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Expectation learning is a unsupervised learning process which uses multisensory

bindings to enhance unisensory perception. For instance, as humans, we learn to

associate a barking sound with the visual appearance of a dog, and we continuously fine-

tune this association over time, as we learn, e.g., to associate high-pitched barking with

small dogs. In this work, we address the problem of developing a computational model

that addresses important properties of expectation learning, in particular focusing on the

lack of explicit external supervision other than temporal co-occurrence. To this end, we

present a novel hybrid neural model based on audio-visual autoencoders and a recurrent

self-organizing network for multisensory bindings that facilitate stimulus reconstructions

across different sensory modalities. We refer to this mechanism as stimulus prediction

across modalities and demonstrate that the proposed model is capable of learning

concept bindings by evaluating it on unisensory classification tasks for audio-visual stimuli

using the 43,500 Youtube videos from the animal subset of the AudioSet corpus.

Keywords: multisensory binding, deep learning, autoencoder, unsupervised learning, online learning

1. INTRODUCTION

Multisensory binding is one of the most important processes that humans use to understand their
environment. By using different sensory mechanisms, we are able to collect and process distinct
information streams from the same experience, which leads to a complex association learning. This
mechanism allows us to improve the perception of individual stimuli (Frassinetti et al., 2002), solve
contextual, spatial and temporal conflicts (Diaconescu et al., 2011), and progressively acquire and
integrate novel information (Dorst and Cross, 2001).

There are different mechanisms involved in learning multisensory binding. One of the most
important is the ability to process and understand unisensory information robustly (Macaluso,
2006). When the perception of individual stimuli has failed, the multisensory binding mechanism
is affected by what is referred to as a multisensory illusion effect (Biocca et al., 2001). This effect
creates artifacts via the binding mechanism which can influence the perception of other sensory
stimuli (Driver, 1996; Mishra et al., 2007) and the formation of novel multisensory experiences
(Spence and Driver, 2000). Our brain adapts to the multisensory illusion with a bottom-up selective
mechanism (Soto-Faraco and Alsius, 2007) which shifts the attention resources over to the different
sensing pipelines (Talsma et al., 2010).

An important aspect of multisensory bindings is known as the expectation effect (Yanagisawa,
2016). When perceiving an event, we compare it to other events we have experienced before, and
make certain assumptions based on our experience. For instance, when seeing a cat, we expect it
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to meow and not to bark. This effect modulates our multisensory
association in terms of top-down expectation. In consequence,
when a cat barks at us, we assume that our perception is
inconsistent, and that either the unisensory perception failed, or
that the spatial or temporal attention was misleading. If we see
barking cats repeatedly, we create a new concept of the species
of a barking cat. For each of these scenarios, our brain adapts to
the situation and we update our multisensory knowledge. This
learning process, referred to as learning by expectation (Ashby
and Vucovich, 2016), strongly suggests the role of unsupervised
learning for multisensory binding, and leads to an adaptive
mechanism for learning novel concepts (Ellingsen et al., 2016).

Despite its importance for human cognition and learning,
there exists currently no functional computational model that is
capable of modeling the multisensory binding and expectation
learning effect in an unsupervised manner (see section 2). Such
a model, however, would benefit from expectation learning as
a mechanism to generate stimulus predictions across different
sensory modalities. These cross-modal predictions potentially
improve the robustness in perception and classification of
unisensory stimuli through the binding of multisensory stimuli.
This paper addresses the mentioned issues above by formalizing
the following research questions:

Q.1 How can we build a computational model that allows for
unsupervised learning of multisensory bindings?

Q.2 Can we adapt the expectation learning from humans to this
model and use it to generate expected unisensory visual
stimuli from auditory stimuli and vice versa?

Q.3 Can we exploit the generated expected stimuli to improve
unisensory classification?

Q.4 How can we measure the quality of the learned
multisensory bindings?

We address Q.1 in section 3, where we employ autoencoders
to learn auditory and visual representations, which allows
for unsupervised learning. As a novelty and innovative
core mechanism to address continuity, we propose to
link the autoencoders with a recurrent Grow-When-
Required (GWR) neural network that changes its size as
demanded, thus allowing for the unsupervised learning of
multisensory bindings.

We address Q.2 in section 4 by demonstrating that the
recurrent GWR network learns prototypes of multisensory
bindings, which allows us to reconstruct auditory information
from visual stimuli and vice versa. For example, when perceiving
the sound of a cat, we expect the model to reconstruct the image
of a cat, while when a dog enters a scene, the sound of the
dog will be reconstructed. By extending the GWR association
mechanism, we expect the model to be able to create concept-
level bindings. Specifically, we hypothesize that by activating
the neural units that represent prototypical concepts such as
cats, dogs, and horses, the model will reconstruct prototypical
auditory and visual stimuli in the absence of any sensory input.
Our novel method is inspired by the multisensory imagery effect
(Spence and Deroy, 2013), i.e., the ability of humans to create
concepts from underspecified stimuli, and to use the abstract
concepts to reconstruct unisensory information to enhance the
overall perception.

