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This paper describes a new method that enables a service robot to understand spoken

commands in a robust manner using off-the-shelf automatic speech recognition (ASR)

systems and an encoder-decoder neural network with noise injection. In numerous

instances, the understanding of spoken commands in the area of service robotics is

modeled as a mapping of speech signals to a sequence of commands that can be

understood and performed by a robot. In a conventional approach, speech signals

are recognized, and semantic parsing is applied to infer the command sequence from

the utterance. However, if errors occur during the process of speech recognition, a

conventional semantic parsing method cannot be appropriately applied because most

natural language processing methods do not recognize such errors. We propose the

use of encoder-decoder neural networks, e.g., sequence to sequence, with noise

injection. The noise is injected into phoneme sequences during the training phase of

encoder-decoder neural network-based semantic parsing systems. We demonstrate

that the use of neural networks with a noise injection can mitigate the negative

effects of speech recognition errors in understanding robot-directed speech commands

i.e., increase the performance of semantic parsing. We implemented the method

and evaluated it using the commands given during a general purpose service robot

(GPSR) task, such as a task applied in RoboCup@Home, which is a standard service

robot competition for the testing of service robots. The results of the experiment

show that the proposed method, namely, sequence to sequence with noise injection

(Seq2Seq-NI), outperforms the baseline methods. In addition, Seq2Seq-NI enables a

robot to understand a spoken command even when the speech recognition by an

off-the-shelf ASR system contains recognition errors. Moreover, in this paper we describe

an experiment conducted to evaluate the influence of the injected noise and provide a

discussion of the results.
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1. INTRODUCTION

Speech recognition errors are significant in practical tasks
provided by service robots. In numerous types of human-robot
interactions, it is assumed that the human user will initiate an
interaction by giving a spoken command to a service robot at
home, in an office, or in a factory. Many studies in the area
of robotics and natural language processing (NLP) (Thomason
et al., 2015; Misra et al., 2016; Xu et al., 2017) have been
conducted to enable a robot to understand the linguistic
commands given by human users.

The spoken commands given by a human user are
conventionally recognized and understood by a robot in the
following manner: First, the robot recognizes a sentence spoken
by a human user by applying an automatic speech recognition
(ASR) system such as Google Cloud Speech-to-Text API1,
CMU Sphinx2, or Julius3. Next, the robot applies syntactic and
semantic parsing and determines the sequence of commands
that it is expected to carry out. The former part corresponds
to the ASR task, and the latter corresponds to the NLP task.
The syntactic and semantic parsing for service robots involves a
mapping of a recognized sentence to a sequence of commands
that is written in an artificial language that can be understood
and carried out by the robots (Poon, 2013). An overview of this
process is described in Figure 1.

A practical and critical issue in this area is the inevitable
occurrence of errors in the results of the speech recognition
obtained by the ASR systems, and although significant progress
has been made in this field and the performances of such systems
have improved considerably, speech recognition errors cannot
be completely eliminated. By contrast, conventional studies in
the area of NLP have tended to ignore the existence of speech
recognition errors. Most methods of semantic parsing in NLP
do not have the capability to resolve recognition errors in a
sentence, and thus, a robot’s understanding of a spoken command
may be constrained. The understanding of robot-directed speech
commands decreases further with an increase in the number of
speech recognition errors. In particular, the environment where
a service robot needs to conduct a task may be unfavorable for an
ASR system owing to environmental noises involving numerous
types of speakers, and because the robot may need to capture the
speech signals using a microphone on its body while speakers are
at a notable distance from the speaker.

Therefore, the use of off-the-shelf speech recognition systems
is a challenge in service robotics when considering that speech
recognition errors cannot be eliminated completely even if we
use speech recognition systems developed using a state-of-the-
art neural network architecture (Amodei et al., 2016; Kim et al.,
2017). Improving the performance of language understanding
under the conditions through which the robot applies a given
speech recognition system is important. The objective of this
study is to develop a method of language understanding that
enables a robot to comprehend recognized spoken sentences

1https://cloud.google.com/speech-to-text/
2https://cmusphinx.github.io/
3https://github.com/julius-speech/julius

even if the sentences contain several phoneme and word
recognition errors.

Off-the-shelf ASR systems usually involve acoustic and
language models trained using large speech and text corpora.
A language model is a statistical tool that includes information
about a vocabulary, and off-the-shelf ASR systems usually
contain a large-scale vocabulary to encompass a variety of topics.
However, most of these types of systems have little relevance in
an actual home, office, or factory environment where the robot
needs to perform its tasks. In general, using current technology,
the robot can manipulate a limited number of objects, and visit
a limited number of places in a domestic environment. For
example, in a general purpose service robot (GPSR) task, namely,
a task used in RoboCup@Home, which is a standard service
robot competition for the testing of service robots, it is assumed
that there are a limited numbers of action commands and target
objects. This means that the number of command sequences that
a service robot needs to map to the speech signal is much smaller
than the number of possible sentences generated by the language
model, i.e., a dictionary having a large-scale vocabulary. This fact
can be used as a semantic constraint when building a robust
language understanding system, namely, a semantic parser.

