep
learning methods which have recently become very popular in
the literature. Finally, we conclude by summarizing the presented
approaches and by discussing open problems and promising
directions for future research (section 5).

2. PROBLEM STATEMENT

Even in ideal conditions, such as structured environments
where an agent has a complete model of the environment
and perfect sensing abilities, the problems of robotic grasping
and manipulation are not trivial. By a complete model of the
environment we mean that physical and geometric properties
of the world are exactly known, e.g., pose, shape, and friction
parameters, as well as the mass of the object we wish to
manipulate. In fact, the object to be manipulated is indirectly
controlled by contacts with a robot manipulator (e.g., pushing
by a contacting finger part). For planning and control, robots
need either an inverse model (IM) or a forward model (FM).
IMs compute the action that transforms the current state into
the target state (see Figure 1). In contrast, FMs predict the next
state resulting from applying an action in the current state (see
Figure 2). Depending on the type of model used, a variety of
planning and control strategies exist. For instance, an agent may
use an FM to imagine the likely outcomes from all possible
actions and then choose the action which achieves the most
desirable end state (e.g., Zito et al., 2012). An example of an
IM-based controller is the work of Igarashi et al. (2010) where
a dipole-like vector field is used to compute the direction of
motion of a robot pusher such that the object is pushed along
a specified path. As manipulation and grasping problems are
defined in continuous state and action spaces, finding an optimal
continuous control input to achieve the desired state is often
computationally intractable.

FIGURE 1 | An inverse model computes an action which will affect the

environment such that the next desired state (or configuration) is achieved

from the current state.

FIGURE 2 | A forward model makes a prediction on how an action will affect

the current state of the environment by returning the configuration after the

action is taken.

Even more challenging is the problem of grasping and
manipulation in unstructured environments, where the ideal
conditions of structured environments do not exist. There are
several reasons why an agent may fail to build a complete
description of the state of the environment: sensors are noisy,
robots are difficult to calibrate, and actions’ outcomes are
unreliable due to unmodeled variables (e.g., friction, mass
distribution). Uncertainty can be modeled in several ways,
but in the case of manipulation there are typically two types
of uncertainty:

• Uncertainty in physical effects: occurs when the robot
acts on external bodies via physical actions (e.g., contact
operations). This interaction transforms the current state
of the world according to physical laws which are not
fully predictable. For example, a pushed object may slide,
rotate or topple with complex motions which are extremely
difficult to predict, and involve physical parameters which
may not be known. We can think of this as uncertainty on
future states.

• Uncertainty in sensory information: occurs when some of
the quantities that define the current state of the world
are not directly accessible to the robot. Thus the necessity
to develop strategies to allow the robot to complete
tasks in partial ignorance by recovering knowledge of
its environment. When executing robotic actions in such
cases, sensory uncertainty may propagate to the result of
the action.

This paper is concerned with the evolution of models to
predict object motions and their application in robotics. Table 1
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TABLE 1 | Summary of the literature a glance.

Assumptions Motion Aim Model

Q
u
a
s
i-
s
ta
ti
c

a
s
s
u
m
p
ti
o
n

2
D

o
b
je
c
t

K
n
o
w
n

o
b
je
c
t

1
D

p
la
n
a
r

3
D

M
o
ti
o
n

p
re
d
ic
ti
o
n

P
a
ra
m
e
te
r

e
s
ti
m
a
ti
o
n

P
a
th

p
la
n
n
in
g

G
ra
s
p
in
g

A
n
a
ly
ti
c
a
l

D
a
ta
-d

ri
v
e
n

P
h
y
s
ic
s

s
im

u
la
to
r

P
u
re
ly

a
n
a
ly
ti
c
a
l

Mason (1982) ✓ ✓ ✓ ✓ ✓

Mason (1986b) ✓ ✓ ✓ ✓ ✓ ✓

Peshkin and Sanderson (1988a,b) ✓ ✓ ✓ ✓ ✓ ✓

Goyal et al. (1991) ✓ ✓ ✓ ✓ ✓

Alexander and Maddocks (1993) ✓ ✓ ✓ ✓ ✓

Lee and Cutkosky (1991) ✓ ✓ ✓ ✓ ✓ ✓

Lynch et al. (1992) ✓ ✓ ✓ ✓ ✓

Howe and Cutkosky (1996) ✓ ✓ ✓ ✓

Mason (1990) ✓ ✓ ✓ ✓

Mayeda and Wakatsuki (1991) ✓ ✓ ✓ ✓

Akella and Mason (1992, 1998) ✓ ✓ ✓ ✓

Narasimhan (1994) ✓ ✓ ✓ ✓ ✓ ✓

Lynch and Mason (1996) ✓ ✓ ✓ ✓ ✓ ✓

Agarwal et al. (1997) ✓ ✓ ✓ ✓ ✓

Nieuwenhuisen et al. (2005) ✓ ✓ ✓ ✓ ✓ ✓

de Berg and Gerrits (2010) ✓ ✓ ✓ ✓ ✓

Miyazawa et al. (2005) ✓ ✓ ✓ ✓

Cappelleri et al. (2006) ✓ ✓ ✓ ✓ ✓

Dogar and Srinivasa (2011) ✓ ✓ ✓ ✓ ✓

Cosgun et al. (2011) ✓ ✓ ✓ ✓

Lee et al. (2015) ✓ ✓ ✓ ✓

King (2016) ✓ ✓ ✓ ✓

H
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d

Lynch (1993) ✓ ✓ ✓ ✓

Yoshikawa and Kurisu (1991) ✓ ✓ ✓ ✓

Ruiz-Ugalde et al. (2010, 2011) ✓ ✓ ✓ ✓

Zhu et al. (2017) ✓ ✓ ✓

Bauza and Rodriguez (2017) ✓ ✓ ✓ ✓ ✓
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Brost (1992) ✓ ✓ ✓

Jia and Erdmann (1999) ✓ ✓ ✓ ✓

Behrens (2013) ✓ ✓ ✓ ✓

Chavan-Dafle and Rodriguez (2015) ✓ ✓ ✓ ✓ ✓

Woodruff and Lynch (2017) ✓ ✓ ✓ ✓ ✓

P
h
y
s
ic

e
n
g
in
e

Zito et al. (2012) ✓ ✓ ✓ ✓ ✓

Scholz et al. (2014) ✓ ✓ ✓ ✓ ✓

Zhu et al. (2017) ✓ ✓ ✓ ✓

D
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e
n

Moldovan et al. (2012) ✓ ✓ ✓ ✓

Ridge et al. (2015) ✓ ✓ ✓

Zrimec and Mowforth (1991) ✓ ✓ ✓ ✓

Salganicoff et al. (1993) ✓ ✓ ✓ ✓

Walker and Salisbury (2008) ✓ ✓ ✓

Lau et al. (2011) ✓ ✓ ✓

Krivic and Piater (2019) ✓ ✓ ✓ ✓

Kopicki et al. (2011, 2017) ✓ ✓ ✓ ✓ ✓

Stüber et al. (2018) ✓ ✓ ✓ ✓ ✓

Meriçli et al. (2015) ✓ ✓ ✓ ✓

(Continued)
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TABLE 1 | Continued