We address Q.3 in sections 5 and 6, where we demonstrate
the expectation learning effect can be used to improve the
classification performance and hypothesize that our approach
improves unisensory classification by reconstructing unisensory
stimuli based on multisensory bindings.

To the best of our knowledge, there exists no standard
benchmark to evaluate audio-visual bindings. Therefore, we
propose an ablation study that includes a series of binding
and classification experiments to address Q.4, and to assess
the binding mechanism by measuring if and to what extent
the expectation learning mechanism improves unisensory
classification (see section 5). Herein, we employ the Youtube
AudioSet corpus (Gemmeke et al., 2017) which contains
human-labeled samples of Youtube videos based on the audio
information. We select the animal subset of the corpus consisting
of 44k samples to train the multisensory bindings in an
unsupervised manner and exploit the multisensory bindings by
using them to train a classifier for 24 different animal classes.
We then employ the classifier to recognize absent stimuli, i.e., to
recognize auditory stimuli when visual stimuli are present and
vice versa.

To confirm our hypotheses, we summarize the results of
our experiments in section 6 and show that the expectation
learning improves the multisensory bindings in order to enhance
the recognition of unisensory stimuli1.We analyze the results
in section 7, providing evidence that correlates our network
behavior with the multisensory imagery effect. Furthermore,
we discuss the capabilities and limitations of our model. We
conclude in section 8 that the expectation learning mechanism
improves the quality of themultisensory association by providing
a better unisensory classification.

2. RELATED WORK

Most existing computational models for multisensory learning
apply explicitly weighted connections, and the sensor
information is integrated using early (Wei et al., 2010) or
late (de Boer et al., 2016; Liu et al., 2016) fusion techniques. The
weighted connections are usually tuned in a data-driven manner,
whereby the data distribution directly affects the multisensory
binding. Such existing methods have the drawback that they
require supervision and that they are sensitive to the training
data distribution when performing the multisensory integration.
There exist computational models that are neurocognitively
more accurate in the sense that they consider unisensory biases
(Pouget et al., 2002; Rowland et al., 2007; Kayser and Shams,
2015). Such models, although similar to the brain’s neural
behavior, are usually not feasible to be used on real-world data,
as they are mostly applied to simple stimuli scenarios, and do
not scale well. There exist other complex models that implement
attention mechanisms based on multisensory information, but
the most recent focus in this area is on data-driven fusion models
(Barros et al., 2017; Hori et al., 2017; Mortimer and Elliott,
2017). The introduction of expectation learning would give these

1Note that our approach is different frommultimodal classification where multiple

sensory modalities are necessary to recognize the class of a stimulus.
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models the ability to adapt better to novel situations and learn
from their own errors in an online and continuous way.

Recent contributions build on data-driven learning for
multisensory representations (Arandjelović and Zisserman,
2017a,b; Kim et al., 2018; Owens and Efros, 2018; Senocak et al.,
2018). Such solutions employ transfer learning and attention
mechanisms to improve unisensory recognition and localization.
Although they provide solid results in these specific tasks, they
rely on strongly labeled data points or have extensive training
procedures that are not suitable for online learning. In particular,
the work by Arandjelović and Zisserman (2017a) introduces
a data-driven model for multisensory binding with bottom-up
modulation for spatial attention. Their model uses the network’s
activity to spatially identify which part of an image a certain
sound is related to. Although the model is data-driven, the
authors claim that it learns real-world biasing on a multisensory
description for unisensory retrieval by using a large amount of
real-world training data. Their results show that the model can
use multiple unisensory channels to compensate absent ones and
identify congruent and incongruent stimuli.

A similar approach was presented by Zhou et al. (2017), who
focus on audio generation. Their model relies on a sequence-
to-sequence generator to associate audio events with visual
information. The same generator is used to generate audio for
newly presented video scenes. This requires an external teacher
to identify congruent and incongruent stimuli which makes it
impossible to be used in online learning scenarios.

All approaches that we summarized in this section depend
on end-to-end learning that is not continuous. That is, the
approaches cannot learn novel information without forgetting

old information or extensively retraining the entire model. In the
following, we discuss our GWR approach to address this issue.

3. MULTISENSORY TEMPORAL BINDING

We divide the conceptual design of our model into two tasks:
first, we propose a hybrid neural network that learns, in a fully
unsupervised manner, to associate co-occurrent multisensory
stimuli through a novel expectation learning mechanism. Once
this network is trained, and the multisensory bindings are
learned, we evaluate the learned bindings using a supervised
classifier. This is necessary to guarantee that (1) our model
learns in an unsupervised manner, without interference of giving
labels, and (2) we provide a comparable objective metric for
performance evaluation.

