
ORIGINAL RESEARCH
published: 11 December 2019
doi: 10.3389/frobt.2019.00125

Frontiers in Robotics and AI | www.frontiersin.org 1 December 2019 | Volume 6 | Article 125

Edited by:

Fabrizio Riguzzi,

University of Ferrara, Italy

Reviewed by:

Stefania Costantini,

University of L’Aquila, Italy

Cristian Molinaro,

University of Calabria, Italy

*Correspondence:

Mohan Sridharan

m.sridharan@bham.ac.uk

Specialty section:

This article was submitted to

Computational Intelligence in

Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 18 September 2019

Accepted: 05 November 2019

Published: 11 December 2019

Citation:

Riley H and Sridharan M (2019)

Integrating Non-monotonic Logical

Reasoning and Inductive Learning

With Deep Learning for Explainable

Visual Question Answering.

Front. Robot. AI 6:125.

doi: 10.3389/frobt.2019.00125

Integrating Non-monotonic Logical
Reasoning and Inductive Learning
With Deep Learning for Explainable
Visual Question Answering

Heather Riley 1 and Mohan Sridharan 2*

1 Electrical and Computer Engineering, The University of Auckland, Auckland, New Zealand, 2 Intelligent Robotics Lab, School

of Computer Science, University of Birmingham, Birmingham, United Kingdom

State of the art algorithms for many pattern recognition problems rely on data-driven

deep network models. Training these models requires a large labeled dataset and

considerable computational resources. Also, it is difficult to understand the working of

these learned models, limiting their use in some critical applications. Toward addressing

these limitations, our architecture draws inspiration from research in cognitive systems,

and integrates the principles of commonsense logical reasoning, inductive learning, and

deep learning. As a motivating example of a task that requires explainable reasoning

and learning, we consider Visual Question Answering in which, given an image of a

scene, the objective is to answer explanatory questions about objects in the scene, their

relationships, or the outcome of executing actions on these objects. In this context, our

architecture uses deep networks for extracting features from images and for generating

answers to queries. Between these deep networks, it embeds components for non-

monotonic logical reasoning with incomplete commonsense domain knowledge, and

for decision tree induction. It also incrementally learns and reasons with previously

unknown constraints governing the domain’s states. We evaluated the architecture in

the context of datasets of simulated and real-world images, and a simulated robot

computing, executing, and providing explanatory descriptions of plans and experiences

during plan execution. Experimental results indicate that in comparison with an “end

to end” architecture of deep networks, our architecture provides better accuracy on

classification problems when the training dataset is small, comparable accuracy with

larger datasets, and more accurate answers to explanatory questions. Furthermore,

incremental acquisition of previously unknown constraints improves the ability to answer

explanatory questions, and extending non-monotonic logical reasoning to support

planning and diagnostics improves the reliability and efficiency of computing and

executing plans on a simulated robot.

Keywords: nonmonotonic logical reasoning, inductive learning, deep learning, visual question answering,

commonsense reasoning, human-robot collaboration

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2019.00125
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2019.00125&domain=pdf&date_stamp=2019-12-11
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.sridharan@bham.ac.uk
https://doi.org/10.3389/frobt.2019.00125
https://www.frontiersin.org/articles/10.3389/frobt.2019.00125/full
http://loop.frontiersin.org/people/476186/overview

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

1. INTRODUCTION

Deep neural network architectures and the associated algorithms
represent the state of the art for many perception and control
problems in which their performance often rivals that of human
experts. These architectures and algorithms are increasingly
being used for a variety of tasks such as object recognition,
gesture recognition, object manipulation, and obstacle avoidance,
in domains such as healthcare, surveillance, and navigation.
Common limitations of deep networks are that they are
computationally expensive to train, and require a large number
of labeled training samples to learn an accurate mapping between
input(s) and output(s) in complex domains. It is not always
possible to satisfy these requirements, especially in dynamic
domains where previously unseen situations often change the
mapping between inputs and outputs over time. Also, it is
challenging to understand or provide an explanatory description
of the observed behavior of a learned deep network model.
Furthermore, it is difficult to use domain knowledge to improve
the computational efficiency of learning these models or the
reliability of the decisions made by these models. Consider
a self-driving car on a busy road. Any error made by the
car, e.g., in recognizing or responding to traffic signs, can
result in serious accidents and make humans more reluctant to
use such cars. In general, it is likely that humans interacting
with a system designed for complex domains, with autonomy
in some components, will want to know why and how the
system arrived at particular conclusions; this “explainability”
will help designers improve the underlying algorithms and their
performance. Understanding the operation of these systems will
also help human users build trust in the decisions made by
these systems. Despite considerable research in recent years,
providing explanatory descriptions of decision making and
learning continues to be an open problem in AI.

We consider Visual Question Answering (VQA) as a
motivating example of a complex task that inherently requires
explanatory descriptions of reasoning and learning. Given a
scene and a natural language question about an image of the
scene, the objective of VQA is to provide an accurate answer
to the question. These questions can be about the presence
or absence of particular objects in the image, the relationships
between these objects, or the potential outcome of executing
particular actions on objects in the scene. For instance, a
system recognizing and responding to traffic signs on a self-
driving car may be posed questions such as “what is the traffic
sign in the image?,” or “what is the meaning of this traffic
sign?,” and a system controlling a robot arm constructing stable
arrangements of objects on a tabletop may be asked “why is
this structure unstable?” or “what would make the structure
stable?” We assume that any such questions are provided as
(or transcribed into) text, and that answers to questions are
also generated as text (that may be converted to speech) using
existing software. Deep networks represent the state of the
art for VQA, but are characterized by the known limitations
described above. We seek to address these limitations by drawing
inspiration from research in cognitive systems, which indicates
that reliable, efficient, and explainable reasoning and learning

can be achieved in complex problems by jointly reasoning with
commonsense domain knowledge and learning from experience.
Specifically, the architecture described in this paper tightly
couples knowledge representation, reasoning, and learning, and
exploits the complementary strengths of deep learning, inductive
learning, and non-monotonic logical reasoning with incomplete
commonsense domain knowledge. We describe the following
characteristics of the architecture:

• For any input image of a scene of interest, Convolutional
Neural Networks (CNNs) extract concise visual features
characterizing the image.
• Non-monotonic logical reasoning with the extracted features

and incomplete commonsense domain knowledge is used to
classify the input image, and to provide answers to explanatory
questions about the classification and the scene.
• Feature vectors that the non-monotonic logical reasoning is

unable to classify are used to train a decision tree classifier
that is also used to answer questions about the classification
during testing.
• Feature vectors not classified by non-monotonic logical

reasoning, along with the output of the decision tree classifier,
train a Recurrent Neural Network (RNN) that is used to
answer explanatory questions about the scene during testing.
• Feature vectors not classified by non-monotonic logical

reasoning are also used to inductively learn, and subsequently
reason with, constraints governing domain states; and
• Reasoning with commonsense knowledge is expanded (when

needed) to support planning, diagnostics, and the ability to
answer related explanatory questions.

This architecture builds on our prior work on combining
commonsense inference with deep learning (Riley and Sridharan,
2018a; Mota and Sridharan, 2019) by introducing the ability to
learn and reason with constraints governing domain states, and
extending explainable inference with commonsense knowledge
to also support planning and diagnostics to achieve any
given goal.

Although we use VQA as a motivating example, it is not
the main focus of our work. State of the art algorithms for
VQA focus on generalizing to images from different domains,
and are evaluated on benchmark datasets of several thousand
images drawn from different domains (Shrestha et al., 2019).
Our focus, on the other hand, is on transparent reasoning and
learning in any given domain in which a large, labeled dataset
is not readily available. Toward this objective, our approach
explores the interplay between non-monotonic logical reasoning,
incremental inductive learning, and deep learning. We thus
neither compare our architecture and algorithms with state of
the art algorithms for VQA, nor use large benchmark VQA
datasets for evaluation. Instead, we evaluate our architecture’s
capabilities in the context of: (i) estimating the stability of
configurations of simulated blocks on a tabletop; (ii) recognizing
different traffic signs in a benchmark dataset of images; and (iii)
a simulated robot delivering messages to the intended recipients
at different locations. The characteristics of these tasks and
domains match our objective. In both domains, we focus on
answering explanatory questions about images of scenes and the

Frontiers in Robotics and AI | www.frontiersin.org 2 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

underlying classification problems (e.g., recognizing traffic signs).
In addition, we demonstrate how our architecture can be adapted
to enable a robot assisting humans to compute and execute plans,
and to answer questions about these plans. Experimental results
show that in comparison with an architecture based only on
deep networks, our architecture provides: (i) better accuracy on
classification problems when the training dataset is small, and
comparable accuracy on larger datasets; and (ii) significantly
more accurate answers to explanatory questions about the scene.
We also show that the incremental acquisition of state constraints
improves the ability to answer explanatory questions, and to
compute minimal and correct plans.

We begin with a discussion of related work in section 2. The
architecture and its components are described in section 3, with
the experimental results discussed in section 4. Section 5 then
describes the conclusions and directions for further research.

2. RELATED WORK

State of the art approaches for VQA are based on deep learning
algorithms (Jiang et al., 2015; Masuda et al., 2016; Malinowski
et al., 2017; Pandhre and Sodhani, 2017; Zhang et al., 2017;
Shrestha et al., 2019). These algorithms use labeled data to
train neural network architectures with different arrangements
of layers and connections between them, capturing the mapping
between the inputs (e.g., images, text descriptions) and the
desired outputs (e.g., class labels, text descriptions). Although
deep networks have demonstrated the ability to model complex
non-linear mappings between inputs and outputs for different
pattern recognition tasks, they are computationally expensive
and require large, labeled training datasets. They also make it
difficult to understand and explain the internal representations,
identify changes that will improve performance, or to transfer
knowledge acquired in one domain to other related domains. In
addition, it is challenging to accurately measure performance or
identify dataset bias, e.g., deep networks can answer questions
about images using question-answer training samples without
even reasoning about the images (Jabri et al., 2016; Teney and
van den Hengel, 2016; Zhang et al., 2017). There is on-going
research on each of these issues, e.g., to explain the operation
of deep networks, reduce training data requirements and bias,
reason with domain knowledge, and incrementally learn the
domain knowledge. We review some of these approaches below,
primarily in the context of VQA.