Assumptions Motion Aim Model
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Denil et al. (2016) ✓ ✓ ✓

Chang et al. (2016) ✓ ✓ ✓

Li et al. (2018) ✓ ✓ ✓ ✓ ✓

Watters et al. (2017) ✓ ✓ ✓ ✓

Fragkiadaki et al. (2015) ✓ ✓ ✓ ✓

Ehrhardt et al. (2017) ✓ ✓ ✓ ✓

Byravan and Fox (2017) ✓ ✓ ✓ ✓

Finn et al. (2016) ✓ ✓ ✓

summarizes the literature at a glance. The papers are classified
according to the type of approach implemented. We identify the
following six classes.

1. Purely analytical. This is mostly seminal work drawn from
classical mechanics that uses the quasi-static assumption.
To be precise, some of these approaches also venture into
dynamic analysis, but with many simplifying assumptions
(section 3.1.1).

2. Hybrid. Works in this class extend analytical approaches with
data-driven methods. Whilst the interactions between objects
are still represented analytically, some quantities of interest
are estimated based on observations, e.g., the coefficients of
friction (section 3.1.2).

3. Dynamic analysis. These approaches integrate dynamics in
the model (section 3.2.1).

4. Physics engines. Here we consider work that employs a
physics engine as a “black box” to make predictions about the
interactions (section 3.2.2).

5. Data-driven. Such models learn how to predict physical
interaction from examples (sections 4.1 and 4.2).

6. Deep learning. As the data-driven approaches, such models
learn how to construct an FM from examples. The key insight
is that the deep learning approaches are based on feature
extraction (section 4.3).

The features highlighted for each approach are as follows.

• The assumptions made by the authors on their approach.
We highlight i) the quasi-static assumption in the model,
ii) if it is a seminal work on 2D shapes, and iii) if
the method required a known model of the object to
be manipulated.

• The type of motion analyzed in the paper, such as 1D, planar
(2D translation and 1D rotation around the x−axis), or full 3D
(3D translation and 3D rotation).

• The aim of the paper. We distinguish between predicting
the motion of the object, estimating physical parameters,
planning pushes, and analysing a push to reach a
stable grasp.

• The model. We distinguish between analytical, constructed
from data, and by using a physics simulator.

3. ANALYTICAL APPROACHES

3.1. Quasi-Static Planar Pushing
Early work on robotic pushing focused on the problem of
quasi-static planar pushing of sliding objects. In a first phase,
several researchers, following pioneering work by Matthew T.
Mason, approached the problem analytically, explicitly modeling
the objects involved and their physical interactions whilst
drawing on theories from classical mechanics. More recently,
this tradition has moved to extend analytical models with more
data-driven methods.

3.1.1. Purely Analytical Approaches
To briefly introduce the problem, planar pushing (Mason, 1982),
refers to an agent pushing an object such that pushing forces lie in
the horizontal support plane while gravity acts along the vertical.
Both pusher and pushed object move only in the horizontal
plane, effectively reducing the world to 2D.Meanwhile, the quasi-
static assumption (Mason, 1986b) in this context means that the
involved objects’ velocities are small enough that inertial forces
are negligible. In other words, objects only move when pushed
by the robot. Instantaneous motion is then the consequence
of the balance between contact forces, frictional forces, and
gravity. The quasi-static assumption makes the problem more
tractable, yielding simpler models. A key challenge in predicting
the motion of a pushed object under manipulation is that
the distribution of pressure at the contact between object and
supporting surface is generally unknown. Hence, the system of
frictional forces that arise at that contact is also indeterminate
(Mason, 1982).

Mason (1982, 1986a) started the line of work on pushing,
proposing the voting theorem as a fundamental result. It allows
one to find the sense of rotation of a pushed object given the
pushing direction and the center of friction without requiring
knowledge of the pressure distribution. Drawing on this seminal
work, Peshkin and Sanderson (1988a,b) found bounds on
the rotation rate of the pushed object given a single-point
push. Following that, Goyal et al. (1991) introduced the limit
surface which describes the relationship between the motion
of a sliding object and the associated support friction given
that the support distribution is completely specified. Under
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FIGURE 3 | The slider S (blue) is a rigid object in the plane R
2, and its configuration space is R2

×2, i.e., 2D translation and one rotation over the x−axis. The slider is

pushed by a rigid pusher P (red) at a point or set of points of contact. A world frame Fw with origin Ow is fixed in the plane, and a slider frame Fw with origin Fs is

attached to the center of friction of the slider S. The configuration (xw, yw, θw )
⊺ describes the position and orientation of the slider frame Fs relative to the world frame

Fw. Similarly, a pusher frame Fp with origin Op and its configuration is computed. On the right side of the figure, the relation between the unit motion vector

v = (vx , vy ,ω)
⊺ and the center of rotation of frame Fs is described by the projection shown from the unit motion sphere to the tangent planes (one for each rotation

sense). The line at the equator of the sphere represents translations. Reproduced from Lynch and Mason (1996).

the quasi-static assumption, the limit surface allows one to
convert the generalized force applied by a pusher at a contact
to the instantaneous generalized velocity of the pushed object.
Alexander and Maddocks (1993) considered the case when
only the geometric extent of the support area is known, and
described techniques to bound the possible motions of the
pushed object. While the limit surface provides a powerful tool
for determining the motion of a pushed object, there exists no
convenient explicit form to construct it. In response to this
challenge, Lee and Cutkosky (1991) proposed to approximate
the limit surface as an ellipsoid to improve computational
time. However, their approximation requires knowledge of
the pressure distribution. Marking a milestone of planar
pushing research, Lynch et al. (1992) applied the ellipsoidal
approximation to derive a closed-form analytical solution for
the kinematics of quasi-static single-point pushing, including
both sticking and sliding behaviors. Subsequently, Howe and
Cutkosky (1996) explored further methods for approximating
limit surfaces, including guidance for selecting the appropriate
approach based on the pressure distribution, computational cost,
and accuracy.