In our first task, we focus on multisensory binding
learning. Our novel model learns based on the co-occurrence
association enhanced through the reconstruction of expected
stimuli.To reconstruct auditory and visual stimuli, we develop
neural autoencoder networks for each of the unisensory
channels. These networks encode high-dimensional data into
a latent representation and reconstruct real-world audio-
visual information. The binding between auditory and visual
information is realized by means of a recurrent GWR network.
The GWR is a self-organizing network that learns to create
conceptual prototypes of data distributions in an unsupervised,
incremental manner that allows for continuous learning. To
address the temporal aspects of coincident binding, we extend
the Gamma-GWR (Parisi and Wermter, 2017) which endows
prototype neurons with a number of temporal contexts to

FIGURE 1 | An overview of the proposed multisensory binding model with the audio/visual autoencoder structures and the recurrent self-organizing binding layer. The

auditory autoencoder uses a CBHG network to reconstruct audio signals from the Mel Spectrum (Lee et al., 2017).
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learn the spatiotemporal structure of the data distribution.
An overview of our multisensory binding model is illustrated
in Figure 1.

In the second task, we train and evaluate a supervised
classifier to evaluate the bindings. Note that the classifier does
not participate in the learning process of the multisensory
bindings; the learning of the bindings in the first tasks remains
unsupervised, and no learning feedback is sent from it to the
proposed model. Therefore, the learned bindings represent the
multisensory co-occurrence and are not biased by supervision.

3.1. Visual Channel
To process high-level information by the visual channel, we drew
inspiration from a variational autoencoder (VAE) (Kingma and
Welling, 2013) which enforces the encoded latent variables to
follow a Gaussian distribution.

In our experimental setup, the VAE produced better results
when recognizing the animals from the AudioSet dataset
when compared with normal convolution autoencoders. Recent
studies demonstrate that the VAE learns how to extract
useful information for image classification better than other
unsupervised approaches on complex backgrounds (Li et al.,
2017). Also, the embedding learned by the VAE showed to
be more robust against noisy information and multi-view
variance (Huang et al., 2018).

We assume that in our scenario, the improvement achieved
with the VAE is due to the great variance on the image quality,
perspective and resolution of the visual information of the
images from the AudioSet dataset. Most likely the VAE learns to
represent the important characteristics of the animals through
the latent vector sampling instead of learning to reconstruct
the entire encoded image. To train the VAE, we implemented a
composite loss function based on the image reconstruction error
and the Kullback-Leibler (KL) divergence between the encoded
representation and the Gaussian unit. This composite loss
function is important to enforce that the encoded representations
learn general concepts of the animals instead of reconstructing
input images from memorized parameters.

Our model receives as input a color image with a resolution
of 128 × 128 × 3. The input data is processed by our encoding
architecture which is composed of a series of four convolution
layers, with a stride of 2 × 2, and kernel sizes of the dimension
3 × 3. The first convolution layer has three channels and the
subsequent three layers have 64 filters. The latent representation
starts with a fully connected layer with 128 units. The VAE
computes the standard deviation and mean of this layer’s output,
generates a Gaussian distribution from it and samples an input
for another fully connected hidden layer with 128 units, which is
the final latent representation. The decoding layer has the same
structure as our encoding layer but in the opposite direction and
applying transpose convolutions.

We optimized the VAE using a tree-structured Parzen
Estimator (TPE)(Bergstra et al., 2011) in order to minimize the
visual reconstruction error. Table 1 exhibits all the important
parameters used to train our vision channel. We used the ADAM
optimizer with an adaptive learning rate.

TABLE 1 | Training parameters of the vision channel.

Parameter Value

Epochs 200

Batch size 32

Optimizer ADAM

Initial learning rate 0.05

ADAM beta1 0.9

ADAM beta2 0.999

3.2. Auditory Channel
For the auditory channel, we implement a recurrent autoencoder
based on Gated Recurrent Units (GRU) (Cho et al., 2014).
Different from the vision channel, the auditory channel processes
temporal information. As we have demonstrated in previous
work, the auditory processing with autoencoders based on GRUs
(Eppe et al., 2018a) obtained better representations than the
ones with VAEs. We assume that this happens due to recurrent
units allowing us to process and to reconstruct audio with better
quality than when using non-recurrent layers since auditory
signals are sequential, and each audio frame depends highly on
previous contextual information (Eppe et al., 2018b).