Researchers have developed methods to understand the
internal reasoning of deep networks and other machine learning
algorithms. Selvaraju et al. (2017) use the gradient in the
last convolutional layer of a CNN to compute the relative
contribution (importance weight) of each neuron to the
classification decision made. However, the weights of neurons
do not provide an intuitive explanation of the CNN’s operation
or its internal representation. Researchers have also developed
general approaches for understanding the predictions of any
given machine learning algorithm. For instance, Koh and Liang
(2017) use second-order approximations of influence diagrams
to trace any model’s prediction through a learning algorithm

back to the training data in order to identify training samples
most responsible for any given prediction. Ribeiro et al. (2016)
developed a framework that analyzes any learned classifier model
by constructing a interpretable simpler model that captures the
essence of the learned model. This framework formulates the
task of explaining the learned model, based on representative
instances and explanations, as a submodular optimization
problem. In the context of VQA, Norcliffe-Brown et al. (2018)
provide interpretability by introducing prior knowledge of scene
structure as a graph that is learned from observations based on
the question under consideration. Object bounding boxes are
graph nodes while edges are learned using an attention model
conditioned on the question. Mascharka et al. (2018) augment
a deep network architecture with an image-space attention
mechanism based on a set of composable visual reasoning
primitives that help examine the intermediate outputs of each
module. Li et al. (2018) introduce a captioning model to generate
an image’s description, reason with the caption and the question
to construct an answer, and use the caption to explain the
answer. However, these algorithms do not support the use of
commonsense reasoning to (i) provide meaningful explanatory
descriptions of learning and reasoning; (ii) guide learning to
be more efficient; or (iii) provide reliable decisions when large
training datasets are not available.

The training data requirements of a deep network can be
reduced by directing attention to data relevant to the tasks at
hand. In the context of VQA, Yang et al. (2016) use a Long
Short-Term Memory (LSTM) network to map the question to
an encoded vector, extract a feature map from the input image
using a CNN, and use a neural network to compute weights for
feature vectors based on their relevance to the question. A stacked
attention network is trained to map the weighted feature vectors
and question vector to the answer, prioritizing feature vectors
with greater weights. Schwartz et al. (2017) use learned higher-
order correlations between various data modalities to direct
attention to elements in the data modalities that are relevant
to the task at hand. Lu et al. (2016) use information from the
question to identify relevant image regions and uses information
from the image to identify relevant words in the question. A co-
attentional model jointly and hierarchically reasons about the
image and the question at three levels, embedding words in a
vector space, using one-dimensional CNNs tomodel information
at the phrase level, and using RNNs to encode the entire question.
A generalization of this work, a Bilinear Attention Network,
considers interactions between all region proposals in the image
with all words in the (textual) question (Kim et al., 2018). A Deep
Attention Neural Tensor Network for VQA, on the other hand,
uses tensor-based representations to discover joint correlations
between images, questions, and answers (Bai et al., 2018). The
attention module is based on a discriminative reasoning process,
and regression with KL-divergence losses improves scalability of
training and convergence. Recent work by Anderson et al. (2018)
combines top-down and bottom-up attention mechanisms, with
the top-down mechanism providing an attention distribution
over object proposals provided by the bottom-up mechanism.

In addition to reducing the training data requirements,
researchers have focused on reducing the number of annotated

Frontiers in Robotics and AI | www.frontiersin.org 3 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

samples needed for training, and on minimizing the bias in
deep network models. In the context of VQA, Lin et al.
(2014) iteratively revise a model trained on an initial training
set by expanding the training set with image-question pairs
involving concepts it is uncertain about, with an “oracle”
(human annotater) providing the answers. This approach reduces
annotation time, but the database includes just as many images
and questions as before. Goyal et al. (2017) provide a balanced
dataset with each question associated with a pair of images that
require different answers, and provide a counterexample based
explanation for each image-question pair. Agrawal et al. (2018),
on the other hand, separate the recognition of visual concepts
in an image from the identification of an answer to any given
question, and include inductive biases to prevent the learned
model from relying predominantly on priors in the training data.

In computer vision, robotics and other applications, learning
from data can often be made more efficient by reasoning with
prior knowledge about the domain. In the context of VQA,
Wang et al. (2017) reason with knowledge about scene objects
to answer common questions about these objects, significantly
expanding the range of natural language questions that can
be answered without making the training data requirements
impractical. However, this approach does not reduce the amount
of data required to train the deep network. Furbach et al.
(2010) directly use a knowledge base to answer questions and
do not consider the corresponding images as inputs. Wagner
et al. (2018), on the other hand, use physics engines and
prior knowledge of domain objects to realistically simulate and
explore different situations. These simulations guide the training
of deep network models that anticipate action outcomes and
answer questions about all situations. Based on the observation
that VQA often requires reasoning over multiple steps, Wu
et al. (2018) construct a chain of reasoning for multi-step and
dynamic reasoning with relations and objects. This approach
iteratively forms new relations between objects using relational
reasoning operations, and forms new compound objects using
object refining operations, to improve VQA performance. Given
the different components of a VQA system, Teney and van den
Hengel (2018) present a meta learning approach to separate
question answering from the information required for the task,
reasoning at test time over example questions and answers to
answer any given question. Two meta learning methods adapt
a VQA model without the need for retraining, and demonstrate
the ability to provide novel answers and support vision and
language learning. Rajani and Mooney (2018) developed an
ensemble learning approach, Stacking With Auxiliary Features,
which combines the results of multiple models using features of
the problem as context. The approach considers four categories
of auxiliary features, three of which are inferred from image-
question pairs while the fourth uses model-specific explanations.

Research in cognitive systems indicates that reliable, efficient,
and explainable reasoning and learning can be achieved by
reasoning with domain knowledge and learning from experience.
Early work by Gil (1994) enabled an agent to reason with first-
order logic representations and incrementally refined action
operators. In such methods, it is difficult to perform non-
monotonic reasoning, or to merge new, unreliable information

with existing beliefs. Non-monotonic logic formalisms have
been developed to address these limitations, e.g., Answer Set
Prolog (ASP) has been used in cognitive robotics (Erdem and
Patoglu, 2012) and other applications (Erdem et al., 2016). ASP
has been combined with inductive learning to monotonically
learn causal laws (Otero, 2003), and methods have been
developed to learn and revise domain knowledge represented as
ASP programs (Balduccini, 2007; Law et al., 2018). Cognitive
architectures have also been developed to extract information
from perceptual inputs to revise domain knowledge represented
in first-order logic (Laird, 2012), and to combine logic and
probabilistic representations to support reasoning and learning
in robotics (Zhang et al., 2015; Sarathy and Scheutz, 2018).
However, approaches based on classical first-order logic are
not expressive enough, e.g., modeling uncertainty by attaching
probabilities to logic statements is not always meaningful. Logic
programming methods, on the other hand, do not support one or
more of the desired capabilities such as efficient and incremental
learning of knowledge, reasoning efficiently with probabilistic
components, or generalization as described in this paper. These
challenges can be addressed using interactive task learning,
a general knowledge acquisition framework that uses labeled
examples or reinforcement signals obtained from observations,
demonstrations, or human instructions (Laird et al., 2017;
Chai et al., 2018). Sridharan and Meadows (2018) developed
such a framework to combine non-monotonic logical reasoning
with relational reinforcement learning and inductive learning
to learn action models to be used for reasoning or learning
in dynamic domains. In the context of VQA, there has been
interesting work on reasoning with learned symbolic structure.
For instance, Yi et al. (2018) present a neural-symbolic VQA
system that uses deep networks to infer structural object-based
scene representation from images, and to generate a hierarchical
(symbolic) program of functional modules from the question. An
executor then runs the program on the representation to answer
the question. Such approaches still do not (i) integrate reasoning
and learning such that they inform and guide each other; or (ii)
use the rich domain-specific commonsense knowledge that is
available in any application domain.

In summary, deep networks represent the state of the art
for VQA and many other pattern recognition tasks. Recent
surveys on VQA methods indicate that despite considerable
research, it is still difficult to use these networks to support
efficient learning, intuitive explanations, or generalization to
simulated and real-world images (Pandhre and Sodhani, 2017;
Shrestha et al., 2019). Our architecture draws on principles
of cognitive systems to address these limitations. It tightly
couples deep networks with components for non-monotonic
logical reasoning with commonsense domain knowledge, and
for learning incrementally from samples over which the learned
model makes errors. This work builds on our proof of concept
architecture that integrated deep learning with commonsense
inference for VQA (Riley and Sridharan, 2018a). It also builds on
work in our research group on using commonsense inference and
learned state constraints to guide deep networks that estimate
object stability and occlusion in images (Mota and Sridharan,
2019). In comparison with our prior work, we introduce a

Frontiers in Robotics and AI | www.frontiersin.org 4 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 1 | Architecture combines the complementary strengths of deep learning, non-monotonic logical reasoning with commonsense domain knowledge, and

decision-tree induction.

new component for incrementally learning constraints governing
domain states, expand reasoning with commonsense knowledge
to support planning and diagnostics, explore the interplay
between the architecture’s components, and discuss detailed
experimental results.

3. ARCHITECTURE

Figure 1 is an overview of our architecture that provides
answers to explanatory questions about images of scenes and
an underlying classification problem. The architecture seeks
to improve accuracy and reduce training effort, i.e., reduce
training time and the number of training samples, by embedding
non-monotonic logical reasoning and inductive learning in a
deep network architecture. We will later demonstrate how the
architecture can be adapted to address planning problems on a
simulated robot—see section 3.5. The architecture may be viewed
as having four key components that are tightly coupled with
each other.

1. A component comprising CNN-based feature extractors,
which are trained and used to map any given image of a scene
under consideration to a vector of image features.

2. A component that uses one of two methods to classify
the feature vector. The first method uses non-monotonic
reasoning with incomplete domain knowledge and the
features to assign a class label and explain this decision. If
the first method cannot classify the image, the second method

trains and uses a decision tree to map the feature vector to a
class label and explain the classification.

3. A component that answers explanatory questions. If non-
monotonic logical reasoning is used for classification, it is also
used to provide answers to these questions. If a decision tree
is instead used for classification, an RNN is trained to map the
decision tree’s output, the image features, and the question, to
the corresponding answer.

4. A component that uses the learned decision tree and the
existing knowledge base to incrementally construct and
validate constraints on the state of the domain. These
constraints revise the existing knowledge that is used for
subsequent reasoning.