Results on the mechanics of planar pushing have been used
for planning and control of manipulator pushing operations.
To begin with, Mason (1990) showed how to synthesize robot
pushing motions to slide a block along a wall, a problem later
also studied by Mayeda and Wakatsuki (1991). Akella and
Mason (1992, 1998) analyzed the series of pushes needed to
bring a convex polygon to a desired configuration. Narasimhan
(1994) and Kurisu and Yoshikawa (1995) studied the problem

of moving an object among obstacles by pushing with point
contact. Lynch and Mason (1996) comprehensively studied
stable pushing of a planar object with a fence-shaped finger,
considering mechanics, control, and planning. First, they derived
conditions for stable edge pushing, considering the case where
the object will remain attached to the pusher without slipping
or breaking contact. Based on this result, they then used best-
first search to find a path to a specified goal location. Figure 3
shows the proposed representation of motions by Lynch and
Mason (1996). Agarwal et al. (1997) proposed an algorithm
for computing a contact-preserving push plan for a point-
sized pusher and a disk-shaped object. Nieuwenhuisen et al.
(2005) utilized compliance of manipulated disk-shaped objects
against walls to guide their motion. They presented an exact
planning algorithm for 2D environments consisting of non-
intersecting line segments. Subsequently, de Berg and Gerrits
(2010) improved this approach from a computational perspective
and presented push-planning methods both for the contact-
preserving case and less restrictive scenarios. Miyazawa et al.
(2005) used a rapidly-exploring random tree (RRT) (LaValle,
1998) for planning non-prehensile manipulation, including
pushing, of a polyhedron with three degrees of freedom (DOF)
by a robot with spherical fingers. They do not allow for
sliding and rolling of robot fingers on the object surface.
Cappelleri et al. (2006) have solved a millimeter scale 2D
version of the peg in the hole problem, using Mason’s models
for quasi-static manipulation and an RRT-based approach for
planning a sequence of pushes. Figure 4 presents a graphical
representation of planar motions and Coulomb’s frictional
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FIGURE 4 | (Left) Planar pushing system with world frame Fw (with origin Ow ) and a slider S (blue) with frame Fw as described in Figure 3. The pusher P (red) is

interacting with the slider on one point of contact. It impresses a normal force fn, a tangential friction force ft, and a torque τ about the center of mass. The normal

force fn is in the direction of the normal vector n of the contact point between pusher and slider, and α = arctanµp is the angle of the friction cone assuming µp as the

coefficient of friction. The terms px and py describe, respectively, the normal and the tangential distance between the pusher P and the center of friction of the slider S.

(Right) Coulomb’s frictional law for the planar pushing system on the left-hand figure. Coulomb’s law states that the normal and tangential forces are related by

ft = µpfn. Three contact modes are defined. (1) Sliding right in which friction acts as a force constraint; (2) Sticking in which friction acts as a kinematic constraint; and

(3) Sliding left in which friction acts as a force constraint. Reproduced from Bauza et al. (2018).

law that governs such systems (see the figure caption for
further details).

More recently, Dogar and Srinivasa (2011) employed the
ellipsoidal approximation of the limit surface to plan robust
push-grasp actions for dexterous hands and used them for
rearrangement tasks in clutter. To use results for planar pushing,
they assumed that objects do not topple easily. Furthermore,
they assumed that the robot has access to 3D models of the
objects involved. Cosgun et al. (2011) presented an algorithm for
placing objects on cluttered table surfaces, thereby constructing
a sequence of manipulation actions to create space for the
object. However, focusing on planning, in their 2D manipulation
they simply push objects at their center of mass in the
desired direction. Lee et al. (2015) presented a three-stage
hierarchical approach to planning sequences of non-prehensile
and prehensile actions. First, they find a sequence of qualitative
contact states of the moving object with other objects, then a
feasible sequence of poses for the object, and lastly a sequence
of contact points for the manipulators on the object.

In summary, although of fundamental importance for
understanding themechanisms of pushing, analytical approaches
are limited by their own inherent complexity. The assumptions
around which they are built do not hold in real applications,
e.g., a robot link in contact with an object does not produce
a single-point contact or the frictional forces are not constant
over a supporting surface. Proofs of concept for demonstrating
the validity and stability of such methods are generally confined
to carefully chosen testing scenarios or special applications,
e.g., the frictionless millimeter scale peg-in-the-hole scenario
in Cappelleri et al. (2006). Extensions to non-convex or novel-
shaped objects challenge analytical approaches. Yet, controllers
and planners can easily be synthesized for specified objects
and environments. Due to the deterministic nature of the

models, they do not implicitly account for uncertainty in the
state description or the predictions. Nonetheless, an analytical
method can be employed as a black box to forward-simulate
the effect of a given action within a planner. For instance,
King (2016) developed a series of push planners for open-loop
non-prehensile rearrangement tasks in cluttered environments.
Before considering more complex scenarios, they used a simple
analytical approach for forward-simulation of randomly sampled
time-discrete controls within an RRT-based planner. They tested
their planners on two real robotic platforms, the home care robot
HERB with a seven DOF arm, and the NASA rover K-Rex.

3.1.2. Complementing Analytical Approaches With

Data-Driven Methods (Hybrid)
Transitioning to the second phase of planar pushing research,
multiple factors have contributed a shift toward more data-
driven approaches. For one thing, much of the previous work
makes minimal assumptions regarding the pressure distribution.
While convenient, those methods lead to conservative strategies
for planning and control, providing only worst case guarantees.
Furthermore, while assumptions regarding the pressure
distribution in previous work were often minimal, other
strong assumptions were frequently made to derive results
analytically. Hence, more recent work has set out to validate
common assumptions such as the ubiquitous quasi-static
assumption. Additionally, purely analytical models do not take
into account the stochastic nature of pushing in the sense that
pushes indistinguishable to sensor and actuator resolution have
empirically been found to produce variable results (Yu et al.,
2016). Instead of making minimal or strong assumptions about
parameters, they can instead be estimated based on observations.
Several researchers have explored this approach to deal with
the inherent uncertainties of this problem (section 1). Figure 5
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FIGURE 5 | A classical workflow for estimating relevant physical parameters of a pushed object. A robotic pusher performs a set of push operation on an object

which is typically tracked using vision. Simpler approach employs markers on the object for more accurate estimations. An analytical model of the motion for the

target object is also employed. Sensory data and physical principles are the inputs of the estimator. As output, the estimator provides with an estimate of the desired

parameters, e.g., friction distribution or center of mass. In Lynch (1993) the estimated parameters are also used for recognizing objects based on their (estimated)

physical properties.

summarizes a classical workflow for estimating relevant physical
parameters of a pushed object.