As input and output of the auditory autoencoder, we compute
a Mel spectrum which we generate from the raw waveform. To
reconstruct the audio from the output Mel spectrum, we employ
a convolutional bottleneck CBHG network model (Lee et al.,
2017) which consists of a 1-D convolutional bank, a highway
network and a bi-directional GRU layer. This network receives
as input the Mel spectrum, and outputs a linear frequency
spectrum which is then transformed into waveform using the
Griffin Lim algorithm (Griffin and Jae Lim, 1984). This approach
of transforming Mel coefficients into a linear spectrum and
then into waveform achieved better audio synthesis quality than
performing Griffin Lim on the Mel spectrum directly (Wang
et al., 2017; Eppe et al., 2018a), and it improves the audio data
of our expectation learning approach.

We performed hyperparameter optimization for the
autoencoder and found that an audio spectrum window
length of 50 ms, a window shift of 12.5 ms with 80 Mel
coefficients and 1,000 linear frequencies yield best reconstruction
results. We also found that 80 units for the dense bottleneck layer
and two GRU layers with 128 units each for both the encoder
and decoder network are sufficient for achieving a high audio
quality. An additional number of Mel coefficients, GRU layers,
and neural units did not significantly improve the reconstruction
quality. The number of bottleneck units is important for the
multisensory binding as it determines the number of connections
between the binding layer and the audio encoder and decoder.

Similarly to the vision channel, we optimize the auditory
channel using a tree-structured Parzen Estimator (TPE) (Bergstra
et al., 2011) in order to minimize the auditory reconstruction
error. Table 2 exhibits the important parameters used to train
our auditory channel. We follow the same training procedure as
the vision channel, and also used the ADAM optimizer with an
adaptive learning rate.
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TABLE 2 | Training parameters of the auditory channel.

Parameter Value

Epochs 250

Batch size 32

Optimizer ADAM

Initial learning rate 0.01

ADAM beta1 0.9

ADAM beta2 0.999

3.3. Self-Organizing Temporal Binding
To learn coincident bindings between audio and visual stimuli,
we use an unsupervised binding layer. An unsupervised learning
strategy allows us to learn an online manner, where the bindings
are created based on the data distribution. Also, excluding an
external teaching signal allows the bindings to learn how to best
represent the co-incident multisensory stimuli. In this regard,
Growing-When-Required (GWR) networks have been recently
explored as continual learning mechanism (Parisi et al., 2019).
Their capability to grow and shrink, adding and removing
neurons while they are learning, made them experts on avoiding
catastrophic forgetting (Soltoggio et al., 2018). Such networks,
however, are experts on learning topological relations between
the input data. To be able to process co-incident multisensory
stimuli, we propose here the implementation of a recurrent GWR
layer which receives as input the latent representations of our
visual and auditory channels which are processed coincidentally,
and learn how to create prototype neurons which represent the
multisensory binding.

To synchronize the two data streams, we resample video
and audio streams to a temporal resolution of 20 frames per
second, i.e., each video frame is associated with 12.5 ms of
auditory information. In contrast to traditional self-organizing
models with winner-takes-all dynamics for the processing of
spatial patterns, the Gamma-GWR (Parisi and Wermter, 2017)
computes the winner neuron taking into account the activity of
the network for the current input and a temporal context. Each
neuron of the map consists of a weight vector wj and a number

K of context descriptors ckj (with wj, c
k
j ∈ R

n). As a result,

recurrent neurons in the map will encode prototype sequence-
selective snapshots of the input. Given a set of N neurons, the
best-matching unit (BMU), b, with respect to the input x(t) ∈ R

n

is computed as:

b = argmin
j∈N

(
α0‖x(t)− wj‖

2 +

K∑

k=1

αk‖Ck(t)− cj,k‖
2

)
, (1)

Ck(t) = β · wI(t−1) + (1− β) · cI(t−1),k−1, (2)

where αi and β ∈ (0; 1) are constant values that modulate the
influence of the current input with respect to previous neural
activity, wI(t − 1) is the weight of the winner neuron at t − 1,
and Ck ∈ R

n is the global context of the network (Ck(t0) = 0).
New connections are created between the BMU and the

second BMU for any given input. When a BMU is computed,
all the neurons the BMU is connected to are referred to as

its topological neighbors. Each neuron is equipped with a
habituation counter hi ∈ [0, 1] expressing how frequently it
has fired based on a simplified model of how the efficacy of a
habituating synapse reduces over time. In the Gamma-GWR,
the habituation rule is given by 1hi = τi · κ · (1 − hi) − τi,
where κ and τi are constants that control the decreasing behavior
of the habituation counter (Marsland et al., 2002). We say that
a neuron is habituated, if its habituation counter hi is smaller
than a given habituation threshold hT . The network is initialized
with two neurons and, at each learning iteration, it inserts a new
neuron whenever the activity of the network a(t) of a habituated
neuron is smaller than a given threshold aT , i.e., a new neuron r
is created if a(t) < aT and hb < hT . The training of the neurons
is carried out by adapting the BMU b and its topological neurons
n according to:

1wi = ǫi · hi · (x(t)− wi), (3)

1ck,i = ǫi · hi · (Ck(t)− ck,i), (4)

where ǫi is a constant learning rate. The learning process of the
Gamma-GWR is unsupervised and driven by bottom-up sensory
observations, thereby either allocating new neurons or adapting
existing ones in response to novel input. In this way, fine-grained
multisensory representations can be acquired and fine-tuned
through experience.