In this study, our primary focus was on GPSR tasks that
involve language processing, image processing, and mobile
manipulation in an integrative manner. In these tasks, a robot
is expected to perform the following commands generated by
the GPSR sentence generator4. Many studies on service robotics
related to GPSR have been reported (Holz et al., 2013; Inamura
et al., 2013; Puigbo et al., 2013; Puigbò et al., 2015; Iocchi et al.,
2015). In a GPSR task, the sentence is given by a referee as a
spoken sentence consisting of three primitive actions, e.g., “Go
to the dining table, next, find a stick potato, take it.” During
the competition, the site where the robot acts is noisy owing to
the size of the audience. Therefore, a clear understanding of the
robot-directed speech command is a crucial capability of GPSR.

In the semantic parsing of robot-directed speech, rule-based
systems and methods based on symbolic AI have been used for
a long time [Figure 1(a)] (Fischer et al., 1996; Lauria et al., 2002;
Ljunglöf, 2014; Packard, 2014; Savage et al., 2019). However, the
development of rule-based semantic parsing systems requires
significant labor, and such systems are usually not robust to noise,
i.e., recognition errors are incurred.

Deep neural networks, particularly, recurrent neural
networks, have recently been used for semantic parsing in
NLP studies. In the same way, an encoder-decoder architecture
can be used for semantic parsing, similar to a neural machine
translation (Sutskever et al., 2014; Luong et al., 2015). From a
mathematical perspective, semantic parsing can be considered
a map from a sequence of words to a sequence of semantically
understandable symbols including brackets. Some studies on
accepting letter or phoneme sequences instead of word sequences
as inputs have yielded successful results (Zhang et al., 2015;
Gelderloos and Chrupała, 2016; Vosoughi et al., 2016; Xiao and
Cho, 2016). Owing to their flexibility, recurrent neural networks
are considered to be capable of achieving a morphological

4SentenceGenerator:github.com/komeisugiura/GPSRsentence_generator
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FIGURE 1 | Overview of the process through which a robot understands spoken commands given by a human user. After a speech signal is recognized using ASR

and a speech recognition result is obtained, the semantic parser infers the commands intended by the user from the recognized word sequence.

analysis inside the network implicitly and applying semantic
parsing from sequences of letters or phonemes. Encoder-decoder
architecture-based methods for semantic parsing, e.g., sequence
to sequence, have produced successful results (Zhou and Xu,
2015; Dušek and Jurcıcek, 2016; Xiao et al., 2016). An encoder-
decoder neural network is a continuous, differentiable function
compared to rule-based semantic parsing. Sequence to sequence
(Seq2Seq) is another candidate method for semantic parsing
[Figure 1(b)]. However, these studies did not consider speech
recognition errors.

An important concern is mitigating the negative effects of
speech recognition errors in language understanding. El Ayadi
and Afify (2013) proposed a method for categorizing speech
signals, when considering the presence of speech recognition
errors, by using word and letter sequence features. Homma et al.
(2016) also considered the features of phoneme sequences and
described a method for recognizing spoken sentences involving
speech recognition errors. These studies consider mapping from
a speech recognition result to a category; however, in service
robotics, e.g., GPSR, a robot needs to extract more information
from spoken commands as the spoken sentence involves various
elements of information, including a target object, the goal of a
particular movement, the action type, and features of the object
(see the right side of Figure 1). For example, when a user says
“bring me a dish,” the robot needs to extract elemental actions
such as “grasp the dish” and “move to the designated place”
by interpreting the given sentence. Methods allowing a robot
to interpret a given sentence under the constraint of its set of
actions have been studied since the 1970s (Fikes et al., 1972).
In this study, we propose a method for converting an input
speech recognition result with errors into a sequence of elemental
commands by considering a set of actions that can be carried out
by the robot.

For this purpose, we prepare a semantic parser that is highly
resistant to recognition errors by injecting artificial noise. Noise

injection has often been used to increase the robustness of
neural networks (Zur et al., 2009; Goodfellow et al., 2016).
Bengio et al. (2013) demonstrated the theoretical background of
noise injection for an autoencoder. Noda et al. (2014) improved
the speech recognition performance by injecting noise into a
neural network. Noise injection is regarded as a type of data
augmentation that prevents an overfitting and increases the
generalization capability of a neural network. Using the i-th data
sample (xi, yi), where xi and yi are the i-th input and output,

respectively, (x
[k]
i = xi + ǫ

[k]
i , yi) can be prepared by injecting

noise ǫ
[k]
i ∼ P(ǫ) into its input. In general, noise injection

broadens the receptive field receiving the input to a certain

output, i.e., xi + ǫ
[k]
i is mapped to yi. This makes the neural

network tolerant to noise and enhances its robustness. The main
idea of the approach described in this study is to apply a noise
injection scheme to semantic parsing for use in service robotics.