Lynch (1993) presented methods both for estimating the
relevant friction parameters by performing experimental pushes,
and for recognizing objects based on their friction parameters.
Similarly, Yoshikawa and Kurisu (1991) described how a
mobile robot with a visual sensor can estimate the friction
distribution of an object and the position of the center of
friction by pushing and observing the result. Yet, both of these
approaches discretise the contact patch into grids so that they
are either imprecise if the approximation is too coarse or suffer
from the curse of dimensionality when using a fine-grained
approximation. Ruiz-Ugalde et al. (2010, 2011) formulated a
compact mathematical model of planar pushing. Assuming that
the object’s base shape is given, their robot explored object-
table and finger-object friction coefficient parameters. Zhou
et al. (2016) developed a method for modeling planar friction,
proposing a framework for representing planar sliding force-
motion models using convex polynomials. Notably, they also
showed that the ellipsoid approximation is a less accurate
special case of this representation. Zhou et al. (2017) extended
the convex polynomial model to associate a commanded
position-controlled end effector motion to the instantaneous
resultant object motion. They modeled the probabilistic nature
of object-to-surface friction by sampling parameters from a
set of distributions. They presented the motion equations
for both single and multiple frictional contacts and validated
their results with robotic pushing and grasping experiments
on the dataset published by Yu et al. (2016). That dataset
comprises planar pushing interactions with more than a million
samples of positions of pusher and slider, as well as interaction
forces. Push interaction is varied along six dimensions, namely
surface material, shape of the pushed object, contact position,
pushing direction, pushing speed, and pushing acceleration.
Using their dataset, they characterized the variability of friction,
and evaluated themost common assumptions and simplifications

made by previous models of frictional pushing. They provide an
insightful table that lists the assumptions and approximations
made in much of the work cited in this section. More recently,
Bauza et al. (2019) have published Omnipush, an extensive
dataset of planar pushing behavior that extends their previous
work. It comprises 250 pushes for each of 250 objects. The
pushing velocity is constant and chosen so that the interaction
is close to quasi-static. They improved on their previous dataset
by providing RGB-D sensor data in addition to tracking data,
increasing object diversity, adding controlled variation of the
objects mass distribution, and creating benchmarks to evaluate
models. Finally, Bauza and Rodriguez (2017) used a data-driven
approach to model planar pushing interaction to predict both
the most likely outcome of a push and, as a novelty, its expected
variability. The learned models, also trained on the dataset by
Yu et al. (2016), rely on a variation of Gaussian processes whilst
avoiding and evaluating the quasi-static assumption by making
the velocity of the pusher an input to the model. However, the
learned models are specific to the particular object and material.
Transfer learning is left for future work.

3.2. Physics Engines and Dynamic Analysis
While the quasi-static assumption may be reasonable in a variety
of situations, other problems call for dynamic models of pushing.
One popular approach to achieving this is using a physics engine.
Before covering this field, we first consider work concerned with
dynamic pushing that does not recur to physics engines.

3.2.1. Dynamic Analysis
Using dynamic analysis, Brost (1992) investigated the problem
of catching an object by pushing it, i.e., determining the pushing
motions that lead to a pusher-object equilibrium. This work was
motivated by dealing with uncertainty in positioning, generating
plans that work also in the worst case. Jia and Erdmann (1999)
investigated dynamic pushing assuming frictionless interaction
between pusher and object. Behrens (2013) instead studied
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dynamic pushing but assumed infinite friction between pusher
and object. Chavan-Dafle and Rodriguez (2015) considered
planning non-prehensile in-hand manipulation with patch
contacts. They described the quasi-dynamic motion of an object
held by a set of frictional contacts when subject to forces exerted
by the environment. Given a grasp configuration, gripping
forces, and the location and motion of a pusher, they estimate
both the instantaneous motion of the object and the minimum
force required to push the object into the grasp. To this end,
complex contact geometries are broken up into rigid networks
of point contacts. More recently, Woodruff and Lynch (2017)
extended earlier work by Lynch and Mason (1999) on dynamic
manipulation primitives, including pushing, by proposing a
method for motion planning and feedback control of hybrid,
dynamic, and non-prehensile manipulation tasks.

3.2.2. Physics Engines
A large body of work related to pushing makes use of physics
engines. Commonly used examples of such engines include Bullet
Physics, the Dynamic Animation and Robotics Toolkit (DART),
MuJoCo, the Open Dynamics Engine (ODE), NVIDIA PhysX,
and Havok (Erez et al., 2015). Those engines allow for 3D
simulation but 2D physics engines exist, as well, e.g., Box2D.
While some physics engines have been designed for graphics
and animation, others have been developed specifically for
robotics. In the first category, visually-plausible simulations are
key while physically-accurate simulations are essential for many
robotics applications. Most physics engines today use impulse-
based velocity-stepping methods to simulate contact dynamics.
As this requires solving NP-hard problems at each simulation
step, more tractable convex approximations have been developed,
highlighting the trade-off between computational complexity
and accuracy present in those engines (Erez et al., 2015). 3D
physics engines use a Cartesian representation where each body
has six DOF and joints are modeled as equality constraints in
the joint configuration space of the bodies. In robotics, where
joint constraints are ubiquitous, using generalized coordinates
is computationally less expensive and prevents joint constraints
from being violated.

For a comparison of physics engines, we refer the reader to two
recent studies (Erez et al., 2015; Chung and Pollard, 2016). Erez
et al. (2015) compared ODE, Bullet, PhysX, Havok, and MuJoCo.
It should be noted that the study was written by the developers
ofMuJoCo. They introduced quantitative measures of simulation
performance and focused their evaluation on challenges common
in robotics. They concluded that each engine performs best
on the type of system it was tailored to. For robotics, this is
MuJoCo while gaming engines shine in gaming-related trials,
whereby no engine emerges as a clear winner. Chung and Pollard
(2016) compared Bullet, DART, MuJoCo, and ODE with regard
to contact simulations whilst focusing on the predictability of
behavior. Their main result is that the surveyed engines are
sensitive to small changes in initial conditions, emphasizing that
parameter tuning is important. Another evaluation of MuJoCo
was carried out by Kolbert et al. (2017) who evaluated the contact
model of MuJoCo with regard to predicting the motions and
forces involved in three in-hand robotic manipulation primitives,

among them pushing. In the course, they also evaluated the
contact model proposed by Chavan-Dafle and Rodriguez (2015).
They found that both models make useful yet not highly
accurate predictions. Concerning MuJoCo, they state that its soft
constraints increase efficiency but limit accuracy, especially in the
cases of rigid contacts and transitions in sticking and slipping
at contacts.