As an extension of the Gamma-GWR, we implement temporal
connections for the purpose of predicting future frames from
an onset frame. The temporal connections are implemented as
sequence-selective synaptic links that are incremented between
those two neurons that are consecutively activated.When the two
neurons i and j are activated at time t − 1 and t, respectively,
their synaptic link P(i,j) is strengthened. Thus, at each learning
iteration, we set 1P(I−1,b) = 1, where I − 1 and b are the indexes
of the BMUs at time t− 1 and t, respectively. As a result, for each
neuron i ∈ N, we can retrieve the next neuron v of a prototype
sequence by selecting

v = arg max
j∈N\i

P(i,j). (5)

This approach results in the learning of trajectories of neural
activations that can be reconstructed in the absence of sensory
input. We also optimized the parameters of the Gamma-GWR
using a tree-structured Parzen Estimator (TPE) (Bergstra et al.,
2011) minimizing the network’s quantization error. Table 3

exhibits the parameters used to train our Gamma Growing-
When-Required (Gamma-GWR) network. We use a small
insertion threshold, which helps the network to maintain a
limited number of neurons, reinforcing the generation of highly
abstract clusters.

3.4. Supervised Classifiers
The supervised classifiers were implemented to generate an
objective performance metric of the unsupervised learning
mechanism. In this regard, they are trained in a separated training
step which does not influence the multisensory binding learning.
We provide two classifiers, one for vision and one for audio, to
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TABLE 3 | Training parameters of the self-organizing temporal binding layer.

Parameter Value

Epochs 50

Insertion threshold 0.01

Context size 4

Initial Gamma Weights 0.64391426, 0.23688282, 0.08714432, 0.0320586

βb 0.5

ǫb 0.2

ǫn 0.003

measure the unisensory recognition capabilities of the learned
multisensory bindings.

Each classifier receives as input the audio or visual part of
the BMU, depending on which unisensory stimuli we want to
classify, of the GWR which represents the perceived stimuli.
Each classifier is composed of a dense layer with 128 units
and an output softmax layer. Similarly to the autoencoders
and the GWR, we optimized the classifiers to maximize the
recognition accuracy using a tree-structured Parzen Estimator
(TPE) (Bergstra et al., 2011) and use the optimal parameters
through all of our experiments (see Table 3). An overview of
the proposed multisensory binding model with the audio/visual
autoencoder structures and the recurrent self-organizing binding
layer. The auditory autoencoder uses a CBHG network to
reconstruct audio signals from the Mel Spectrum.

4. EXPECTATION LEARNING

As the self-organizing layer is updated in an unsupervised
Hebbian manner, it learns to associate audio-visual stimuli
online. This implies that the binding process is entirely co-
occurrent-driven, without the necessity of external supervision
other than temporal co-occurrence. More specifically, after
finding the BMU related to a unimodal perceived stimulus, the
associated absent stimuli will be reconstructed based on the
prototypical concept that this neuron learned. This is possible
because each neuron in the self-organizing layer processes the
union of the auditory and visual encodings at training time,
where both signals are provided.

The reconstruction and expectation learning capability is
the basis for our novel proposal of a expectation learning
mechanism for the self-organizing layer.First, we pre-train our
self-organizing binding to generate prototype neurons with
strong audio-visual encodings. This allows the model to learn a
prior association between auditory and visual concepts. Second,
after the network has learned these associations, we use unseen
data points to fine-tune the bindings with the expectation
learning through the update of the learned associations using the
reconstructed stimuli.

The network encodes a visual or auditory stimulus (s), and
computes the BMU (bav) using only the associated auditory or
visual weights as follows:

bav = argmin
j∈N

(
α0‖s(t)− w̃s

j‖
2 +

K∑

k=1

αk‖C̃
s
k(t)− c̃j,k‖

2

)
, (6)

where w̃s
j represents the audio or visual representation encoded

on the neuron’s weights. In this case, the global context of the
network at any time step (C̃

s
k(t)) is represented by the stimulus

encoding; the same happens with the BMU context (̃cj,k). We
then use the auditory and vision parts of the multisensory
representation stored on bav to reconstruct the auditory (a′) and
visual (v′) information using the specific channel decodingDv for
vision and Da for audio:

a′ = Da(ba),

s′ = Dv(bv).
(7)

When the model processes the perceived auditory and visual
signals, it creates two extra pairs of multisensory stimuli by
combining the perceived auditory and visual ones with the
reconstructed auditory and visual stimuli. We bind the encoded
information of the reconstructed audio-visual information to
the originally perceived stimuli and re-train the self-organizing
layer with the new pairs. By pairing the perceived and the
reconstructed stimuli representations, we enforce the self-
organizing layer to learn general concepts, and not specific
instances of the animals. In consequence, animals which sound
similar will be paired together, and connections of coincident
stimuli will be learned with relatively small amounts of training
data. Inconsistencies will cause the model to pair different audio-
visual stimuli, thus creating new prototype neurons, but these will
be forgotten quickly by the self-organizing layer as they occur
less frequently.