A typical semantic parsing, which has been developed as an

NLP method, does not assume speech recognition errors in the
input sentences. This means that a robot cannot understand

a user’s commands unless the speech recognition results are
perfectly correct. However, the sentence error rate (SER), which

shows the ratio at which a recognized sentence involves at least
one error, is much higher than the phoneme error rate (PER)

or word error rate (WER). In many cases, the PER and WER
are not as high as the SER when using a state-of-the-art off-
the-shelf ASR system. Based on this assumption, we applied
the noise-injection method to encoder-decoder network-based
semantic parsing in which the input is a phoneme sequence.
We call this method sequence to sequence with noise injection
(Seq2Seq-NI) [Figure 1(c)].

For example, the conventional noise injection approach was

often applied to audio or image signals. However, our proposed

method injects noise into a phoneme sequence, which is the

input data of a semantic parser, in the training datasets. Speech
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recognition results are variable-length discrete label sequences,
and the type of noise to be adopted must be examined. For
a suitable noise injection into the phoneme sequences, we
used the stochastic deformation model (SDM). The SDM is a
stochastic generative model that edits variable-length strings in a
probabilistic manner. Taniguchi et al. (2018) developed a mixture
of SDMs for the clustering of noisy words.

In this paper, we propose the use of encoder-decoder neural
networks, such as sequence to sequence (Sutskever et al.,
2014), with noise injection for input into a phoneme sequence
during the training phase. We implemented the method and
evaluated it using commands applied in GPSR. The results of
the experiment showed that the proposed method, i.e., Seq2Seq-
NI, outperforms the previous methods. The Seq2Seq-NI enables
a robot to understand a spoken command even when the
speech recognition results by off-the-shelf ASR systems contain
recognition errors. In addition, we conducted an experiment
to evaluate the influence of injected noise and discuss the
results herein.

The main contributions of this study are as follows: We
proposed a Seq2Seq-NI method to infer an appropriate sequence
of commands by taking recognized robot-directed speech signals
with recognition errors as input and showed that Seq2Seq-
NI improves the understanding of a robot-directed command
without a mitigation of the speech recognition errors. The
remainder of this paper is organized as follows: section 2
describes the Seq2Seq-NI after an introduction to Seq2Seq
and SDM. Sections 3 and 4 describe the experiments and
demonstrate the effectiveness of Seq2Seq-NI and the effect
of the noise injection level. Finally, section 5 provides some
concluding remarks.

2. METHODS

The proposed method, Seq2Seq-NI, is composed of a neural
network-based semantic parser using Seq2Seq and a noise
generator based on SDM. In this section, we introduce
Seq2Seq, Seq2Seq with an attention mechanism and SDM, and
finally Seq2Seq-NI.

2.1. Seq2Seq for Semantic Parsing
A semantic parser can be developed using Seq2Seq. Semantic
parsing of a robot-directed command sentence can be defined
as a translation of sentences in languages such as English or
Japanese into a sequence of elemental commands for robots. For
example, if the parser takes “Please take a bottle and bring it to
the living room,” as an input sentence, it should be translated into
“Take (bottle) Move (Living room) Place (bottle, Living room
table).” For a long time, this type of translation was carried out
using a rule-based method; however, it was shown that Seq2Seq,
a method for neural machine translation, can be also used for this
type of task.

Seq2Seq is a type of neural network with an encoder-decoder
architecture that has been mainly used in the field of machine
translation (Sutskever et al., 2014). It can map a variable-
length sequence of discrete symbols into another variable-length
sequence of discrete symbols and determine the relationship

between a linguistic sentence, such as a word or letter sequence,
and a command sequence for a robot. In a typical case, Seq2Seq
consists of two long short-term memory (LSTM) networks,
which assume the roles of an encoder and a decoder (Hochreiter
and Schmidhuber, 1997). The input information is embedded
into an activation pattern of hidden layers by the encoder, and
the decoder translates it into a sequence of commands.

Figure 2 shows an overview of the network architecture of
Seq2Seq. An input sentence X = (x1, . . . , xs, . . .) is encoded to
a distributed representation H̄ = (h̄1, . . . , h̄s, . . .) of an encoder.
A decoder receives the final vector of the hidden layer of the
encoder, and outputs the data Y = (y1, . . . , yt , . . .) sequentially.
For more details, please refer the original study (Sutskever et al.,
2014).

By providing a set of recognized spoken sentence X as the
input and a correct sequence of commands Y as the output, the
semantic parser can be trained.

In the field of neural machine translation, various extensions
of Seq2Seq have been proposed, most of which can be used
instead of Seq2Seq. One of these is an attention mechanism,
and in this study, we consider the use of a local attention
model (Luong et al., 2015). Figure 3 presents an overview of the
network architecture of Seq2Seq with an attention mechanism.
An attention mechanism is the process by which a decoder
uses the input information more directly than Seq2Seq, in
which all input information must be encoded into a distributed
representation. A local attentionmodel is an extension of a global
attention model (Bahdanau et al., 2014). For more details, please
refer to the original study (Luong et al., 2015).