Researchers have applied physics engines in multifarious ways
to study robotic pushing. To begin with, physics engines have
been used in RRT-based planners to forward-simulate pushes.
Zito et al. (2012) presented a two-level planner that combines a
global RRT planner operating in the configuration space of the
object, and a local planner that generates sequences of actions
in the robot’s joint space that will move the object between a
pair of nodes in the RRT. In this work, the experimental set-up
consists of a simulated model of a tabletop robot manipulator
with a single rigid spherical fingertip which it uses to push
a polyflap (Sloman, 2006) to a goal state. To achieve this,
the randomized local planner utilizes a physics engine (PhysX)
to predict the object’s pose after a pushing action. Erroneous
estimates and uncertainty in the motion is not directly taken
into account by the planner. Hence, a re-planning stage is
required when the actual motion differs from the prediction by
more than a user-defined threshold. Figure 6 shows a sequence
of actions planned by the two-level planner for pushing a
polyflap to a desired configuration (see caption for further
details). Similarly, King (2016) incorporated a dynamic physics
engine (Box2D) into an RRT-based planner to model dynamic
motions such as a ball rolling. To reduce planning complexity,
they considered only dynamic actions that lead to statically
stable states, i.e., all considered objects need to come to rest
before the next action. Another application of physics engines
in robotic pushing was proposed by Scholz et al. (2014). In
what they refer to as Physics-Based Reinforcement Learning, an
agent uses a physics engine as a model representation. Hence,
a physics engine can be seen as a hypothesis space for rigid-
body dynamics. They introduced uncertainty using distributions
over the engine’s physical parameters and obtained transitions
by taking the expectation of the simulator’s output over those
random variables. Finally, Zhu et al. (2017) utilized a physics
engine for motion prediction, learning the physical parameters
through black-box Bayesian optimization. First, a robot performs
random pushing actions on an object in a tabletop set-up. Based
on those observations, the Bayesian learning algorithm tries
to identify the model parameters that maximize the similarity
between the simulated and observed outcomes. To support
working with different objects, a pre-trained object detector is
used that maps observed objects to a library of 3D meshes and
estimates the objects’ poses on that basis. Once the physical
parameters have been identified, they are used to simulate the
results of new actions.

Finally, while physics engines and dynamic analysis offer great
value for robotic applications, e.g., by taking into consideration
dynamic interaction and 3D objects, they nevertheless require
explicit object modeling and extensive parameter tuning.
Another approach, which we consider next, is to learn how to
predict object motions from data.
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FIGURE 6 | Simulation of a Katana robot arm equipped with a spherical finger that plans a sequence of pushes to move an L-shaped object, called polyflap (Sloman,

2006) to a goal state. The plan is created by using a physics engine (PhysX) to predict the outcome of a push operation. Image 01 shows the initial pose. The

wire-framed L-shaped polyflap is a “phantom” to indicate the desired goal state. The goal pose is translated from the initial pose by 28 cm and rotated by 90◦. Image

02 shows the collision-free trajectory to bring the end effector to the start pose of the first push. Images 01–04 show the first push which makes the polyflap tip over.

Images 05–09 show a series of pushes which culminate in the polyflap resting in an unstable equilibrium pose along its folded edge. Images 12 and 13 show a

sideways push. Images 14 and 15 show the final frontal push which aligns the polyflap with the target configuration. Courtesy of Zito et al. (2012).

4. LEARNING TO PREDICT FROM
EXAMPLES

This part of the literature is based on learning predictive
models for robotic pushing from data. We first review work
on qualitative models and then consider models that make
metrically precise predictions. In both of those sections, we
do not include work that uses deep learning techniques. We
dedicate a separate section to such approaches, given the current
research interest in that area and the large number of papers
being published.

4.1. Qualitative Models
Much work on qualitative models revolves around the concept of
affordances. The term affordance was invented by Gibson (1979)
and generally refers to an action possibility that an object or
environment provides to an organism. Although it has originated
from psychology, the concept has been influential in various
domains, among them robotics. Sahin et al. (2007) discussed
affordances from a theoretical perspective while laying emphasis
on their use in autonomous robotics. Min et al. (2016) provided
a recent survey of affordance research in developmental robotics.

Although the concept of affordances is typically associated
with learning “high-level” actions from contexts, e.g., pushing
an object in a clutter scene when grasping is not available, in
this paper we focus on investigations that extend affordances
to the effects of an action too. Ugur et al. (2011) considered
an anthropomorphic robot that learns object affordances as well
as effect categories through self-interaction and self-observation.
After learning an FM as a mapping between object affordances
and effects, the proposed method can make plans to achieve
desired goals, emulate end states of demonstrated actions, and
cope with uncertainty in the physical effects by monitoring
the plan execution and taking corrective actions using the
perceptual structures employed or discovered during learning.
While much previous work has focused on affordance models
for individual objects, Moldovan et al. (2012) learned affordance
models for configurations of multiple interacting objects with
push, tap, and grasp actions for achieving desired displacements
or rotations, as well as contacts between objects, for selecting
the appropriate object and action for the subsequent step. Their
model is capable of generalizing over objects and dealing with
uncertainty in the physical effects. Ridge et al. (2015) developed
a self-supervised online learning framework based on vector
quantization for acquiring models of effect classes and their
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FIGURE 7 | The sequence of operations adopted by Zrimec and Mowforth (1991) to construct their causality learning model. The robot learns by interacting with the

environment in an unsupervised fashion. The system can autonomously discover knowledge, as e.g., whether an action generates a push on an object. The

“motivation” module guarantees that the system is driven toward acquiring more knowledge about the robot/environment interaction. Reproduced from Zrimec and

Mowforth (1991).

associations with object features. Specifically, they considered
robots pushing household objects and observing them with a
camera. Limitations of such learning approaches are that they
do not tend to generalize well to novel objects and actions.
This is also due to a lack of interpretation and understanding
of novel contexts. In fact, self-interaction and self-observation
are mainly limited by the ability of the robot to discover
novel scenarios and learning opportunities by itself (see also
section 5.1).

Considering other qualitative approaches than those related
to affordances, Zrimec and Mowforth (1991) developed an
algorithm for knowledge extraction and representation to predict
the effects of pushing. In their experiment, a robot performs
random pushes and uses unsupervised learning on those
observations. Their method involves partitioning, constructive
induction and determination of dependencies (see Figure 7).
Hermans et al. (2013) developed a method for predicting contact
locations for pushing based on the global and local object shape.
In exploratory trials, a robot pushes different objects, recording
the objects’ local and global shape features at the pushing
contacts. For each observed trajectory, the robot computes a
push-stability or rotate-push score and maps shape features to
those scores by means of regression. Based on that mapping, the
robot can search objects of novel shape for features associated
with effective pushes. Experimental results are reported for

a mobile manipulator robot pushing household objects in a
tabletop set-up.

While learned affordances, and other qualitative models, can
be useful in various scenarios, other applications require the
ability to predict the effects of pushing more precisely, e.g., by
explicitly predicting six DOF rigid body motions. We consider
efforts made to achieve precise predictions in the next section.