This architecture exploits the complementary strengths
of deep learning, non-monotonic logical reasoning, and
incremental inductive learning with decision trees. Reasoning
with commonsense knowledge guides learning, e.g., the
RNN is trained on (and processes) input data that cannot be
processed using existing knowledge. The CNNs and RNN can
be replaced by other methods for extracting image features and
answering explanatory questions (respectively). Also, although
the CNNs and RNN are trained in an initial phase in this
paper, these models can be revised over time if needed. We
hypothesize that embedding non-monotonic logical reasoning
with commonsense knowledge and the incremental updates
of the decision tree, between the CNNs and the RNN, makes
the decisions more transparent, and makes learning more time
and sample efficient. Furthermore, the overall architecture and

Frontiers in Robotics and AI | www.frontiersin.org 5 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 2 | Illustrative images of structures of blocks of different colors and sizes; these images were obtained from a physics-based simulator for the SS domain.

FIGURE 3 | Illustrative images of traffic signs from the BelgiumTS dataset (Timofte et al., 2013).

methodology can be adapted to different domains. In this paper,
we will use the following two domains to illustrate and evaluate
the architecture’s components and the methodology.

1. Structure Stability (SS): this domain has different structures,
i.e., different arrangements of simulated blocks of different
colors and sizes, on a tabletop—see Figure 2 for some
examples. We generated 2,500 such images using a physics-
based simulator. The relevant features of the domain include
the number of blocks, whether the structure is on a lean,
whether the structure has a narrow base, and whether any
block is placed such that it is not well balanced on top
of the block below. The objective in this domain is to
classify structures as being stable or unstable, and to answer
explanatory questions such as “why is this structure unstable?”
and “what should be done to make this structure stable?”

2. Traffic Sign (TS): this domain focuses on recognizing traffic
signs from images—see Figure 3 for some examples. We used
the BelgiumTS benchmark dataset (Timofte et al., 2013) with
≈ 7000 real-world images (total) of 62 different traffic signs.
This domain’s features include the primary symbol of the
traffic sign, the secondary symbol, the shape of the sign,
the main color in the middle, the border color, the sign’s
background image, and the presence or absence of a cross (e.g.,
some signs have a red or black cross across them to indicate
the end of a zone, with the absence of the cross indicating the
zone’s beginning). The objective is to classify the traffic signs
and answer explanatory questions such as “what is the sign’s
message?” and “how should the driver respond to this sign?”

In addition to these two domains, section 3.5 will introduce
the Robot Assistant (RA) domain, a simulated domain to
demonstrate the use of our architecture for computing and
executing plans to achieve assigned goals. In the RA domain,
a simulated robot reasons with existing knowledge to deliver
messages to target people in target locations, and to answer
explanatory questions about the plans and observed scenes.

The focus of our work is on understanding and using the
interplay between deep learning, commonsense reasoning, and
incremental learning, in the context of reliable and efficient scene
understanding in any given dynamic domain. The benchmark
VQA datasets and the algorithms, on the other hand, focus on
generalizing across images from different scenarios in different
domains, making it difficult to support the reasoning and
learning capabilities of our architecture. We thus do not use these
datasets or algorithms in our evaluation.

3.1. Feature Extraction Using CNNs
The first component of the architecture trains CNNs to map
input images to concise features representing the objects of
interest in the images. For the SS domain and TS domain, semi-
automated annotation was used to label the relevant features in
images for training and testing. The selection of these features for
each domain was based on domain expertise. In the SS domain,
the features of interest are:

• Number of blocks in structure (number ∈ [1, 5]);
• Whether the structure is on a lean (true, false);
• Width of the base block (wide, narrow); and

Frontiers in Robotics and AI | www.frontiersin.org 6 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 4 | Basic CNN model used for extracting each feature in our architecture. CNNs for individual features may end up with a different number of convolutional

layers and pooling layers.

• Whether any block is displaced, i.e., not well balanced on top
of the block below (true, false).

In the TS domain, the features of interest are:

• Primary symbol in the middle of the traffic sign; 39 primary
symbols such as bumpy_road, slippery_road, stop, left_turn,
and speed_limit;
• Secondary symbol in the traffic sign; 10 secondary symbols

such as disabled, car and fence;
• Shape of the sign; circle, triangle, square, hexagon, rectangle,

wide rectangle, diamond, or inverted triangle;
• Main color in the middle of the sign; red, white, or blue;
• Border color at the edge of the sign; red, white, or blue;
• Background image, e.g., some symbols are placed over a square

or a triangle; and
• Presence of a red or black cross across a sign to indicate a zone’s

end or invalidity; the sign without the cross indicates the zone’s
beginning or validity, e.g., a parking sign with a cross implies
no parking.

To reduce the training data requirements and simplify the
training of CNNs, we (i) train a separate CNN for each feature to
be extracted from an image; and (ii) start with a basic model for
each CNN and incrementally make it more complex as needed.
The number of CNNs is thus equal to the number of features
to be extracted from each image for any given domain, and the
CNN trained for each feature may be different even within a
particular domain. The basic CNN model we begin with has an
input layer, a convolutional layer, a pooling layer, a dense layer,
a dropout layer, and a logit layer, as seen on the left of Figure 4.
Additional convolutional and pooling layers are added until the
feature extraction accuracy converges or exceeds a threshold
(e.g., ≥ 90%). Our architecture also includes the option of fine-
tuning previously trained CNN models instead of starting from

scratch. The right side of Figure 4 shows a CNNmodel learned in
our example domains, which has three convolutional layers and
pooling layers. We trained and validated these CNNs in an initial
phase, and used them for evaluation. Our code for constructing
these CNNs for features (in our example domains) is in our
repository (Riley and Sridharan, 2018b).

3.2. Classification Using Non-monotonic
Logical Reasoning or Decision Trees
The feature vector extracted from an image is used for decision
making. In the SS domain and TS domain, decisions take the
form of assigning a class label to each feature vector1. The second
component of our architecture performs this task using one of
two methods: (i) non-monotonic logical inference using ASP; or
(ii) a classifier based on a learned decision tree. We describe these
two methods below.

3.2.1. ASP-Based Inference With Commonsense

Knowledge
The first step in reasoning with incomplete commonsense
domain knowledge is the representation of this knowledge. In
our architecture, an action language is used to describe the
dynamics of any domain under consideration. Action languages
are formal models of parts of natural language used for describing
transition diagrams of dynamic systems. Our architecture uses
action languageALd (Gelfond and Inclezan, 2013), with a sorted
signature 6 that can be viewed as the vocabulary used to describe
the domain’s transition diagram. The signature6 comprises basic
sorts, which are similar to types in a programming language,
statics, i.e., domain attributes whose values do not change over
time, fluents, i.e., domain attributes whose values can change over

1In the RA domain discussed in section 3.5, decision making also includes

planning and diagnostics.

Frontiers in Robotics and AI | www.frontiersin.org 7 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

time, and actions. The domain’s fluents can be basic, i.e., those
that obey the laws of inertia and are changed directly by actions,
or defined, i.e., those that do not obey the laws of inertia and are
defined by other attributes. A domain attribute or its negation is
a literal; of all its variables are ground, it is a ground literal. ALd

allows three types of statements: causal law, state constraint and
executability condition.

a causes lb if p0, . . . , pm (Causal law)

l if p0, . . . , pm (State constraint)

impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and p0, . . . , pm
are domain literals.

The domain representation (i.e., the knowledge base)
comprises a system description D, which is a set of statements
of ALd, and a history H. D comprises a sorted signature 6 and
axioms describing the domain dynamics. For instance, in the SS
domain, 6 includes basic sorts such as structure, color, size, and
attribute; the basic sorts of the TS domain include main_color,
other_color, main_symbol, other_symbol, shape, cross etc. The
sort step is also in 6 to support temporal reasoning over time
steps. The statics and fluents in the SS domain include:

num_blocks(structure, num), block_color(block, color), (1)

block_size(block, size)block_displaced(structure), stable(structure)

which correspond to the image features extracted in the domain,
and are described in terms of their arguments’ sorts. In a similar
manner, statics and fluents of the TS domain include:

primary_symbol(sign,main_symbol),

primary_color(sign,main_color)

secondary_symbol(sign, other_symbol),

secondary_color(sign, other_color)

sign_shape(shape), background_image(image) (2)

In both domains, signature 6 includes a predicate
holds(fluent, step), which implies that a particular fluent holds
true at a particular time step. As stated above, 6 for a dynamic
domain typically includes actions that cause state transitions,
but this capability is not needed to answer explanatory questions
about specific scenes and the underlying classification problem
in our (SS, TS) domains. For ease of explanation, we thus
temporarily disregard the modeling of actions, and their
preconditions and effects. We will revisit actions in section 3.5
when we consider planning tasks in the RA domain.

Given a signature 6 for a domain, a state of the domain
is a collection of ground literals, i.e., statics, fluents, actions
and relations with values assigned to their arguments—for more
details, please see Gelfond and Kahl (2014) and Sridharan et al.
(2019). The axioms of D are defined in terms of the signature
and govern domain dynamics; this typically includes a distributed
representation of the constraints related to domain actions,
i.e., causal laws and executability conditions that define the

preconditions and effects of actions, and constraints related to
states, i.e., state constraints. In the SS domain and TS domain,
axioms govern the belief about domain states; we will discuss
axioms related to actions in section 3.5 when we discuss the RA
domain. Specifically, the axioms of the SS domain include state
constraints such as:

¬stable(S) if block_displaced(S) (3a)

stable(S) if num_blocks(S, 2), ¬structure_type(S, lean) (3b)

where Statement 3(a) says that any structure with a block that is
displaced significantly is unstable, and Statement 3(b) says that
any pair of blocks without a significant lean is stable.

Axioms of the TS domain include statements such as:

sign_type(TS, no_parking) if primary_color(TS, blue),

primary_symbol(TS, blank),

cross(TS), shape(TS, circle) (4a)

sign_type(TS, stop) if primary_color(TS, red),

primary_symbol(TS, stoptext),

shape(TS, octagon) (4b)

where Statement 4(a) implies that a blue, blank, circular traffic
sign with a cross across it is a no parking sign. Statement 4(b)
implies that a red, octagon-shaped traffic sign with the text “stop”
is a stop sign.

The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent, boolean, step), and the successful execution of an
action at a particular time step, i.e., hpd(action, step); for more
details, see Gelfond and Kahl (2014). The domain knowledge in
many domains often includes default statements that are true in
all but a few exceptional circumstances. For example, we may
know in the SS domain that “structures with two blocks of the
same size are usually stable.” To encode such knowledge, we use
our recent work that expanded the notion of history to represent
and reason with defaults describing the values of fluents in the
initial state (Sridharan et al., 2019).