An open-source implementation of Seq2Seq and the
implementation of Seq2Seq using an attention mechanism
are available elsewhere5, and we used software during the
experiments conducted in this study.

2.2. SDM for Noise Injection
The SDM involves a stochastic process that deforms a string in
a probabilistic manner (Bahl and Jelinek, 1975; Lu and Fu, 1977)
and is based on a probabilistic finite state machine (PFSM). It can
be regarded as a generative model that provides a mathematical
foundation of the edit distance, which is a well-known distance
measure of strings, such as a sequence of symbols. We assume
that 6 is a set of discrete symbols and 6∗ is a set of strings
consisting of symbols in 6. An input sequence, an output
sequence, and an edit operation are defined as X ∈ 6∗, Y ∈ 6∗,
and T :6∗ → 6∗, respectively.

With SDM, we define three types of elemental operations
as follows:

1. Insertion

w1w2
TI
7−→ w1aw2, a ∈ 6,

2. Substitution

w1aw2
Ts
7−→ w1bw2, a, b ∈ 6,

5TensorFlowNeuralMachine Translation Tutorial https://github.com/tensorflow/

nmt
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FIGURE 2 | Overview of Seq2Seq.

FIGURE 3 | Overview of Seq2Seq with attention.

3. Deletion

w1aw2
TD
7−→ w1w2, a ∈ 6,

where w1,w2 ∈ 6∗.
The three elemental edit operations are illustrated on a PFSM

in Figure 4.
Figure 4 describes the state corresponding to the i-th input

symbol xi. Both the states Si and Ti correspond to xi. The
probability of stochastic deformation satisfies the following
equation:

PI + PD + PS = 1, (1)

where PI , PD, and PS are the probabilities for insertion,
deletion, and substitution, respectively. Here, P(Si|Si) = PI ,
and the insertion does not change the state of the input. If
the probability with which a symbol yj is inserted is qI(yj;φI),
then P(yj|Si → Si) = qI(yj;φI), where φI is the parameter
of the distribution qI . With the probability Ps + PD, the
insertion process is terminated and the state transits from Si
to Ti.

When the state Ti transits to Si+1, a deletion or substitution
is applied.

P(Si+1|Ti) =
Ps

Ps + PD
. (2)
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FIGURE 4 | Three types of stochastic operations in PFSM of SDM: insertion,

substitution, and deletion.

The probability that the symbol xi is substituted by yj is defined
as P(yj|Ti → Si+1) = qs(yj|xi;φS), where φS is the parameter of
the distribution qS.

The probability that the input symbol xi is itself the output,
i.e., yj = xi, is regarded as a type of substitution in this model.

Let P(y1 : n|x1 :m) denote the probability that the
deformation model generates y1 : n by using x1 :m, where
x1 :m = (x1, x2, . . . , xm), and y1 : n = (y1, y2, . . . , yn). The
probability can be calculated by applying a recursive operation
as follows:

P(y1 : 1|x1 : 1) = 1, (3)

P(y1 : 1|x1 : i+1) = P(y1 : 1|x1 : i) · PD (i = 1, . . . ,m), (4)

P(y1 : j+1|x1 : 1) = P(y1 : j|x1 : 1) · PI · qI(yj+1;φI) (j = 1, . . . , n),
(5)

P(y1 : j+1|x1 : i+1) = P(y1 : j|x1 : i+1) · PI · qI(yj+1;φI)

+ P(y1 : j+1|x1 : i) · PD (6)

+ P(y1 : j|x1 : i) · PS · qS(yj+1|xi+1;φS). (7)

By using the SDM, we can inject noise into an input string in
a synthetic manner. We can define the stochastic process in the
SDM as follows:

y ∼ SDM(x; θ), (8)

where θ = {PI , PD, PS,φI ,φS} is a set of parameters of the SDM.

2.3. Seq2Seq-NI
Seq2Seq-NI is a semantic parsing method using Seq2Seq and
noise-injected input data for training. We assume that huge
amounts of real speech signals and their recognition results
cannot be obtained; however, a large number of possible
sentences and their semantic parsing results can be generated.
We assume that a sentence, i.e., a word sequence, output
from an off-the-shelf ASR system with recognition errors, is
still phonologically similar to the original sentence. Therefore,
our method injects phoneme-level noise into the recognized

phoneme sequences for data augmentation6. In the GPSR
task, a sentence generator generates examples of sentences and
their meaning, i.e., the correct parsing results. We assume
X = {X1, . . . ,XD} to be the generated sentences and Y∗ =

{Y∗
1 , . . . ,Y

∗
D} to be the correct parsing results. We can obtain the

augmented training data by injecting noise using the SDM, i.e.,

X
[k]
d

∼ SDM(Xd; θ). A synthetic dataset that considers the speech

recognition errors, D = {X
[k]
d
,Yd}k,d, is obtained. In Seq2Seq-

NI, the Seq2Seq model is trained using the noise injected data
D. Such noise injected training data are expected to increase the
robustness of the semantic parser.