4.2. Metrically Precise Models
Early seminal work by Salganicoff et al. (1993) presented a vision-
based unsupervised learning method for robot manipulation. A
robot pushes an object at a rotational point contact and learns an
FM of the action effects in image space. Subsequently, they used
the FM for stochastic action selection in manipulation planning
and control. The scenarios considered in this work are relatively
simple in that the pusher remains within the friction cone of the
object and the contact only has one rotational DOF. Yet, this
work takes an approach that is markedly different from analytical
models discussed before. Instead of estimating parameters such
as frictional coefficients explicitly, the authors encode that
information implicitly in the mapping between actions and their
effects in image space. Similarly, Walker and Salisbury (2008)
learned a mapping between pushes and object motion as an
alternative to explicitly modeling support friction. Set in a 2D
tabletop environment, a robot with a single finger pushes objects
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FIGURE 8 | The example shows the interaction between a 5-axis Katana

robotic manipulator and an L-shape object, called polyflap (Sloman, 2006). A

set of contact experts are learned as probability densities for encoding

geometric relations between parts of objects under a push operation. This

approach allows these experts to learn from demonstration physical

properties, such as non-penetration between an object and a table top,

without explicitly representing physics knowledge in the model. The green wire

frame denotes the prediction whilst the red wire frame denotes the visual

tracking. Courtesy of Kopicki et al. (2011).

and uses an online, memory-based local regression model to
learn manipulation maps. To achieve this, they explicitly detect
the object’s shape using a proximity sensor and fit a shape to
the thus obtained point cloud. A method for handling objects
with more complex shapes was proposed by Lau et al. (2011). In
their work, a robot, while being of simple circular shape itself,
aims to deliver irregularly shaped flat objects to a goal position
by pushing them. The objects that they consider are chosen
to exhibit quasi-static properties. Collecting several hundred
random example pushes as training data, an FM is learned using
non-parametric regression, similar to the approach taken by
Walker and Salisbury (2008). Also tackling the problem of object
delivery, Krivic and Piater (2019) proposed a modular method
for pushing objects in cluttered and dynamic environments
that can work with unknown objects without prior experience.
Drawing on their previous work (Krivic et al., 2016; Krivic and
Piater, 2018), the authors’ approach comprises a space-reasoning
module, a strategy module, and an adaptive pushing controller
which learns local IMs of robot-object interaction online. While
their approach shows a high success rate of object delivery for
objects with quasi-static properties in simulated and real-world
environments, it does not take into account object orientation
and depends on vision-basedmeasurements of the object motion.

Kopicki et al. (2011) presented two data-driven probabilistic
methods for predicting 3D motion of rigid bodies interacting
under the quasi-static assumption. First, they formulated the
problem as regression and subsequently as density estimation.
Figure 8 shows an example of the interaction between a 5-axis
Katana robotic manipulator and a polyflap (Sloman, 2006). In
Kopicki et al. (2017) they extended this work further. Their

architecture is modular in that multiple object- and context-
specific FMs are learned which represent different constraints
on the object’s motion. A product of experts is used which,
contrary to mixture models, does not add but multiply different
densities. Hence, all constraints, e.g., those imposed by the robot-
object contact and multiple object-environment contacts, need
to be satisfied so that a resulting object motion is considered
probable. This formulation facilitates the transfer of learned
motion models to objects of novel shape and to novel actions.
In experiments with a robot arm, the method is compared with
and found to outperform the physics engine PhysX tuned on
the same data. For learning and prediction, their algorithms
require access to a point cloud of the object. A further extension
of this approach is presented in Stüber et al. (2018). In this
work, the authors aim to contribute to endowing robots with
versatile non-prehensile manipulation skills. To that end, an
efficient data-driven approach to transfer learning for robotic
push manipulation is proposed. This approach combines and
extends two separate strings of research, one directly concerning
pushing manipulation (Kopicki et al., 2017), and one originating
from grasping research (Kopicki et al., 2016). The key idea
is to learn motion models for robotic pushing that encode
knowledge specific to a given type of contact, see the work
by Kopicki et al. (2016) for further details. Figure 9 presents a
graphical representation of the feature-based predictors as well
as resulting predictions across object shapes. In an previously
unseen situation, when the robot needs to push a novel object,
the system first establishes how to create a contact with the
object’s surface. Such a contact is selected among the learned
models, e.g., a flat contact with a cube side or a contact with
a cylindrical surface. At the generated contact, the system then
applies the appropriate motion model for prediction, similarly
to that of Kopicki et al. (2017). The underlying rationale for
this approach to prediction is that predicting on familiar ground
reduces the motion models’ sample complexity while using local
contact information for prediction increases their transferability
(Krivic et al., 2016).

Meriçli et al. (2015) similarly presented a case-based approach
to push-manipulation prediction and planning. Based on
experience from self-exploration or demonstration, a robot
learns multiple discrete probabilistic FMs for pushing complex
3D objects on caster wheels with a mobile base in cluttered
environments. Subsequently, the case models are used for
synthesizing a controller and planning pushes to navigate an
object to a goal state whilst potentially pushing movable obstacles
out of the way. In the process, the robot continues to observe the
results of its actions and feeds that data back into the case models,
allowing them to improve and adapt.

Metrically precise models have become a stable trend of
research in the field of robotic push manipulation. Their
probabilistic nature elegantly deals with state and motion
uncertainties. Nonetheless, real applications of robot pushing
may require higher levels of reasoning to be useful assistants.
For example, a warehouse robot may need to fill shelves with
many boxes via push operations. This would also require
planning multiple sequences of actions where some earlier
placements may lead to a sub-optimal final configuration.
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FIGURE 9 | (Top) graphical representation of the feature-based predictors for push operations. The global motion of the object after a push is described by the rigid

body transformation mb. This transformation is unknown to the robot. However, the robot can estimate it by learning a set of local predictors for the motions mυL and

mυE
k
, for k = 1, . . . ,NE . The rigid body transformations hL and hEk describe the estimated contacts on the object’s surface w.r.t. the estimated global frame of the

object, b. Since the object is assumed to be rigid, this relation does not change over time, thus once the local motions mυL and mυE
k
are estimated, bt+1 can be

estimated by using the relations hL and hEk . (Bottom) resulting predictions. initial object pose (green, in contact with robot), true final object pose (green, displaced),

and predictions (blue). Courtesy of Stüber et al. (2018).

Efficient planning solutions would need to reason about
gathering critical information concerning the task space or
propagating the uncertainty in the action’s effects to future states.
We present some suggestions on how to deal with these types of
problems in the final remarks (see sections 5.2 and 5.3).

4.3. Deep Learning Approaches
Deep learning commonly refers to methods that employ artificial
neural networks to learn models from data. It has been used
in robotic pushing to estimate physical parameters, predict the
outcome of pushing actions, and for planning and control.
Previously, we have seen work concerned with estimating
physical parameters of the environment from data. Deep learning
has been used to address the same problem. Denil et al. (2016)
studied the learning of physical properties such as mass and
cohesion of objects in a simulated environment. Using deep
reinforcement learning, their robots learn different strategies that

balance the cost of gathering information against the cost of
inaccurate estimation.