Key tasks of an agent equipped with a system description
D and history H include reasoning with this knowledge for
inference, planning and diagnostics. In our architecture, these
tasks are accomplished by translating the domain representation
to a program 5(D,H) in CR-Prolog, a variant of ASP that
incorporates consistency restoring (CR) rules (Balduccini and
Gelfond, 2003). In this paper, we use the terms “ASP” and
“CR-Prolog” interchangeably. ASP is a declarative programming
paradigm designed to represent and reason with incomplete
commonsense domain knowledge. It is based on stable
model semantics, and supports default negation and epistemic
disjunction. For instance, unlike “¬a”, which implies that a
is believed to be false, “not a” only implies a is not believed
to be true. Also, unlike “p ∨ ¬p” in propositional logic,
“p or ¬p” is not tautological. Each literal can thus be true,
false or unknown, and the agent reasoning with domain
knowledge does not believe anything that it is not forced to
believe. ASP can represent recursive definitions, defaults, causal

Frontiers in Robotics and AI | www.frontiersin.org 8 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

relations, special forms of self-reference, and language constructs
that occur frequently in non-mathematical domains, and are
difficult to express in classical logic formalisms (Baral, 2003;
Gelfond and Kahl, 2014). Unlike classical first-order logic, ASP
supports non-monotonic logical reasoning, i.e., it can revise
previously held conclusions or equivalently reduce the set of
inferred consequences, based on new evidence—this ability
helps the agent recover from any errors made by reasoning
with incomplete knowledge. ASP and other paradigms that
reason with domain knowledge are often criticized for requiring
considerable (if not complete) prior knowledge and manual
supervision, and for being unwieldy in large, complex domains.
However, modern ASP solvers support efficient reasoning in
large knowledge bases with incomplete knowledge, and are
used by an international research community for cognitive
robotics (Erdem and Patoglu, 2012; Zhang et al., 2015) and other
applications (Erdem et al., 2016). For instance, recent work has
demonstrated that ASP-based non-monotonic logical reasoning
can be combined with: (i) probabilistic reasoning for reliable and
efficient planning and diagnostics (Sridharan et al., 2019); and (ii)
relational reinforcement learning and active learning methods
for interactively learning or revising commonsense domain
knowledge based on input from sensors and humans (Sridharan
and Meadows, 2018).

In our architecture, the automatic translation from statements
in ALd to the program 5 is based on a custom-designed script2.
The resultant program 5 includes the signature and axioms
of D, inertia axioms, reality checks, closed world assumptions
for defined fluents and actions, and observations, actions, and
defaults fromH. For instance, Statements 3(a-b) are translated to:

¬stable(S) ← block_displaced(S) (5a)

stable(S) ← num_blocks(S, 2), ¬structure_type(S, lean) (5b)

In addition, features extracted from an input image (to be
processed) are encoded as the initial state of the domain in
5. Each answer set of 5(D,H) then represents the set of
beliefs of an agent associated with this program. Algorithms for
computing entailment, and for planning and diagnostics, reduce
these tasks to computing answer sets of CR-Prolog programs.
We compute answer sets of CR-Prolog programs using the
SPARC system (Balai et al., 2013). The CR-Prolog programs
for our example domains are in our open-source software
repository (Riley and Sridharan, 2018b). For the classification
task in our example domains, the relevant literals in the answer
set provide the class label and an explanatory description of the
assigned label (see section 3.3); we will consider the planning
task in section 3.5. The accuracy of the inferences drawn from
the encoded knowledge depends on the accuracy and extent of
the knowledge encoded, but encoding comprehensive domain
knowledge is difficult. The decision of what and how much
knowledge to encode is made by the designer.

2An independent group of researchers has developed a general-purposed software

to automatically translate any description inALd to the corresponding CR-Prolog

program; we expect this software to be made publicly available soon.

3.2.2. Decision Tree Classifier
If ASP-based inference cannot classify the feature vector
extracted from an image, the feature vector is mapped to a class
label using a decision tree classifier learned from labeled training
examples. In a decision tree classifier, each node is associated
with a question about the value of a particular feature, with the
child nodes representing the different answers to the question,
i.e., the possible values of the feature. Each node is also associated
with samples that satisfy the corresponding values of the features
along the path from the root node to this node. We use a
standard implementation of a decision tree classifier (Duda et al.,
2000). This implementation uses the Gini measure to compute
information gain (equivalently, the reduction in entropy) that
would be achieved by splitting an existing node based on each
feature that has not already been used to create a split in the
tree. Among the features that provide a significant information
gain, the feature that provides the maximum information gain
is selected to split the node. If none of the features would result
in any significant information gain, this node becomes a leaf
node with a class label that matches a majority of the samples at
the node.

The decision tree’s search space is quite specific since it only
considers samples that could not be classified by ASP-based
reasoning. The decision tree does not need to generalize as much
as it would have to if it had to process every training (or test)
sample in the dataset. Also, although overfitting is much less
likely, we still use pruning to minimize the effects of overfitting.
Figure 5 shows part of a learned decision tree classifier; specific
nodes used to classify a particular example are highlighted to
indicate that 94% of the observed examples of structures that have
fewer than three blocks, do not have a significant lean, and do
not have a narrow base, correspond to stable structures. These
“active” nodes along any path in the decision tree that is used
to classify an example can be used to explain the classification
outcome in terms of the values of particular features that were
used to arrive at the class label assigned to a specific image
under consideration.

3.3. Answering Explanatory Questions
The third component of the architecture provides two methods
for answering explanatory questions. The available inputs are the
(i) question; (ii) vector of features extracted from the image under
consideration; and (iii) classification output. The human designer
also provides pre-determined templates for questions and their
answers. In our case, we use a controlled vocabulary, templates
based on language models and parts of speech for sentences,
and existing software for natural language processing. Any given
question is transcribed using the controlled vocabulary, parsed
(e.g., to obtain parts of speech), and matched with the templates
to obtain a relational representation. Recall that questions in the
SS domain are of the form: “is this structure stable/unstable?” and
“what is making this structure stable/unstable?” These questions
can be translated into relational statements such as stable(S) or
¬stable(S) and used as a question, or as the desired consequence,
during inference or in a search process. In a similar manner,
questions in the TS domain such as: “what sign is this?” and “what

Frontiers in Robotics and AI | www.frontiersin.org 9 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 5 | Example of part of a decision tree constructed from labeled samples and used for classification in the SS domain. The nodes used to classify a particular

example are highlighted. Each leaf shows a class label and indicates the proportion of the labeled examples (at the leaf) that correspond to this label.

is the sign’s message?” can be translated into sign_type(S, sign)
and used for subsequent processing.

The first method for answering explanatory questions is based
on the understanding that if the feature vector extracted from
the image is processed successfully using ASP-based reasoning,
it is also possible to reason with the existing knowledge to answer
explanatory questions about the scene. To support such question
answering, we need to revise the signature 6 in the system
description D of the domain. For instance, we add sorts such
as query_type, answer_type, and query to encode different types
of queries and answers. We also introduce suitable relations
to represent questions, answers to these questions, and more
abstract attributes, e.g., of structures of blocks, traffic signs etc.

In addition to the signature, we also augment the axioms inD

to support reasoning with more abstract attributes, and to help
construct answers to questions. For instance, we can include an
axiom such as:

many_blocks(S) ← unstable(S), ¬base(S, narrow),

¬struc_type(S, lean), ¬block_displaced(S)
(6)

which implies that if a structure (of blocks) is not on a narrow
base, does not have a significant lean, and does not have blocks
significantly displaced, any instability in the structure implies
(and is potentially because) there are too many blocks in the
structure. Once the ASP program 5(D,H) has been revised as
described above, we can compute answer set(s) of this program
to obtain the beliefs of the agent associated with this program.
For any given question, the answer set(s) are parsed based on the
known controlled vocabulary and templates (for questions and
answers) to extract relevant literals—these literals are included in

the corresponding templates to construct answers to explanatory
questions. These answers can also be converted to speech using
existing software.

The second method for answering explanatory questions is
invoked if the decision tree is used to process (i.e., classify in
the context of the SS domain and TS domain) the vector of
image features. The inability to classify the feature vector through
ASP-based reasoning is taken to imply that the encoded domain
knowledge is insufficient to answer explanatory questions about
the scene. In this case, an LSTM network-based RNN is trained
and used to answer the explanatory questions. The inputs are
the feature vector, classification output, and a vector representing
the transcribed and parsed query. The output (provided during
training) is in the form of answers in the predetermined
templates. Similar to the approach used in section 3.2, the RNN
is built incrementally during training. We begin with one or
two hidden layer(s), as shown in Figure 6, and add layers as
long as it results in a significant increase in the accuracy. We
also include the option of adding a stack of LSTMs if adding
individual layers does not improve accuracy significantly. In our
example domains, the RNN constructed to answer explanatory
questions had as many as 26–30 hidden layers and used a softmax
function to provide one of about 50 potential answer types. An
example of the code used to train the RNN is available in our
repository (Riley and Sridharan, 2018b).

3.4. Learning State Constraints
The components of the architecture described so far support
reasoning with commonsense knowledge, learned decision trees,
and deep networks, to answer explanatory questions about the
scene and an underlying classification problem. Inmany practical
domains, the available knowledge is incomplete, the number of

Frontiers in Robotics and AI | www.frontiersin.org 10 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 6 | Example of the basic RNN used to construct explanations. The

RNNs learned for the example domains considered in this paper have 26–30

hidden layers.

labeled examples is small, or the encoded knowledge changes
over time. The decisions made by the architecture can thus be
incorrect or sub-optimal, e.g., a traffic sign can be misclassified
or an ambiguous answer may be provided to an explanatory
question. The fourth component of our architecture seeks to
address this problem by supporting incremental learning of
domain knowledge. Our approach is inspired by the inductive
learning methods mentioned in section 2, e.g., Sridharan and
Meadows (2018) use relational reinforcement learning and
decision tree induction to learn domain axioms. The work
described in this paper uses decision tree induction to learn
constraints governing domain states. The methodology used in
this component, in the context of VQA, is as follows:

1. Identify training examples that are not classified, or are
classified incorrectly, using the existing knowledge. Recall
that this step is accomplished by the component described in
section 3.2, which processes each training example using the
existing knowledge encoded in the CR-Prolog program, in an
attempt to assign a class label to the example.