3. EXPERIMENT 1: UNDERSTANDING
SPOKEN COMMANDS

We conducted an experiment to evaluate the effect of Seq2Seq-
NI on the understanding of robot-directed spoken commands.
We also validated the contribution of the attention mechanism
to Seq2Seq-NI.

3.1. Conditions
The task was to translate a recognized word sequence into
command sequences. We used a GPSR sentence generator
to generate the English sentences representing robot-directed
commands for a service robot in a domestic environment. This
generator was used in the GPSR task of the RobCup@Home
league held in RoboCup2015. A GPSR sentence generator
generates sentences by assigning labels representing items,
locations, or rooms to slots in the given frames of commands. In
this experiment, a sequence of commands consisting of elements
of commands was also generated at the same time using the same
labels. An illustrative example is given as follows:

• Frame of a sentence: Go to LOCATION get ITEM exit from
ROOM okay.

• Sequence of commands corresponding to the frame: Move
(LOCATION) Find (ITEM, LOCATION)Grasp (ITEM)Move
(ROOM).

• Generated sentence: Go to kitchen table get dog doll exit from
visitor Room okay.

• Correct command sequence: Move (kitchen_table)
Find (dog_doll Kitchen_Table) Grasp (dog_doll) Move
(visitor_Room).

We used 52 items, 8 rooms, and 9 locations in this experiment,
as shown in Table 1. A list of action elements of the robot is
provided in Table 2.

In total, the number of sentences generated for the training
and tests were 10,000 and 100, respectively. The number
of lexicons was 110 and the number of phonemes was 84.

6Word-level noise injection eliminates the information regarding the phonological

similarity between the original sentence and the output words. A character-

level representation is also inappropriate because English letters are not phonetic

symbols. Even if the phonetic sequence is entirely the same as in the original, the

character sequence is not the same. Based on this idea, in this study, we focused on

noise injection at the phoneme level. If the target language has phonetic symbols,

such as hiragana letters in Japanese, we can use character-level noise injection.
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TABLE 1 | Items, rooms, and locations in the environment.

Items Green Tea/ Orange Juice/ Brown Tea/ Japanese Tea/ Red Tea/

Lemon Tea/ Strawberry Juice/ Cup Star/ Cup Noodle/ Seafood Noodle/

Korean Soup/ Egg Soup/ Onion Dressing/ Japanese Dressing/ Chip Star/

Long Potato/ Blue Potato/ Red Potato/ Stick Potato/ Bleach/

Cloth Cleaner/ Dish Cleaner/ Bath Cleaner/ white cup/ pink cup/

tumbler/ empty ketchup/ filled ketchup/ ground pepper/ salt/

sauce/ soysauce/ sugar/ canned juice/ empty plastic bottle/

filled plastic bottle/ cubic clock/ bear doll/ dog doll/ rabbit doll/

toy car/ toy penguin/ toy duck/ nursing bottle/ apple/

cigarette/ hourglass/ camera/ rubik’s cube/ bell pepper/

twin bell alarm clock/ spray bottle

Rooms Dining Room/ Living Room/ Corridor/ Kitchen Room/ Visitor Room/

bed room/ kitchen/ lobby

LocationsDining Table/ Dining Sofa/ Sofa/ Living Sofa/ Side Table/

Living Table/ Kitchen Table/ Bar/ Reception Table

TABLE 2 | Definition of action elements of a robot.

Action element of a robot Explanation

Move (room or location) Move to the designated place

Grasp (item) Grasp an object

Place (item, location) Place an object at the designated place

Find (item or person, room or location) Find a target and goal, and move there

Follow (person) Follow a person

Say (person) Call a person

Listen (item) Ask about an object

We used the CMU Pronouncing Dictionary7 to represent the
English phonemes.

Four male participants (L, W, K, and T) were requested
to pronounce the generated sentences once each in a natural
domestic environment full of daily noises8. The participants L
and W are not native English speakers, but are fluent, whereas
K and T are neither native English speakers nor fluent in the
language. The recorded data were encoded at 16 bits at a sampling
rate of 16 kHz. The recorded speech signals were recognized
using off-the-shelf ASR systems. For comparison, we used two
different ASR systems, namely, the Google Speech API9 and
CMU sphinx10. The WER for each ASR system is shown in
Table 3 for reference. It can be seen that the speech of the
fluent speakers was recognized more accurately by both ASR
systems. The Google Speech API outperformed the CMU Sphinx
in most cases. However, the overall performance of the speech
recognition was still low. This suggests that the noise in the
environment was considerably large for an ASR system.

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
8This study was carried out following the Ritsumeikan University Research Ethics

Guidelines, Research Ethics Committee of Ritsumeikan University. An ethical

review process was not required for this study because none of the conditions for

such a review based on the checklist provided by the committee were satisfied. All

participants gave written informed consent.
9https://cloud.google.com/speech-to-text/?hl=ja
10https://cmusphinx.github.io/

TABLE 3 | SER, WER, and PER of the employed ASR systems.