5. EXPERIMENTAL SETUP

Our goal is to evaluate the performance of the model to
reconstruct audio/visual stimuli based on unimodal perception,
and to evaluate the conceptual relations learned by the
network. Although there exist several datasets with multimodal
information, the animal subset of the AudioSet corpus2

(Gemmeke et al., 2017) presents a unique advantage for our
evaluation: It contains natural scenarios with different levels
of conceptual binding, including broader prototype associations
like images of cats linked to meowing, but also more fine-grained
associations like high-pitched barking linked to small dogs.

Each video in the dataset has a duration of 10 s and it
is possible that, e.g., there is both a cat and a dog present
in the video. As there are no standard published results of
this specific task for the AudioSet corpus, we run a series
of baseline recognition experiments that serve as the main
comparison to measure our model’s performance. To obtain a
precise measure of the contribution of the expectation learning,
we decide to cluster some overlapping classes and use 16
single labels, one per video: Cats (“Cat” + “Meow” + “Purr”),
Dogs (“Bark” + “Dog” + “Howl”), Pigs (“Oink” + “Pig”), Cows
(“Moo” + “Cattle, bovinae”), Owls (“Owl” + “Coo”), Birds,
Goats, Bee (“Bee, wasp, etc.”), Chickens (“Chicken, rooster”),
Ducks (“Duck”), Pidgeons (“Pidgeon, dove”), Crows (“Crow”),
Horses (“Horse”), Frogs (“Frogs”), Flies (“Fly, housefly”), Lions

2https://research.google.com/audioset/
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(“Roaring cats (lions, tigers)”). We use the unbalanced training
subset consisting of approximately 43,500 videos to train our
model and evaluated it with the test subset consisting of
approximately 20,000 videos. The labels of this dataset are
crowdsourced based on the video descriptions.

We perform two sets of experiments: one to evaluate the
contribution of the expectation learning to the multisensory
binding and one to compare the performance of our
model with currently successful deep learning models for
unisensory recognition.

The first set of experiments is divided into three steps.
In EXP 1.1, we train the multisensory bindings of the GWR
using half of the training subset in order to guarantee that the
model learns strong audio-visual prior bindings. In EXP 1.2,
we continue the training of the EXP 1.1 network using the
other half of the training subset. This experiment serves as a
baseline for learning bindings without expectation and as a main
comparison point for the contribution of the expectation learning
mechanism. Finally, in EXP 1.3, we repeat the continuation of the
training of the EXP 1.1 network with the other half of the training
subset but now using the expectation learning mechanism when
creating the GWR associations.

To evaluate the performance contribution of each of our
experimental steps on the association learning we use the
implemented supervised classifiers for each of the channels
(auditory and visual). To evaluate the capability of the model
to learn meaningful associations, we always classify an absent
stimulus, i.e., when perceiving an auditory stimulus, the network
uses the associated visual stimulus as input to the classifier and
vice versa.This means that, when perceiving 50ms of audio, we
have an associated representation of 4 frames and vice versa. As
the videos from the AudioSet dataset have a length of 10s, we use
a simple voting scheme to obtain the final label. For every 50 ms
of audio and every 4 frames per video, we produce one label and
after having all the labels for a 10 s video, we select the one which
appears most often.

Our second set of experiments is designed to evaluate how
our proposed model compares with deep learning networks for
auditory and visual stimuli recognition. In EXP 2.1, we compare
our model with the Inception V3 network (Ioffe and Szegedy,
2015) for the visual stimuli, and in EXP 2.2 with the SoundNet
(Aytar et al., 2016) for the auditory stimuli. These two models
present competitive results on different audio-visual recognition
tasks (Jansen et al., 2018; Jiang et al., 2018; Kiros et al., 2018;
Kumar et al., 2018). For all experiments, we trained themodels 10

TABLE 4 | Mean accuracy, in percentage, and standard deviation of our

experiments.