2. Train a decision tree using the examples identified in Step-
1 above. Recall that this step is also accomplished by the
component described in section 3.2.

3. Identify paths in the decision tree (from root to leaf) such
that (i) there are a sufficient number of examples at the leaf,
e.g., 10% of the training examples; and (ii) all the examples at
the leaf have the same class label. Since the nodes correspond
to checks on the values of domain features, the paths will
correspond to combinations of partial state descriptions and
class labels that have good support among the labeled training
examples. Each such path is translated into a candidate axiom.
For instance, the following are two axioms identified by this
approach in the SS domain:

¬stable(S) ← num_blocks(S, 3), base(S,wide), (7a)

struc_type(S, lean)

¬stable(S) ← num_blocks(S, 3), base(S, narrow), (7b)

struc_type(S, lean)

4. Generalize candidate axioms if possible. For instance, if one
candidate axiom is a over-specification of another existing
axiom, the over-specified version is removed. In the context
of the axioms in Statement 7(a-b), the second literal represents
redundant information, i.e., if a structure with three blocks has
a significant lean, it is unstable irrespective of whether the base
of the structure is narrow or wide. Generalizing over these two
axioms results in the following candidate axiom:

¬stable(S) ← num_blocks(S, 3), struc_type(S, lean) (8)

which only includes the literals that encode the
essential information.

5. Validate candidate axioms one at a time. To do so, the
candidate axiom is added to the CR-Prolog program encoding
the domain knowledge. A sufficient number of training
examples (e.g., 10% of the dataset, as before) relevant
to this axiom, i.e., the domain features encoded by the
examples should satisfy the body of the axiom, are drawn
randomly from the training dataset. If processing these
selected examples with the updated CR-Prolog program
results in misclassifications, the candidate axiom is removed
from further consideration.

6. Apply sanity checks to the validated axioms. The validated
axioms and existing axioms are checked to remove over-
specifications and retain the most generic version of any
axiom. Axioms that pass these sanity checks are added to the
CR-Prolog program and used for subsequent reasoning.

Section 4.3 examines the effect of such learned constraints on
classification and VQA performance.

3.5. Planning With Domain Knowledge
The description of the architecture’s components has so far
focused on classification and VQA, and reasoning has been
limited to inference with knowledge. However, the architecture is
also applicable to planning (and diagnostics) problems. Consider
the RA domain in which a simulated robot has to navigate and
deliver messages to particular people in particular places, and to
answer explanatory questions, i.e., the domain includes aspects of
planning and VQA. Figure 7 depicts this domain and a simulated
scenario in it; semantic labels of the offices and rooms are shown
in the upper half.

A robot planning and executing actions in the real world
has to account for the uncertainty in sensing and actuation.
In other work, we addressed this issue by coupling ASP-based
coarse-resolution planning with probabilistic fine-resolution
planning and execution (Sridharan et al., 2019). In this
paper, we temporarily abstract away such probabilistic models
of uncertainty to thoroughly explore the interplay between
reasoning and learning, including the effect of added noise in
sensing and actuation (in simulation).

Frontiers in Robotics and AI | www.frontiersin.org 11 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 7 | Block diagram and a simulated scenario in the RA domain in

which the robot has to deliver messages to people in target locations.

To support planning, the signature 6 of system description
D has basic sorts such as: place, robot, person, object, entity,
status, and step, which are arranged hierarchically, e.g., robot
and person are subsorts of agent, and agent and object are
subsorts of entity. 6 also includes ground instances of sorts, e.g.,
office, workshop, kitchen, and library are instances of place, and
Sarah, Bob, John, and Sally are instances of person. As before,
domain attributes and actions are described in terms of the
sorts of their arguments. The fluents include loc(agent, place),
which describes the location of the robot and people in the
domain, and message_status(message_id, person, status), which
denotes whether a particular message has been delivered
(or remains undelivered) to a particular person. Static
attributes include relations such as next_to(place, place) and
work_place(person, place) to encode the arrangement of places
and the work location of people (respectively) in the domain.
Actions of the domain include:

move(robot, place) (9)

deliver(robot,message_id, person)

which move the robot to a particular place, and cause a robot to
deliver a particular message to a particular person (respectively).
For ease of explanation, we assume that the locations of people
are defined fluents whose values are determined by external
sensors, and that the locations of objects are static attributes; as
a result, we do not consider actions that change the value of these
attributes. The signature 6 also includes (as before) the relation
holds(fluent, step) to imply that a particular fluent is true at a
particular time step.

Axioms of the RA domain capture the domain’s dynamics.
These axioms include causal laws, state constraints and
executability conditions encoded as statements in ALd such as:

move(rob1, L) causes loc(rob1, L) (10a)

deliver(rob1, ID, P) causes message_status(ID, P, delivered)
(10b)

loc(P, L) if work_place(P, L), not ¬loc(P, L) (10c)

¬loc(T, L2) if loc(T, L1), L1 6= L2 (10d)

impossible deliver(rob1, ID, P) if loc(rob1, L1), loc(P, L2),

L1 6= L2 (10e)

impossible move(rob1, L) if loc(rob1, L) (10f)

where Statement 10(a) states that executing a move action causes
the robot’s location to be the target place; Statement 10(b) states
that executing a deliver action causes the message to be delivered
to the desired person; Statement 10(c) is a constraint stating that
unless told otherwise the robot expects (by default) a person
to be in her/his place of work; Statement 10(d) is a constraint
stating that any thing can be in one place at time; Statement 10(e)
implies that a robot cannot deliver a message to an intended
recipient if the robot and the person are not in the same place;
and Statement 10(f) states that a robot cannot move to a location
if it is already there.

As described in section 3.2, the domain history is a record of
observations (of fluents), the execution of actions, and the values
of fluents in the initial state. Also, planning (similar to inference)
is reduced to computing answer set(s) of the program 5(D,H)
after including some helper axioms for computing a minimal
sequence of actions; for examples, please see Gelfond and Kahl
(2014) and Sridharan et al. (2019). If the robot’s knowledge of the
domain is incomplete or incorrect, the computed plans may be
suboptimal or incorrect. The approach described in section 3.4
can then be used to learn the missing constraints; we will explore
the interplay between learning and planning in section 4.4.

4. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the results of experimentally
evaluating the following hypotheses about the capabilities of
our architecture:

• H1: for the underlying classification problem, our architecture
outperforms an architecture based on just deep networks for
small training datasets, and provides comparable performance
as the size of the dataset increases;
• H2: in the context of answering explanatory questions,

our architecture provides significantly better performance in
comparison with an architecture based on deep networks;
• H3: our architecture supports reliable and incremental

learning of state constraints, which improves the ability to
answer explanatory questions; and
• H4: our architecture can be adapted to planning tasks, with

the incremental learning capability improving the ability to
compute minimal plans.

These hypotheses were evaluated in the context of the domains
(SS, TS, and RA) introduced in section 3. Specifically, hypotheses
H1, H2, and H3 are evaluated in the SS domain and TS domain
in the context of VQA. As stated in section 1, VQA is used in
this paper only as an instance of a complex task that requires
explainable reasoning and learning. We are primarily interested
in exploring the interplay between reasoning with commonsense
domain knowledge, incremental learning, and deep learning,

Frontiers in Robotics and AI | www.frontiersin.org 12 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

in any given domain in which large labeled datasets are not
readily available. State of the art VQA algorithms, on the other
hand, focus instead on generalizing across different domains,
using benchmark datasets of several thousand images. Given the
difference in objectives between over work and the existing work
on VQA, we thus do not compare with state of the art algorithms,
and do not use the benchmark VQA datasets. Furthermore, we
evaluated hypothesis H4 in the RA domain in which the robot’s
goal was to deliver messages to appropriate people and answer
explanatory questions about this process.

We begin by describing some execution traces in section 4.1
to illustrate the working of our architecture. This is followed
by sections 4.2–4.4, which describe the results of experimentally
evaluating the classification, VQA, axiom learning, and planning
capabilities, i.e., hypotheses H1–H4. We use accuracy (precision)
as the primary performance measure. Classification accuracy was
measured by comparing the assigned labels with the ground
truth values, and question answering accuracy was evaluated
heuristically by computing whether the answer mentions all
image attributes relevant to the question posed. This relevance
was established by a human expert, the lead author of this
paper. Unless stated otherwise, we used two-thirds of the
available data to train the deep networks and other computational
models, using the remaining one-third of the data for testing.
For each image, we randomly chose from the set of suitable
questions for training the computational models. We repeated
this process multiple times and report the average of the results
obtained in these trials. For planning, accuracy was measured
as the ability to compute minimal and correct plans for the
assigned goals. Finally, section 4.5 discusses the reduction in
computational effort achieved by our architecture in comparison
with the baselines.

4.1. Execution Traces
The following execution traces illustrate our architecture’s ability
to reason with commonsense knowledge and learned models to
provide intuitive answers for explanatory questions.

Execution Example 1. [Question Answering, SS domain]
Consider a scenario in the SS Domain in which the input (test)
image is the one on the extreme right in Figure 2.

• First classification-related question posed: “is this
structure unstable?”
The architecture’s answer: “no”.
• The explanatory question posed: “what is making this

structure stable?”
The architecture’s answer: “the structure has five blocks
and a narrow base, it is standing straight, and there is no
significant lean”.
• This answer was based on the following features extracted by

CNNs from the image: (i) five blocks; (ii) narrow base; (iii)
standing straight; and (iv) no significant lean, i.e., all blocks
in place.
• The extracted features were converted to literals. ASP-based

inference provided an answer about the stability of the
arrangement of objects in the scenario. Relevant literals in the

corresponding answer set were then inserted into a suitable
template to provide the answers described above.
• Since the example was processed successfully using ASP-

based inference, it was not processed using the decision
tree (for classification) or the RNN (for answering the
explanatory question).

Execution Example 2. [Question Answering, TS domain]
Consider a scenario in the TS Domain with the input (test)
image is the one on the extreme right in Figure 3.