Instead of explicitly estimating physical parameters, another
approach is learning a dynamics model. Several studies have
investigated learning general physical models or “physical
intuition” directly from image data. Chang et al. (2016)
presented the Neural Physics Engine, a deep learning framework
for learning simple physics simulators. They factorize the
environment into object-based representations and decompose
dynamics into pairwise interaction between objects. However,
their evaluation is limited to simple rigid body dynamics in
2D. Li et al. (2018) proposed Push-net, a deep recurrent neural
network to tackle the problem of quasi-static planar pushing
to re-orient and re-position objects. Their approach requires
only visual camera images as input and remembers pushing
interactions using a long short-term memory (LSTM) module.
An auxiliary objective function estimates the COM of the object,
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FIGURE 10 | Frame-centric model for motion prediction of billiard balls. The model takes as input the 2D image of the billiard and the forces applied by the agent to

make predictions about the future configurations of the balls. Reproduced from Fragkiadaki et al. (2015).

FIGURE 11 | Object-centric model for motion prediction of billiard balls. The system predicts the future configurations of the balls by individually modeling the

temporal evolution of each ball. In this scenario, predicting the velocities of each ball is sufficient for computing the next configuration of the billiard. Reproduced

from Fragkiadaki et al. (2015).

thus encoding physics into their model. They trained their model
in simulation and tested it on various objects in simulation
and on two real robots, with results indicating that Push-Net is
capable of generalizing to novel objects.

Watters et al. (2017) introduced the Visual Interaction
Network, a model for learning the dynamics of a physical
system from raw visual observations. First, a convolutional neural
network (CNN) generates a factored object representation from
visual input. Then, a dynamics predictor based on interaction
networks computes predicted trajectories of arbitrary length.
They report accurate predictions of trajectories for several
hundred time steps using only six input video frames. Yet, their
experiments are also limited to rather simple environments,
namely 2D simulations of colored objects on natural-image
backgrounds. Similarly, Fragkiadaki et al. (2015) also used
an object-centric formulation based on raw visual input for
dynamics prediction. Based on object-centric visual glimpses
(snippets of an image), the system predicts future states
by individually modeling the behavior of each object. A

graphical representation of this model is presented in Figure 10.
After training in different environments by means of random
interaction, they also use their model for planning actions
in novel environments, in this case moving balls on a 2D
table (Figure 11). Ehrhardt et al. (2017) constructed a neural
network for end-to-end prediction of mechanical phenomena.
Their architecture consists of three components: a CNN extracts
features from images which are updated by a propagation
module, and decoded by an estimation module. What their
network outputs is a distribution over outcomes, thus explicitly
modeling the inherent uncertainty in manipulation prediction.
In terms of experiments, they study the relatively simple problem
of a small object sliding down an inclined plane.

Moving toward more complex scenarios, Byravan and Fox
(2017) introduced SE3-NETS, a deep neural network architecture
for predicting 3D rigid body motions. Instead of RGB images,
their network takes depth images as input, together with
continuous action vectors, and associations between points
in subsequent images. SE3-NETS segment point clouds into

Frontiers in Robotics and AI | www.frontiersin.org 13 February 2020 | Volume 7 | Article 8

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Stüber et al. Let’s Push Things Forward

object parts and predict their motion in the form of SE(3)
transformations. They report that their method outperforms
flow-based networks on simulated depth data of a tabletop
manipulation scenario. Furthermore, they demonstrate that it
performs well on real depth images of a Baxter robot pushing
objects. However, their approach requires that associations
between depth points are provided. They aim to learn those
automatically in future work and to apply SE3-NETS to non-
rigid body motion, recurrent prediction, and control tasks. A
different approach to learning dynamics from images was taken
by Agrawal et al. (2016). They jointly learn FMs and IMs of
dynamics of robotic arm operation that can be used for poking
objects. In doing so, they extract features from raw images and
make predictions in that feature space. In real-world experiments
with Baxter, their model is used to move objects to target
locations by poking. In order to cope with the real world, their
model requires training on large amounts of data. By poking
different objects for over 400 h, their robot observed more than
100, 000 actions.

Most of the studies presented this section make use of object-
centric representations to model dynamics. Other approaches
predict motion without such representations. For instance, Finn
et al. (2016) developed an action-conditioned video prediction
system which predicts a distribution over pixel motions only
based on previous frames. No information concerning object
appearance is provided to the model. It borrows that information
from previous frames and merges it with model predictions. It is
this mechanism that allows the model to generalize to previously
unseen objects. By conditioning predictions on an action, the
model can effectively imagine the action’s consequences. As with
previously presented deep learning models, this approach also
requires large amounts of data to perform well in real-world
situations. Hence, the authors have collected a dataset of 59, 000
robot pushing motions (frames associated with the action being
applied) on different objects. While their results demonstrate that
no object-centric representation is required for prediction, the
authors argue that such representations are a promising direction
for research as they provide concise state representations for use
in reinforcement learning.

We have seen how artificial neural networks can be used to
model the dynamics of physical systems. In addition to that, deep
reinforcement learning has been used to learn control policies in
the field of robotic pushing. Many of those approaches make use
of dynamics models so that they can be seen as complementary
to the work presented before. We do not provide a detailed
review of this very active field here and refer the reader to Levine
et al. (2015), Levine et al. (2016), Finn and Levine (2017), and
Ghadirzadeh et al. (2017) for overviews of such work.

5. FINAL REMARKS

In this paper we have provided an overview of the problem of
robot pushing and summarized the development of the state-
of-the-art, focusing on the problem of motion prediction of
the object to be pushed. We have also covered some aspects of
relevant applications of pushing for planning and control.

Typical approaches have been classified as (i) purely analytical,
(ii) hybrid, (iii) dynamic analysis, (iv) physics engines based, (v)

data-driven, and (vi) deep learning. Representative work for each
of these categories has been listed for readers to have a general
overview of the field and its state-of-the-art from the earlier work
in the 1980s to the most recent approaches.

A set of assumptions in the proposed methods have
been highlighted. Earlier work has mostly investigated motion
prediction with the quasi-static assumption to get rid of complex
dynamics and provided the groundwork to understand the
mechanics for pushing 2D shapes. This seminal work has been
extended to more realistic scenarios involving 3D objects to
be pushed. Nonetheless, as we have seen there are two types
of uncertainty that affect manipulation problems: (i) prediction
uncertainty and (ii) state uncertainty. Unfortunately, purely
analytical approaches are computationally tractable only under
the assumption that the geometrical properties of the object to
be pushed are known a priori and the dynamics are negligible
(e.g., Mason, 1990; Mayeda and Wakatsuki, 1991). Key physical
properties that would affect the prediction, e.g., mass distribution
or friction coefficients, were typically assumed to be known or
possible to estimate on the fly, as in Yoshikawa andKurisu (1991),
by combining data-drivenmethods with the analytical mechanics
of pushing.