Exp. Model Audio Vision

EXP 1.1 Prior binding association 58.5 (3.1) 69.0 (3.9)

EXP 1.2 Without expectation 66.4 (2.4) 86.8 (3.2)

EXP 1.3 With expectation 70.8 (3.2) 89.8 (1.9)

EXP 2.1 Inception V3 (Ioffe and Szegedy, 2015) – 89.4 (1.3)

EXP 2.2 SoundNet (Aytar et al., 2016) 68.5 (2.4) –

times and determined the mean accuracy and standard deviation
for eachmodality.We used the same 10% of the training subset as
a validation set for each experiment, and used an early stopping
mechanism based on the accuracy of the validation subset to
prevent overfitting.

6. RESULTS

Our final results are depicted in Table 4. Our first experiment,
EXP 1.1, demonstrates that training the model with half of
the data, to create strong binding associations, is enough
to obtain a baseline performance. Continuing to train the
model using standard GWR associations (EXP 1.2) shows the
expected improvement, i.e., an 8% gain in the recognition
accuracy for audio and more than 17% of accuracy gain for
vision when compared to EXP 1.1. The results of EXP 1.3 show
that the expectation mechanism improves the recognition
of unisensory stimuli, when compared to EXP 1.2. We
obtained an improvement of more than 4% on audio and
3% on vision.

The performance of the network follows the general behavior
of other models to recognize vision stimuli better than auditory
stimuli. This effect is demonstrated by the results of the
Inception-V3 (EXP 2.1) and the SoundNet (EXP 2.2) models.
This is probably due to the dataset presenting challenging audio
stimuli with much background noise.

When compared with Inception-V3 (EXP 2.1) and SoundNet
(EXP 2.2), our expectation model (EXP 1.3) presents better
auditory recognition, and slightly better vision recognition
performance. The auditory stimulus is more affected, as
it presents much more noisy information. In the latter
case, the network relies more on the visual stimuli and
creates neurons with strong visual encoding. This effect is
represented by creating neurons with similar visual encoding
associated with the auditory encoding. When training with
expectation learning, the network creates an average of 5,400
neurons, while when training without the expectation, it creates
4,000 neurons.

The latent representations from the auditory and visual
channels encode different characteristics of the stimulus and are
then connected by our self-organizing layer. The expectation
learning enforces the generation of robust bindings, especially
for distinct animals. For example, the network eventually
created specific neurons for cats and dogs and shared neurons
for chickens and ducks. This explains the improvement
of the recognition of the reconstructed stimuli of easily
separable animals, as illustrated by the differences between
the accuracy differences of the cats and horses categories
in Figure 2.

This behavior can be easily observed when comparing
the mean accuracy and standard deviation per class of
our baseline experiments (SoundNet and Inception V3) with
the detailed accuracy per class obtained by our expectation
learning model (see Table 5). Animal classes which more
distinct between each other presents a better accuracy and
standard deviation.
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FIGURE 2 | Mean accuracy per class, in percentage, of the reconstructed absent stimuli. We compare audio and visual reconstruction with the results when training

the network with all the samples of the training set.

TABLE 5 | Mean accuracy, in percentage, and standard deviation of our experiments per classification class.

Animal class Audio Vision

– SoundNet Without With Inception Without With

Expectation Expectation V3 Expectation Expectation

Cats 90.2 (3.2) 87.6 (3.2) 93.8 (2.1) 94.8 (2.4) 93.8 (1.9) 95.6 (2.1)

Dogs 92.5 (4.1) 89.5 (3.6) 94.4 (2.9) 96.7 (2.5) 94.6 (2.2) 97.5 (1.8)

Pigs 80.7 (3.7) 84.6 (3.2) 86.5 (3.7) 95.6 (3.4) 87.5 (1.4) 93.4 (1.7)

Cows 83.8 (3.5) 85.9 (4.1) 86.7 (2.7) 94.8 (1.7) 90.4 (1.6) 93.4 (2.8)

Owls 71.8 (1.4) 71.8 (3.7) 74.9 (2.9) 87.8 (1.0) 80.7 (1.8) 84.7 (1.9)

Birds 62.7 (2.2) 60.1 (2.6) 63.7 (1.9) 90.6 (3.6) 86.7 (4.7) 89.7 (3.7)

Goats 60.2 (3.9) 50.2 (1.6) 60.7 (3.7) 95.8 (2.1) 90.4 (2.8) 93.2 (1.9)

Bee 63.1 (1.1) 53.7 (2.7) 62.1 (3.9) 91.2 (4.7) 89.5 (2.7) 91.7 (3.1)

Chickens 59.8 (3.0) 63.8 (1.9) 60.7 (2.1) 85.1 (1.7) 93.8 (1.7) 95.7 (1.9)

Ducks 68.7 (4.1) 66.9 (1.9) 70.5 (2.8) 96.8 (2.3) 79.5 (1.6) 84.6 (2.9)