• The classification question posed was: “what is the
sign’s message?”
The architecture’s answer: “uneven surfaces ahead”.
• When asked to explain this answer (“Please explain this

answer”), the architecture identified that the CNNs extracted
the following features of the sign in the image: (i) it is triangle-
shaped; (ii) main color is white and other (i.e., border) color is
red; (iii) it has no background image; (iv) it has a bumpy-road
symbol and no secondary symbol; and (v) it has no cross.
• These features were converted to literals and used in ASP-

based inference based on existing knowledge in the TS
domain. ASP-based inference is unable to provide an answer,
i.e., unable to classify the sign.
• The extracted features were processed using the trained

decision tree, which only used the colors in the sign to
assign the class label. The main (or border) color is normally
insufficient to accurately classify signs. However, recall that the
decision tree is trained to classify signs that cannot be classified
by reasoning with existing knowledge.
• The decision tree output, image feature vector, and input

question, were processed by the previously trained RNN
to provide the answer type and the particular answer
described above.

These (and other such) execution traces illustrate the working of
our architecture, especially that:

• The architecture takes advantage of (and perform non-
monotonic logical inference with) the existing commonsense
domain knowledge to reliably and efficiently address the
decision-making problem (classification in the examples
above) when possible. In such cases, it is also able to answer
explanatory questions about the classification decision and the
underlying scene.
• When the desired decision cannot be made using non-

monotonic logical inference with domain knowledge, the
architecture smoothly transitions to training and using a
decision-tree to make and explain the classification decision.
In such cases, the architecture also learns and uses an RNN to
answer explanatory questions about the scene.

4.2. Experimental Results: Classification +
VQA
To quantitatively evaluate hypotheses H1 and H2, we ran
experimental trials in which we varied the size of the training
dataset. In these trials, the baseline performance was provided
by a CNN-RNN architecture, with the CNNs processing images

Frontiers in Robotics and AI | www.frontiersin.org 13 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 8 | Classification accuracy as a function of the number of training

samples in the SS domain.

FIGURE 9 | VQA accuracy as a function of the number of training samples in

the SS domain.

to extract and classify features, and the RNN providing answers
to explanatory questions. The number of questions considered
depends on the complexity of the domain, e.g., we included eight
different types of questions in the SS domain and 248 different
types of questions in the TS domain. We repeated the trials 50
times (choosing the training set randomly each time) and the
corresponding average results are summarized in Figures 8, 9 for
the SS domain, and in Figures 10, 11 for the TS domain. We
make some observations based on these figures:

1. The classification performance of our architecture depends
on the domain. In the relatively simpler SS domain, the
baseline deep network architecture is at least as accurate as our
architecture, even with a small training set—see Figure 8. This
is because small differences in the position and arrangement of
blocks (which could almost be considered as noise) influence
the decision about stability. For instance, two arrangements
of blocks that are almost identical end up receiving different
ground truth labels for stability, and it is not possible to
draft rules based on abstract image features to distinguish
between these cases. The baseline deep network architecture,
which generalizes from data, is observed to be more sensitive
to these small changes than our architecture. Exploring the

FIGURE 10 | Classification accuracy as a function of number of training

samples in TS domain.

FIGURE 11 | VQA accuracy as a function of number of training samples in TS

domain.

reason for this performance is an interesting direction for
further research.

2. In the more complex TS domain, our architecture provides
better classification accuracy than the baseline architecture
based on just deep networks, especially when the size of
the training set is small—see Figure 10. The classification
accuracy increases with the size of the training set3, but
our architecture is always at least as accurate as the
baseline architecture.

3. Our architecture is much more capable of answering
explanatory questions about the classification decisions than
the baseline architecture. When the answer provided by our
architecture does not match the ground truth, we are able to
examine why that decision was made. We were thus able to
understand and explain the lower classification accuracy of
our architecture in the SS domain. The baseline architecture
does not provide this capability.

4. Unlike classification, the VQA performance of our
architecture is much better than that of the baseline
architecture in both domains. Also performance does not
improve just by increasing the size of training set, even
in simpler domains, e.g., see Figure 9. This is because

3We limit ourselves to training sets that are not too large in order to match the

focus of our paper.

Frontiers in Robotics and AI | www.frontiersin.org 14 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 12 | Comparison of classification accuracy in the SS domain with

and without axiom learning. In both cases, some axioms were missing from

the knowledge base.

FIGURE 13 | Comparison of VQA accuracy in the SS domain with and without

axiom learning. In both cases, some axioms were missing from the knowledge

base.

VQA performance also depends on the complexity of the
explanatory questions. For more complex domains, the
improvement in VQA accuracy provided by our architecture
is much more pronounced, e.g., see Figure 11.

We explored the statistical significance of the observed
performance by running paired t-tests. We observed that the
VQA performance of the proposed architecture was significantly
better than that of the baseline architecture; this is more
pronounced in the TS domain that is more complex than the SS
domain. Also, although the baseline architecture provides better
classification performance in the SS domain, the difference is not
always statistically significant.

To further explore the observed results, we obtained a
“confidence value” from the logits layer of each CNN used to
extract a feature from the input image. For each CNN, the
confidence value is the largest probability assigned to any of
the possible values of the corresponding feature, i.e., it is the
probability assigned to the most likely value of the feature.
These confidence values are considered to be a measure of
the network’s confidence in the corresponding features being
a good representation of the image. We trained a version
of our architecture in which if the confidence value for any
feature was low, the image features were only used to revise

FIGURE 14 | Comparison of classification accuracy in the TS domain with and

without axiom learning. In both cases, some axioms were missing from the

knowledge base.

the decision tree (during training), or were processed using
the decision tree (during testing). In other words, features
that do not strongly capture the essence of the image are not
used for non-monotonic logical reasoning; the deep network
architectures provide much better generalization to noise. We
hypothesized that this approach would improve the accuracy of
classification and question answering, but it did not make any
significant difference in our experimental trials. We believe this is
because the extracted features were mostly good representations
of the objects of interest in the images. We thus did not use
such networks (that compute the confidence value) in any
other experiments.

4.3. Experimental Results: Learn Axiom +
VQA
Next, we experimentally evaluated the ability to learn axioms,
and the effect of such learning on the classification and VQA
performance. For the SS domain, we designed a version of the
knowledge base with eight axioms related to stability or instability
of the structures. Out of these, four were chosen (randomly) to
be removed and we examined the ability to learn these axioms,
and the corresponding accuracy of classification and VQA, as
a function of the number of labeled training examples (ranging
from 100 to 2,000). We repeated these experiments 30 times
and the results (averaged over the 30 trials) are summarized
in Figures 12, 13. In the TS domain, the methodology for
experimental evaluation was the same. However, since the
domain was more complex, there were many more axioms in
the domain description (for classification and VQA); we also had
access to more labeled training examples. In each experimental
trial, a quarter of the available axioms were thus selected and
commented out, and the accuracy of classification and VQAwere
evaluated with the number of labeled training examples varying
from 100 to 4000. The results averaged over 30 such trials are
summarized in Figures 14, 15.

In these figures, “Original KB” (depicted in blue) represents
the baseline with some axioms missing from the system
description, e.g., four in the SS domain and one quarter of the
axioms in the TS domain. The results obtained by using the
available labeled examples to learn the axioms that are then used

Frontiers in Robotics and AI | www.frontiersin.org 15 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

FIGURE 15 | Comparison of VQA accuracy in the TS domain with and without

axiom learning. In both cases, some axioms were missing from the knowledge

base.

for classification and answering explanatory questions about the
scene, are shown as “Learned KB” in orange. We observe that our
approach supports incremental learning of the domain axioms,
and that using the learned axioms improves the classification
accuracy and the accuracy of answering explanatory questions,
in comparison with the baseline. This improvement was found
to be statistically significant using paired tests at 95% level of
significance. These results support hypothesis H3.

4.4. Experimental Results: Learn Axiom +
Plan
Next, we experimentally evaluated the ability to learn axioms and
the effect of the learned axioms on planning, in the RA domain.
The simulated robot was equipped with domain knowledge for
planning, classification, and question answering. It uses this
knowledge to navigate through an office building, locate the
intended recipient of a message, deliver the message, detect and
reason about objects in its surroundings, and answer questions
about the rooms it has visited. We considered 24 different types
of questions in this domain. As stated in section 3.5, we limit
uncertainty in sensing and actuation on robots to noise added
in simulation. Average results from 100 trials indicates a VQA
accuracy of ≈ 85% after training the architecture’s components
with just 500 labeled images. The domain knowledge includes
learned axioms—the corresponding experimental results and the
planning performance are discussed later in this section. We
begin with an execution trace in this domain.

Execution Example 3. [Question Answering, RA Domain]
Consider the scenario in the RA domain (Figure 7) in which
the robot’s goal was to deliver a message from John to Sally, and
return to John to answer questions.

• The robot was initially in John’s office. It computed a plan
that comprises moving to Sally’s office through the library and
the kitchen, delivering the message to Sally, and returning to
John’s office through the same route to answer questions.
• During plan execution, the robot periodically takes images

of the scenes in the domain, which are used for planning,
classification and question answering.

• After returning to John’s office, the robot and the human had
an exchange about the plan constructed and executed, and
the observations received. The exchange includes instances
such as:
John’s question: “is Sally’s location cluttered?”
Robot’s answer: “Yes.”
When asked, the robot provides an explanation for this
decision: “Sally is in her office. Objects detected are Sally’s
chair, desk, and computer, and a cup, a large box, and a sofa.
The room is cluttered because the cup, large box, and sofa are
not usually in that room.”

The RA domain was also used to evaluate the effects of axiom
learning. There were four employees in offices in the simulated
scenario, as shown in Figure 7, and the robot was asked to
find particular individuals and deliver particular messages to
them. Employees are initially expected to be in their assigned
workplace (i.e., their office), and spend most of their time in
these offices, unless this default knowledge has been negated by
other knowledge or observations. This information is encoded
as follows:

holds(loc(P, L), 0) ← not default_negated(P, L), work_place(P, L)

where work_place(P, L) specifies the default location of each
person, and default_negated(P, L) is used to encode that a
particular person may not be in their default location. These
exceptions to the defaults can be encoded as follows:

default_negated(P, L) ← obs(loc(P, L1), true, I), L 6= L1 (11a)

default_negated(P, L) ← obs(loc(P, L), false, I) (11b)

Statement 11(a) implies that the default assumption should be
ignored if the person in question is observed to be in a location
other than their workplace, and Statement 11(b) implies that
a default assumption should be ignored if the corresponding
person is not observed in their workplace. Including such default
knowledge (and exceptions) in the reasoning process allows
the robot to compute better plans and execute the plans more
efficiently, e.g., when trying to deliver a message to a particular
person. However, this knowledge may not be known in advance,
the existing knowledge may be inaccurate or change with time
(e.g., humans can move between the different places), or the
observations may be incorrect. Our axiom learning approach was
used in this domain to acquire previously unknown information
about the default location of people and exceptions to these
defaults. In all the trials, the simulated robot was able to learn
the previously unknown axioms.