More recently, a few efforts were made toward robot pushers
that can also deal with state uncertainty. By relaxing the
assumption that the model of the object to be pushed is
known, the robot typically perceives the object as a point cloud
or RGB image to estimate the geometric properties, such as
pose and shape, before even attempting a motion prediction,
see Fragkiadaki et al. (2015) and Stüber et al. (2018).

Two strands of approaches can be identified: data-driven
and deep learning techniques. They are similar in that they
both define (or extract) some informative features as a basis for
learning and model predictions in a probabilistic framework to
estimate an action’s most likely outcome given the information
available, e.g., an image of the scene or contact models.

Qualitative models have made use of the concept of
affordances for learning a mapping between object features and
candidate actions, which they then employ for planning. For
manipulation tasks, however, the planner also needs to learn
the relationship between actions and their effects by creating
a mapping from actions to observable end states and their
variability. End states can be represented as displacements after
a push operation or a set of contacts for a prehensile operation.
This enables us to synthesize controllers with multiple classes of
actions and their expected effects which are then employed for
planning. Affordances can be learned for 3D motions of a single
or multiple interacting objects, but they do not generalize well
to novel objects or actions. Erroneous predictions can be dealt
with at execution time by triggering a re-planning procedure.
In contrast to qualitative models, metrically precise models are
concerned with directly learning a mapping between observable
features (e.g., contacts or geometrical features) and their effects
in the context of manipulation. Factorizing robot-object and
object-environments contacts as (probabilistic) experts enables a
robot pusher to generalize predictions across object categories,
e.g., demonstrated by Kopicki et al. (2017). Physical properties
such as impenetrability can also be learned implicitly by the
experts and transferred to novel contexts. The quasi-static
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assumption limits the model to predictions of object motion
in the next time-step, but roll-out predictions can be executed
to approximate continuous operations. A second, more recent
strand is the application of deep learning techniques to learning
a physical intuition of the mechanics of pushing from visual data,
see Fragkiadaki et al. (2015). Automatic feature extraction can be
used to estimate uncertain state information such as the COM
from raw data (e.g., RGB images), as well as to make predictions
on interaction dynamics. Controllers for specific robots can
also be learned directly by the models, but there is a lack of
evidence on whether these controllers could be transferred across
robot platforms, or how their performance would degrade when
dealing with novel objects or actions. Nevertheless, the main
disadvantage of these approaches is the amount of data required.
While Stüber et al. (2018) andMeriçli et al. (2015) can learn from
as little as a few hundred pushes, Push-net and the other deep
learning approaches require hundreds of times more data.

While some typical problems still require a better solution,
new challenges and requirements are emerging in the field. To
make pushing an essential motor primitive in practical robotics,
the challenges are either currently under investigation in research
group worldwide or need to be investigated in the future.
Following we list some suggested trends of open problems that
we have identified.

5.1. Understanding and Semantic
Representation
The scene is typically perceived as an RGB image or a point
cloud. However, for robot pushing, we need to be able to identify
pushable objects from static ones. Labeling can be done but it
is very expensive in terms of human labor. Converting from
source image data to geometrical shapes, and from geometrical
shape to semantic representation will be beneficial for the robot.
Once the robot can identify probable dynamic objects within a
semantic map of the environment it would be able to interact
with the environment prioritizing those objects and improving
its understanding.

5.2. Sensory Fusion and Feedback
Multiple sensor inputs are nowadays available for robotic system.
Instead of solely relying on vision, other sources of information
should be used to close the loop of the manipulation. Tactile,
proprioception, and visual feedback should be fused together
to enable the robot to perform complex manipulation and
recover from failures. Generative models, such recurrent neural
networks, can learn manipulative operations from multiple
sensory sources. This enables the robot to compensate formissing
or corrupted input data, as well as to predict the next sensory
state and the associated expected error with respect to the next
observed sensory state, which can then be used for implementing
adaptive behaviors. For readers interested in sensory fusion for
manipulative tasks, we refer to the work of Yang et al. (2016) as
an interesting starting point.

5.3. Explicitly Modeling Uncertainty in the
Model
Due to a lack of perfect perception abilities, it is not unusual
that robots have to operate with an incomplete description

of their environment. In robot pushing, but more generally
in the problem of manipulation, the robot needs to generate
a set of contacts to interact with other objects. When the
pose of the object to be manipulated is unknown, what is
the best way to create a robust set of contacts? In the
case of planning for dexterous manipulation, our previous
work in Zito et al. (2013) has demonstrated that approaching
directions that maximize the likelihood of gathering (tactile)
information are more likely to achieve a successful set of
contacts for a grasp. This was tested in the case when, due
to imperfect perception abilities, the pose of the object to
be grasped remained uncertain. This empirically suggests that
reasoning about the uncertainty leads to more robust reach-
to-grasp trajectories with respect to object-pose uncertainty.
Similarly, selecting an action for physical effects (e.g., pushing,
push, and grasp) should benefit from incorporating state
uncertainty with respect to the initial pose estimate of the
object. Finally, we highlight the complexity of incorporating
uncertainty in models for pushing which results from the
multi-modal stochasticity inherent to the task demonstrated
by Yu et al. (2016).

5.4. Cooperative Robots and Multiple
Contacts Pushing
Moving large-scale objects is a common problem in warehouses
that can be achieved with cooperative robots. Besides the problem
of sharing information between them and coordinating the
efforts, a new challenge arises from the manipulation point of
view. Multiple contacts pushing is hard to predict, especially
when the actions are carried by multiple agents. Scholars
interested in the problem of multiple contacts pushing are
referred to the works of Lynch (1992) and Erdmann (1998) as
interesting starting points.

5.5. Real-World Applications
Although the theory behindmotion prediction is well-established
and applications to simple, structured scenarios have been made,
the combination of the existing methods with any industrial
applications has not yet been achieved. Robots in warehouses
can navigate freely and deliver goods, however, no robotic
system is capable of exploiting pushing operations for novel
items in novel situations, such as inserting a box of varied
produce onto an over-the-head store shelf. Theoretical solutions
are rarely reliable in practical engineering applications, hence
many sophisticated practical approaches will be needed in the
future. Very recently, the robotics community has realized that
one of the main issues that prevent a methodological and
stable advancement in the field is the lack of standardized
benchmarks and metrics for objective evaluations of different
approaches. Following the example of fields such as computer
vision and natural language process, large and diverse datasets
are required to provide the equivalent richness for physical
understanding and its application to robot manipulation
tasks. A recent attempt in this direction is presented in
Bauza et al. (2019).
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