Google Speech API CMU Sphinx

# SER WER PER SER WER PER

L 1.00 0.40 0.71 1.00 0.77 0.82

W 0.94 0.26 0.16 1.00 0.68 0.42

K 1.00 0.58 0.45 1.00 0.99 0.70

T 1.00 0.48 0.38 1.00 1.04 0.75

Avg. 0.99 0.43 0.43 1.00 0.87 0.67

Examples of the generated sentences, correct command
sequences, and speech recognition results are shown in Table 4.
Most of the recognition results contain some recognition errors.

During this experiment, we compared six different methods
and a rule-based system. Each of the Seq2Seq-based methods is
characterized by whether it has a noise injection, whether it uses
an attentionmechanism, and based on the type of input, i.e., word
or phoneme. The six methods are as follows:

1. Seq2Seq using a word input,
2. Seq2Seq with an attentionmechanism and using a word input,
3. Seq2Seq using a phoneme input,
4. Seq2Seq with an attention mechanism and using a phoneme

input,
5. Seq2Seq-NI using a phoneme input, and
6. Seq2Seq-NI with an attention mechanism using a phoneme

input.

In this study, we assume that the probability of producing an
identical symbol is far higher than that of the others in SDM for
noise injection.

qs(yj|xi) =

{

L(1−β)
βL Ps yj = xi

1
βLPs yj 6= xi

. (9)

The parameters of the SDM are PI = 0.1, PS = 0.8, PD = 0.1,
and β = 8.0.

For the original Seq2Seq and the Seq2Seq using an attention
mechanism, the number of hidden units is 128 for both the
encoders and the decoders. The number of layers is 2 for both
the encoders and decoders The network weights are uniformly
initialized in [−0.1, 0.1]. The networks are trained for 12,000
training steps using plain SGD. The learning rate is 1.0, the mini-
batch size is 128, and the dropout ratio is 0.2. The normalized
gradient is rescaled whenever its norm exceeds 5.0.

The rule-based system generates a command sequence by
finding keywords, e.g., sofa, move, and grasp, from the input
word sequence obtained by the ASR system. Therefore, if the
ASR systemmisrecognizes keywords in a sentence, the rule-based
system has no chance to generate a correct command sequence.

All data and codes have been uploaded as open datasets and
open sources11.

11https://github.com/EmergentSystemLabStudent/noise_injection_seq2seq
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TABLE 4 | Example sentences generated by the GPSR sentence generator and speech recognition results.

#

Original

sentence Google API CMU Sphinx
Correct command

sequence

W

Well, go to Sofa

take empty ketchup

finally come back

ell go to sofa

take empty ketchup

finally come back

Well go to so

that him to do just

fine in combat

Move (Sofa)

Grasp (empty_ketchup)

Move (HERE)

W

Go to Dining Sofa

next detect camera
take it

Go to dining sofa

next detect camera
tickets

Go to dining set so far

next attacked camera
take it

Move (Dining Sofa)

Find (camera Dining Sofa)

Grasp (camera)

W

Move to living table

Grasp bleach

leave the apartment

please

Move to living table

grass Plant

leave the apartment

please

Move to the b. table
grasp financial

leave the apartment
peace

Move (living table)

Grasp (bleach)

Move (apartment)

T

Go to sofa
take Cup Star

put it on living table

okay

Go to Suffern
take out
put it on living table

okay

That is so tied
to a depth than

the teeth being

in the o.k.

Move (sofa)

Grasp (cup star)

Move (living table)

Place (cup star)

T

Go to kitchen table
move to living table

take red tea

Go to kitchen table
folding table

decorative

Go to teach in
tampa the two he

became the dignity

Move (Kitchen_Table)

Move (Living_Table)

Find (Red Tea)

Grasp (Red Tea)

Move (HERE)

3.2. Results
We attempted to determine whether the robot could understand
the commands given by the users. During this experiment, we
considered the understanding to be a success if the robot could

translate an input phoneme or word sequence into a ground-

truth command sequence. In the following tables, scores of the
highest performance are in bold and underlined, and those of the
second highest performance are underlined.

The success rate is presented in Table 5. Because of significant
speech recognition errors, most of the methods could not infer

the correct command sequence. However, Seq2Seq-NI without
attention could infer 21% of the utterances correctly, even though

the SER of the recognized speech was mostly 1.00, i.e., almost no

sentences were recognized perfectly. This shows that Seq2Seq-NI
can improve the performance of language understanding even

though the ratio at which the sequence of commands can be

estimated perfectly remains low. By contrast, there was a decline

in the performance of Seq2Seq without a noise injection when
the speech recognition results contained errors. A two-sample
test for equality of proportions without continuity correction
was performed to evaluate the statistical significance of the

differences in the success rate of language understanding shown
in Table 5. To evaluate the contribution of noise injection, the

difference between the overall success rate of 3 and 5, and that
of 4 and 6 were tested. Statistical significance at 1% level was
found in all cases (p = 4.7 × 10−3 and 4.0 × 10−5 for Google
Speech API, and p = 2.7 × 10−5 and 9.5 × 10−3 for CMU
Sphinx, respectively). In addition, the results suggest that the
attention mechanism also improves the performance. However,
the contribution is relatively small compared to that of the
noise injection.