We then conducted 100 paired trials to explore the effects of
the learned axioms on planning, with the corresponding results
summarized in Table 1. In each trial, we randomly chose a
particular goal and initial conditions, and measured planning
performance before and after the previously unknown axioms
had been learned and used for reasoning. Since the initial
conditions are chosen randomly, the object locations, the initial
location of the robot, and the goal, may vary significantly between
trials. Under these circumstances, it is not meaningful to average

Frontiers in Robotics and AI | www.frontiersin.org 16 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

TABLE 1 | Planning performance in a scenario in the RA domain (see Figure 7)

before and after axiom learning.

Axiom

learning

Plans

(per trial)

Actions

(per trial)

Execution

time

(per trial)

Planning

time

(per trial)

Planning

time

(per plan)

Before 4 2.3 1.6 6.0 1.6

After 1 1 1 1 1

Results averaged over 100 paired trials indicate that reasoning with previously unknown

axioms results in fewer plans with fewer actions in each trial, and significantly reduces the

time taken to compute and execute the plans.

the results obtained in the individual trials for performance
measures such as planning time and execution time. Instead,
the results obtained without including the learned axioms were
computed as a ratio of the results obtained after including
the learned axioms; the numbers reported in Table 1 are the
average of these computed ratios. Before axiom learning, the
robot often explored an incorrect location (for a person) based
on other considerations (e.g., distance to the room) and ended
up having to replan. After the previously unknown axioms were
included in the reasoning process, the robot went straight to the
message recipient’s most likely location, which also happened
to be the actual location of the recipient in many trials. As a
result, we observe a (statistically) significant improvement in
planning performance after the learned axioms are used for
reasoning. Note that in the absence of the learned axioms,
the robot computes four times as many plans taking six times
as much time in any given trial (on average) as when the
learned axioms are included in reasoning. Even the time taken
to compute each plan (with potentially multiple such plans
computed in each trial) is significantly higher in the absence of
the learned axioms. This is because the learned axioms enable
the robot to eliminate irrelevant paths in the transition diagram
from further consideration. In a similar manner, reasoning with
intentional actions enables the robot to significantly reduce
the plan execution time by terminating or revising existing
plans when appropriate, especially in the context of unexpected
successes and failures. These results provide evidence in support
of hypothesis H4.

Finally, we conducted some initial proof of concept studies
exploring the use of our architecture on physical robots. We
considered a robot collaborating with a human to jointly describe
structures of blocks on a tabletop (similar to the SS domain
described in this paper). We also considered a mobile robot
finding and moving objects to desired locations in an indoor
domain (similar to the RA domain). These initial experiments
provided some promising outcomes. The robot was able to
provide answers to explanatory questions, compute and execute
plans to achieve goals, and learn previously unknown constraints.
In the future, we will conduct a detailed experimental analysis on
robots in different domains.

4.5. Computational Effort
In addition to the improvement in accuracy of classification and
VQA, we also explored the reduction in computational effort
provided by our architecture in comparison with the baselines.
Measuring this time quantitatively is challenging because it

depends on various factors such as the task being performed (e.g.,
classification, VQA), the knowledge encoded in the knowledge
base, the size and order of samples in the training set, and the
parameters of the deep networks. However, we were able to gain
the following insights.

The computation time includes the training time and the
testing (i.e., execution) time, and we first considered the training
time. Depending on the task being performed (e.g., classification,
VQA, and/or planning), this time includes the time taken to
encode and draw inferences from the knowledge base, process
queries and construct answers, and train the deep network
models. Encoding the incomplete domain knowledge is a one-
time exercise for any given domain. The time taken to reason
with this knowledge, and the time taken to process queries and
construct answers, are negligible in comparison with the time
taken to learn the deep network models. Also, the use of CNNs to
extract features from images is common to both our architecture
and the baselines, and these networks (for the most part) do not
need to be retrainedmultiple times for any given domain. The key
difference between our architecture and the baselines is observed
in the context of answering explanatory questions about the
scenes and the underlying classification problem. Recall that with
our architecture, only examples that cannot be processed by ASP-
based reasoning are processed by decision-trees and the RNNs
for VQA. In our experimental trials, ≈ 10 − 20% of a training
set is used (on average) to train the RNNs with our architecture,
whereas the entire training set is used for training the RNNs
with the baseline architectures. This difference often translates
to an order of magnitude difference in the training time, e.g., a
few minutes for each training set (in a particular domain) with
our architecture compared with hours or days with the baseline
architectures. Note that accuracy of our architecture is still much
better than that of the baselines, e.g., see Figures 9, 11, i.e., any
given accuracy is achieved using a much smaller number of
training samples.

The execution time of our architecture is comparable with
that of the baselines and is often less. Once the deep network
models have been learned, using them for the different tasks does
not take much time, e.g., a few seconds to process the input
and provide a decision and/or the answer to a query. However,
similar to the situation during training, only test samples that
cannot be processed by ASP-based reasoning are processed by
the decision trees and RNNs with our architecture. Also, since
the deep networks in our architecture only need to disambiguate
between a small(er) number of training examples, they often
have a much simpler structure than the deep networks in the
baseline architectures.

Note that in addition to classification and VQA, our
architecture also supports explainable reasoning for planning
and incremental learning of previously unknown constraints.
Providing similar capabilities using just deep network
architectures will (at the very least) require a large number
of training examples of planning under different conditions; it is
often not possible to provide such training examples in dynamic
domains. We thus conclude that our architecture significantly
reduces the computational effort while supporting a range
of capabilities in comparison with the baseline architectures
comprising deep networks.

Frontiers in Robotics and AI | www.frontiersin.org 17 December 2019 | Volume 6 | Article 125

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

5. DISCUSSION AND FUTURE WORK

Visual question answering (VQA) combines challenges in
computer vision, natural language processing, and explainability
in reasoning and learning. Explanatory descriptions of decisions
help identify errors, and to design better algorithms and
frameworks. In addition, it helps improve trust in the use of
reasoning and learning systems in critical application domains.
State of the art algorithms for VQA are based on deep networks
and the corresponding learning algorithms. Given their focus
on generalizing across different domains, these approaches
are computationally expensive, require large training datasets,
and make it difficult to provide explanatory descriptions of
decisions. We instead focus on enabling reliable and efficient
operation in any given domain in which a large number of
labeled training examples may not be available. Inspired by
research in cognitive systems, our architecture tightly couples
representation, reasoning, and interactive learning, and exploits
the complementary strengths of deep learning, non-monotonic
logical reasoning with commonsense knowledge, and decision
tree induction. Experimental results on datasets of real world
and simulated images indicate that our architecture provides the
following benefits in comparison with a baseline architecture for
VQA based on deep networks:

1. Better accuracy, improved sample efficiency, and reduced
computational effort on classification problems when the
training dataset is small, and comparable accuracy with larger
datasets while still using only a subset of these samples
for training;

2. Ability to provide answers to explanatory questions about the
scenes and the underlying decision making problems (e.g.,
classification, planning);

3. Incremental learning of previously unknown domain
constraints, whose use in reasoning improves the ability to
answer explanatory questions; and

4. Ability to adapt the complementary strengths of non-
monotonic logical reasoning with commonsense domain
knowledge, inductive learning, and deep learning, to address
decision-making (e.g., planning) problems on a robot.

Our architecture opens up multiple directions of future work,
which will address the limitations of existing work and
significantly extend the architecture’s capabilities. We discuss
some of these extensions below:

1. The results reported in this paper are based on image

datasets (simulated, real-world) chosen or constructed to
mimic domains in which a large, labeled dataset is not
readily available. One direction of future work is to explore

the use of our architecture in other domains that provide
datasets of increasing complexity, i.e., with a greater number
of features and more complex explanatory questions. This
exploration may require us to consider larger datasets, and
to examine the trade-off between the size of the training
dataset, the computational effort involved in processing such a
dataset with many labeled examples, and the effort involved in
encoding and reasoning with the relevant domain knowledge.

2. In our architecture, we have so far used variants of existing
network structures as the deep network components (i.e.,
CNN, RNN). In the future, we will explore different deep
network structures in our architecture, using the explanatory
answers to further understand the internal representation
of these network structures. Toward this objective, it
would be particularly instructive to construct and explore
deep networks and logic-based domain representations that
provide similar behavior on a set of tasks, or provide different
behavior when operating on the same dataset. As stated in
the discussion in section 4.2, such an exploration may help us
better understand (and improve) the design and use of deep
network models for different applications.

3. This paper used VQA as a motivating problem to address key
challenges in using deep networks in dynamic domains with
limited labeled training examples.We also described the use of
our architecture (with tightly-coupled reasoning and learning
components) for planning on a simulated robot. In the future,
we will combine this architecture with other architectures
we have developed for knowledge representation, reasoning,
and interactive learning in robotics (Sridharan and Meadows,
2018; Sridharan et al., 2019). The long-term goal will be to
support explainable reasoning and learning on a physical
robot collaborating with humans in complex domains.

DATA AVAILABILITY STATEMENT

The datasets generated or analyzed for this study, and the
software implementation of the architecture and algorithms, can
be found in the following online repository: https://github.com/
hril230/masters_code.

AUTHOR CONTRIBUTIONS

HR and MS designed the algorithms and architecture,
experimental setup, and analyzed the results. HR implemented
the algorithms and architecture with feedback from MS. HR
conducted the evaluation. MS wrote the paper with contributions
from HR.

FUNDING

This work was supported in part by the US Office of Naval
Research Science of Autonomy award N00014-17-1-2434, and
the Asian Office of Aerospace Research and Development award
FA2386-16-1-4071.

ACKNOWLEDGMENTS

The authors thank Ales Leonardis for feedback on the
architecture described in this paper. An earlier version of this
architecture appeared in a conference paper (Riley and Sridharan,
2018a). In this paper, we have introduced a new component
for incrementally learning constraints governing domain states,
expanded reasoning to support planning and diagnostics, and
discussed more detailed experimental results.