Pidgeons 76.8 (2.6) 83.6 (4.7) 83.8 (2.6) 92.5 (3.1) 92.6 (2.7) 94.7 (2.9)

Crows 67.9 (1.8) 62.1 (1.9) 68.3 (2.2) 91.3 (2.7) 90.1 (2.0) 93.4 (2.8)

Horses 43.6 (3.7) 32.8 (2.6) 41.6 (3.9) 69.8 (4.1) 63.7 (3.1) 67.8 (1.8)

Frogs 57.8 (1.4) 51.8 (3.7) 59.4 (2.7) 79.8 (2.5) 80.6 (2.7) 82.1 (3.4)

Flies 53.1 (1.3) 57.8 (3.0) 58.3 (2.5) 89.8 (1.9) 84.9 (1.6) 86.7 (2.6)

Lions 63.5 (3.4) 60.3 (2.9) 68.5 (2.6) 94.5 (2.5) 90.4 (2.4) 93.2 (3.8)

7. DISCUSSION

As the self-organizing layer is updated in an unsupervised
manner, it learns to associate audio-visual stimuli online.
Moreover, by activating the BMU related to a specific perceived
stimulus, the associated absent stimulus can be reconstructed
based on the concept that this neuron learned. However, the
reconstructed data is, of course, not identical to the original data.
For example, when processing an image of a dog, the network
will reconstruct an appropriate barking sound, but not exactly the
sound that this specific dog would make. This mimics precisely

the multisensory imagery effect (Spence and Deroy, 2013) of
humans, who tend to simplify and cluster absent stimuli when
asked to reconstruct them. For example, every time one sees a
small yellow bird, the person will expect it to sound very similar
to the ones she/he has seen before. This is an important effect
that helps our model to reconstruct animal concepts instead of
specific instances.

To provide an indication of this effect, and as an additional
indicator for multisensory concept formation, we performed an
additional overlapping analysis to estimate how well the model
is binding and clustering audio-visual information. To this end,
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FIGURE 3 | Example of the reconstruction output. The left image displays the audio reconstruction when the visual stimulus is perceived. The right image displays the

vision reconstruction when the audio stimulus is perceived.

we first train the model with the expectation learning mechanism
and then we classify every single neuron of the GWR using
both audio and visual classifiers which generate two labels for
each neuron: one for auditory and one for visual information.
The total overlap between visual and auditory labels for each
prototype neuron in our self-organizing layer is 93%, suggesting
that our prototype neurons are very concise when storing audio-
visual information. Performing the same experiment on the
network training without the expectation mechanism gave us an
overlap of 85% for the neurons.

Another effect that we investigate is multisensory
correspondence (Spence and Driver, 2000). The effect causes
humans not only to associate dogs with barking but also,
more specifically, small dogs with high-pitched barking. The
associations between the stimuli are continuously reinforced
when perceptive stimuli are experienced. We observed this
effect in some examples where the variety of animals was higher,
such as dogs. We illustrate one of these examples in Figure 3.
The figure depicts the reconstruction of visual information
based on an auditory stimulus of different dogs barking. A
high-pitched barking generates images related to a small dog.
Furthermore, when the simultaneous barking of more than one
dog is processed, the network generates an image of several dogs.
We expect this effect to become more visible with larger datasets
that contain more diverse samples.

The cognitive plausibility of our approach is underpinned
by an important limitation: Both multisensory imagery and
multisensory correspondence only occurs when both auditory
and visual stimuli can be understood and represented as a
simplified concept. This also holds for human cognition: For
example, humans cannot reconstruct precisely the characteristics
of how the voice of a person will sound when reading a text. Our
experiments demonstrate that ourmodel learns to associate high-
level animal concepts, and even multisensory correspondences,
but could not be applied to reconstruct information that demands
a much higher precision, i.e., person identification.

8. CONCLUSION

Multisensory binding is a crucial aspect of how humans
understand the world. Consequently, the development of
computational systems able to adapt this aspect into information

processing is important to many research fields. An extensive
number of models has been proposed that incorporate different
aspects of multisensory binding. However, our approach
combines several novelties. It combines a Grow-When-Required
(GWR) network with convolutional autoencoders to realize
unsupervised expectation learning. In addition, we propose to
exploit expectation learning by reconstructing stimuli that can be
used as additional training data to generate a significant positive
effect on perceptive tasks like classification. We, therefore,
provide a novel proof of concept for a data augmentation
mechanism to improve the accuracy and performance of
unimodal classification methods.

An interesting future research direction is to also address
spatial expectation, because this would provide a complementary
component to integrate contextual, temporal, and spatial
correspondence. Realizing the transfer of learned multisensory
bindings is another unexplored research area that we plan
to investigate as a follow-up to this work. To model the
multisensory characteristics of the classification, in particular
aspects regarding multisensory conflict resolution and fusion
would be an interesting next step as well.
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