For a more detailed comparison, the WERs of the inferred
command sequences were calculated and the results are
presented in Table 6. The Welch two-sample t-test was
performed to evaluate the statistical significance of the differences

in the WER shown in Table 6. To evaluate the contribution
of noise injection, the difference between the overall WERs
of 3 and 5, and that of 4 and 6 were tested. Statistical
significance at 1% level was found in all cases (p =

1.8 × 10−5 and 5.7 × 10−3 for Google Speech API, and
p = 5.5 × 10−9 and 4.1 × 10−5 for CMU Sphinx,
respectively).

To qualitatively illustrate the results in greater detail,
typical examples are shown in Table 7. The underlined
parts indicate the recognition or estimation errors. These
examples show that Seq2Seq2-NI, i.e., 5 and 6, improve
the language understanding performance even when the
speech recognition result is not fully correct. For example,
even though “take it” was recognized as “tickets” by the
Google Speech API, Seq2Seq2-NI successfully inferred
“Grasp (camera)” from the sentence. Although the CMU
sphinx recognized “Dining_Sofa” as “dining set so far,”
Seq2Seq2-NI inferred “Dining_Sofa” as an element of the
command sequence.

4. EXPERIMENT 2: EFFECT OF NOISE
INJECTION

We investigated the influence of the hyperparameters of the
SDM for noise injection on the overall performance of Seq2Seq-
NI in terms of language understanding. Theoretically, a noise
injection simulates the recognition errors observed in the results
of real speech recognition. If the noise level is 0, Seq2Seq-
NI becomes the same as Seq2Seq. However, if the noise level
reaches too high, Seq2Seq-NI will not be able to determine the
proper relationship between the input and output. Therefore,
investigating the impact of hyperparameters such as those of the
noise level is crucial. In this study, we conducted an experiment
using different settings of the hyperparameters and investigated
the relationship among the overall performance of Seq2Seq-NI,
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TABLE 5 | Success rate of language understanding.

Google

Speech API CMU Sphinx

No. NI Attention Input L W K T Avg. L W K T Avg.

- Rule-based system Word 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 – – Word 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 – X Word 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 – – Phoneme 0.04 0.40 0.03 0.06 0.13 0.00 0.01 0.00 0.00 0.00

4 – X Phoneme 0.05 0.33 0.08 0.05 0.13 0.01 0.07 0.02 0.00 0.03

5 X – Phoneme 0.07 0.51 0.12 0.13 0.21 0.02 0.13 0.02 0.03 0.05

6 X X Phoneme 0.06 0.60 0.16 0.14 0.24 0.03 0.18 0.03 0.01 0.06

The bold and underlined values represents the maximal and the second maximal values, respectively.

TABLE 6 | WER of inferred command sequences.

Google

Speech API CMU Sphinx

No. NI Attention Input L W K T Avg. L W K T Avg.

- Rule-based system Word 0.60 0.40 0.65 0.59 0.56 0.72 0.71 0.90 0.86 0.80

1 – – Word 0.66 0.69 0.65 0.60 0.65 0.75 0.62 0.62 0.66 0.66

2 – X Word 0.46 0.46 0.50 0.49 0.48 0.50 0.50 0.50 0.51 0.50

3 – – Phoneme 0.48 0.18 0.44 0.37 0.37 0.59 0.43 0.57 0.58 0.54

4 – X Phoneme 0.48 0.18 0.37 0.35 0.35 0.51 0.38 0.53 0.50 0.48

5 X – Phoneme 0.47 0.08 0.31 0.27 0.28 0.52 0.23 0.46 0.46 0.42

6 X X Phoneme 0.47 0.07 0.34 0.27 0.29 0.48 0.22 0.48 0.42 0.38

The bold and underlined values represents the minimal and the second minimal values, respectively.

the recognition error rate of the ASR systems, and the level of
noise injection.

4.1. Conditions
The hyperparameters of the SDM have three degrees of freedom
corresponding to the insertion, deletion, and substitution. In
this study, we focus only on the noise level and ignore
the contributions of the characteristics of the three types
of deformation. We define ρ as a control parameter of the
noise level.

PI = PD =
L− 1

βL
PS = ρ.

In this experiment, we use the same datasets and parameters as in
Experiment 1, except for the noise level.

4.2. Results
Figures 5, 6 show the results of the experiment. In both cases,
when ρ = 0.1 ∼ 0.15, the performance of Seq2Seq-NI is better
and there are no clear differences between the two. Theoretically,
the noise-injected input sentence with 0 has PER =

3ρ
1−ρ

.

Therefore, ρ = 0.1 ∼ 0.15 corresponds to PER = 0.33 ∼ 0.53.
This is similar to the PER given in Table 3. This indicates that the
performance of Seq2Seq-NI is better when the hyperparameters
simulate the actual noise level of the speech recognizer.

5. CONCLUSION

A new method of language understanding for robot-directed
spoken commands called Seq2Seq-NI was proposed. The
method employs off-the-shelf automatic speech recognition
(ASR) systems in a domestic environment. Seq2Seq-NI employs
Seq2Seq as a semantic parser of recognized spoken commands.
Owing to the nature of a neural network, noise can be injected
into the semantic parsing. We employed the SDM to deform
or inject noise into a variable-length symbol sequence such as
a recognized spoken command. The results of the experiment
indicate that Seq2Seq-NI outperforms the baseline methods.
Noise injection clearly improves the understanding of spoken
commands. It was also shown that an attention mechanism
contributes to an improved performance of the semantic parsing.
We also conducted an experiment to evaluate the influence of the
injected noise. It was found that a noise level simulating the actual
recognition error rate of the ASR improves the performance
of Seq2Seq-NI.

Despite demonstrating the validity of Seq2Seq-NI, further
investigations should be conducted. During the experiment, we
assume that the word choices by users are constrained. In a real
service robot environment, however, users are unconstrained in
their use of words. If a newword is spoken in a sentence, the word
is regarded as a type of noise and the sentence is mapped onto a
command sequence as a result of a generalization by the neural
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TABLE 7 | Typical examples.

Speaker W

Original sentence Go to Dining_Sofa next detect camera take it.

Label

Move (Dining_Sofa) Find (camera Dining_Sofa)

Grasp (camera)

ASR system Google Speech API CMU Sphinx
Speech

recognition

result

Go to dining sofa

next detect camera tickets

Go to dining set so far

next attacked camera take it

1

Move (Dining_Room)

Find (Cloth_Cleaner

Dining_Room)

Grasp (Cloth_Cleaner)

Move (Dustbin)

Move (Dining_Room)

Find (person Dining_Room)

Grasp (Japanese_Dressing)

Move (Bar)

Place (Japanese_Dressing

Bar)

2

Move (kitchen)

Find (camera kitchen)

Move (HERE)

Move (lobby)

Find (person lobby)

Follow (person)

3

Move (Dining_Sofa)

Move (Dining_Table)

Find (camera Dining_Sofa)

Grasp (camera)

Move (HERE)

Move (Sofa)

Find (toy_car Sofa)

Grasp (toy_car)

Move (Bar)

4

Move (Dining_Sofa)

Move (Dining_Table)

Find (camera Dining_Sofa)

Grasp (camera)

Move (HERE)

Move (Dining_Sofa)

Find (camera Dining_Sofa)

Grasp (camera)

5

Move (Dining_Sofa)

Find (camera Dining_Sofa)

Grasp (camera)

Move (Dining_Sofa)

Find (camera Dining_Sofa)

Grasp (camera)

6

Move (Dining_Sofa)

Find (camera Dining_Sofa)

Grasp (camera)

Move (Dining_Sofa)

Find (camera Dining_Sofa)

Grasp (camera)

The underlined parts represent errors.

FIGURE 5 | SER of command sequences with different noise levels (Google

Speech API).

network. We expect that the noise injection method will improve
the performance under scenarios with unconstrained word
choices. However, investigating the applicability of the method

FIGURE 6 | SER of command sequences with different noise levels (CMU

Sphinx).

in cases in which users are allowed to generate unconstrained
commands remains as a future challenge.

The understanding of sentences for GPSR, as used in the
experiment, is a popular and accepted task in the field of service
robotics. However, evaluating ourmethod on other datasets, such
as the TrainRobots Dataset (Dukes, 2014), and understanding the
characteristics of the method more clearly are essential tasks.

In this study, we focused on a robot command interpretation
task. However, the architecture is more general, and is expected
to be used for other tasks in which speech recognition results
are applied by a neural network-based postprocessing system.
Furthermore, in this study, we used a basic off-the-shelf neural
network-based semantic parser, i.e., Seq2Seq. The main aim of
this study was to demonstrate the validity of noise injection for a
neural network-based semantic parser to improve its robustness
to recognition errors caused by ASR systems. This implies that
a wide range of neural network-based semantic parsers can be
adopted for this idea. For example, Eppe et al. (2018) used a
dilated causal convolutional neural network for robot command
interpretation. Moreover, applying the concept of phoneme-level
noise injection to other neural network-based semantic parsers is
also a possible task for a future study.

The remaining challenges are as follows: The first is to
implement the method in a real service robotics environment
and evaluate its performance and validity. The next is to
develop an extension of this method to on-line learning. New
items and names of persons will be introduced, not only in
RoboCup@Home but also in our daily environment. The current
Seq2Seq-NI requires additional training of the encoder-decoder
network, which may involve significant computational costs.
Further, conditional information in language understanding
must be considered. If the robot can recognize its current
place and an object in front of it, it may be able to use such
information to improve its language understanding. This may
be achieved by introducing a conditional term into Seq2Seq-NI.
In addition, determination of the hyperparameters of the SDM
will be important. The results of Experiment 2 indicate that the
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recognition error level of the ASR system is a key to optimizing
the SDM in Seq2Seq-NI. Thus, we must conduct theoretical and
experimental investigations.
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