Frontiers in Robotics and AI | www.frontiersin.org 18 December 2019 | Volume 6 | Article 125

https://github.com/hril230/masters_code
https://github.com/hril230/masters_code
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

REFERENCES

Agrawal, A., Batra, D., Parikh, D., and Kembhavi, A. (2018). “Don’t just

assume; look and answer: overcoming priors for visual question answering,”

in International Conference on Computer Vision and Pattern Recognition (Salt

Lake City, UT).

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., et al.

(2018). “Bottom-up and top-down attention for image captioning and visual

question answering,” in International Conference on Computer Vision and

Pattern Recognition (Salt Lake City, UT).

Bai, Y., Fu, J., Zhao, T., and Mei, T. (2018). “Deep attention neural tensor network

for visual question answering,” in European Conference on Computer Vision

(ECCV) (Munich).

Balai, E., Gelfond, M., and Zhang, Y. (2013). “Towards answer set programming

with sorts,” in International Conference on Logic Programming and

Nonmonotonic Reasoning (Corunna).

Balduccini, M. (2007). “Learning action descriptions with a-prolog: action

language C,” in AAAI Spring Symposium on Logical Formalizations of

Commonsense Reasoning (Stanford, CA).

Balduccini, M., and Gelfond, M. (2003). “Logic programs with consistency-

restoring rules,” in AAAI Spring Symposium on Logical Formalization of

Commonsense Reasoning (Stanford, CA), 9–18.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem

Solving. New York, NY: Cambridge University Press.

Chai, J. Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., and Xu, G. (2018).

“Language to action: towards interactive task learning with physical agents,”

in International Joint Conference on Artificial Intelligence (IJCAI) (Stockholm).

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification, 2nd Edn.

Wiley-Blackwell.

Erdem, E., Gelfond, M., and Leone, N. (2016). Applications of answer set

programming. AI Mag. 37, 53–68. doi: 10.1609/aimag.v37i3.2678

Erdem, E., and Patoglu, V. (2012). “Applications of action languages to cognitive

robotics,” in Correct Reasoning, eds E. Erdem, J. Lee, Y. Lierler, and D. Pierce

(Berlin: Springer-Verlag), 229–246.

Furbach, U., Glöckner, I., Helbig, H., and Pelzer, B. (2010). Logic-

based question answering. KI - Künstliche Intelligenz 24, 51–55.

doi: 10.1007/s13218-010-0010-x

Gelfond, M., and Inclezan, D. (2013). Some properties of system descriptions of

ALd . J. Appl. Non-Class. Logics Special Issue Equilibrium Logic Answer Set Progr.

23, 105–120. doi: 10.1080/11663081.2013.798954

Gelfond, M., and Kahl, Y. (2014). Knowledge Representation, Reasoning and the

Design of Intelligent Agents. Cambridge: Cambridge University Press.

Gil, Y. (1994). “Learning by experimentation: incremental refinement of

incomplete planning domains,” in International Conference on Machine

Learning (New Brunswick, NJ), 87–95.

Goyal, Y., Khot, T., Stay, D. S., Batra, D., and Parikh, D. (2017). “Making

the V in VQA matter: elevating the role of image understanding in visual

question answering,” in International Conference on Computer Vision and

Pattern Recognition (Honolulu, HI), 6325–6334.

Jabri, A., Joulin, A., and van der Maaten, L. (2016). “Revisiting visual

question answering baselines,” in European Conference on Computer Vision

(Amsterdam).

Jiang, A., Wang, F., Porikli, F., and Li, Y. (2015). Compositional Memory for Visual

Question Answering. Technical report. Available online at: https://arxiv.org/

abs/1511.05676

Kim, J.-H., Jun, J., and Zhang, B.-T. (2018). “Bilinear attention networks,” inNeural

Information Processing Systems (Montreal, QC).

Koh, P. W., and Liang, P. (2017). “Understanding black-box predictions via

influence functions,” in International Conference on Machine Learning (ICML)

(Sydney, NSW), 1885–1894.

Laird, J. E. (2012). The Soar Cognitive Architecture. Cambridge, MA: The MIT

Press.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere,

C., et al. (2017). Interactive task learning. IEEE Intell. Syst. 32, 6–21.

doi: 10.1109/MIS.2017.3121552

Law, M., Russo, A., and Broda, K. (2018). The complexity and

generality of learning answer set programs. Artif. Intell. 259, 110–146.

doi: 10.1016/j.artint.2018.03.005

Li, Q., Fu, J., Yu, D., Mei, T., and Luo, J. (2018). Tell-and-Answer: Towards

Explainable Visual Question Answering using Attributes and Captions.

Technical report. Available online at: https://arxiv.org/abs/1801.09041

Lin, T., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., et al. (2014).

“Microsoft COCO: common objects in context,” in European Conference on

Computer Vision (Zurich), 740–755.

Lu, J., Yang, J., Batra, D., and Parikh, D. (2016). “Hierarchical question-image co-

attention for visual question answering,” in Advances in Neural Information

Processing Systems (Barcelona).

Malinowski, M., Rohrbach, M., and Fritz, M. (2017). Ask your

neurons: a deep learning approach to visual question answering.

Int. J. Comput. Vis. 125, 110–135. doi: 10.1007/s11263-017-

1038-2

Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A. (2018). “Transparency

by design: closing the gap between performance and interpretability in visual

reasoning,” in International Conference on Computer Vision and Pattern

Recognition (Salt Lake City, UT).

Masuda, I., de la Puente, S. P., and i Nieto, X. G. (2016). “Open-ended visual

question-answering,” in International Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV).

Mota, T., and Sridharan, M. (2019). “Commonsense reasoning and knowledge

acquisition to guide deep learning on robots,” in Robotics Science and Systems

(Freiburg).

Norcliffe-Brown, W., Vafeais, E., and Parisot, S. (2018). “Learning conditioned

graph structures for interpretable visual question answering,” in Neural

Information Processing Systems (Montreal, QC).

Otero, R. P. (2003). “Induction of the effects of actions by monotonic methods,” in

International Conference on Inductive Logic Programming (Szeged), 299–310.

Pandhre, S., and Sodhani, S. (2017). Survey of Recent Advances in Visual Question

Answering. Technical report. Available online at: https://arxiv.org/abs/1709.

08203

Rajani, N. F., and Mooney, R. J. (2018). “Stacking with auxiliary features for visual

question answering,” in 16th Annual Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(New Orleans, LA), 2217–2226.

Ribeiro,M., Singh, S., andGuestrin, C. (2016). “Why should I trust you? Explaining

the predictions of any classifier,” in ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD) (San Francisco, CA), 1135–1144.

Riley, H., and Sridharan, M. (2018a). “Non-monotonic logical reasoning and deep

learning for explainable visual question answering,” in International Conference

on Human-Agent Interaction (Southampton).

Riley, H., and Sridharan, M. (2018b). Software for Architecture combining Non-

monotonic Logical Reasoning, Inductive Learning and Deep Learning for VQA.

Available online at: https://github.com/hril230/masters_code (accessed January

2019).

Sarathy, V., and Scheutz, M. (2018). A logic-based computational framework

for inferring cognitive affordances. IEEE Trans. Cogn. Dev. Syst. 10, 26–43.

doi: 10.1109/TCDS.2016.2615326

Schwartz, I., Schwing, A., and Hazan, T. (2017). “High-order attention models

for visual question answering,” in Advances in Neural Information Processing

Systems (NIPS) (Long Beach, CA), 3664–3674.

Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.

(2017). “Grad-CAM: visual explanations from deep networks via gradient-

based localization,” in International Conference on Computer Vision (Venice),

618–626.

Shrestha, R., Kafle, K., and Kanan, C. (2019). “Answer Them All! Toward universal

visual question answering models,” in International Conference on Computer

Vision and Pattern Recognition (Long Beach, CA).

Sridharan, M., Gelfond, M., Zhang, S., and Wyatt, J. (2019). REBA: a refinement-

based architecture for knowledge representation and reasoning in robotics. J.

Artif. Intell. Res. 65, 87–180. doi: 10.1613/jair.1.11524

Sridharan, M., and Meadows, B. (2018). Knowledge representation and interactive

learning of domain knowledge for human-robot collaboration. Adv. Cogn. Syst.

7, 69–88.

Teney, D., and van den Hengel, A. (2016). Zero-Shot Visual Question Answering.

Technical report. Available online at: https://arxiv.org/abs/1611.05546

Teney, D., and van den Hengel, A. (2018). “Visual question answering as a meta

learning task,” in European Conference on Computer Vision (ECCV) (Munich).

Frontiers in Robotics and AI | www.frontiersin.org 19 December 2019 | Volume 6 | Article 125

https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1007/s13218-010-0010-x
https://doi.org/10.1080/11663081.2013.798954
https://arxiv.org/abs/1511.05676
https://arxiv.org/abs/1511.05676
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1016/j.artint.2018.03.005
https://arxiv.org/abs/1801.09041
https://doi.org/10.1007/s11263-017-1038-2
https://arxiv.org/abs/1709.08203
https://arxiv.org/abs/1709.08203
https://github.com/hril230/masters_code
https://doi.org/10.1109/TCDS.2016.2615326
https://doi.org/10.1613/jair.1.11524
https://arxiv.org/abs/1611.05546
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Riley and Sridharan Commonsense Reasoning and Deep Learning for VQA

Timofte, R., Mathias, M., Benenson, R., and Gool, L. V. (2013). “Traffic sign

recognition - how far are we from the solution?,” in International Joint

Conference on Neural Networks (IJCNN) (Dallas, TX), 1–8.

Wagner, M., Basevi, H., Shetty, R., Li, W., Malinowski, M., Fritz, M., et al.

(2018). “Answering visual What-If questions: from actions to predicted

scene descriptions,” in Visual Learning and Embodied Agents in Simulation

Environments (VLEASE) Workshop at ECCV (Munich). Available online at:

https://arxiv.org/abs/1809.03707

Wang, P., Wu, Q., Shen, C., van den Hengel, A., and Dick, A. R. (2017). “Explicit

knowledge-based reasoning for visual question answering,” in International

Joint Conference on Artificial Intelligence (Melbourne, VIC).

Wu, C., Liu, J., Wang, X., and Dong, X. (2018). “Chain of reasoning for visual

question answering,” in Advances in Neural Information Processing Systems

(NeurIPS) (Montreal, QC), 273–283.

Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. J. (2016). “Stacked attention

networks for image question answering,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Las Vegas, NV), 21–29.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J. B.

(2018). “Neural-symbolic VQA: disentangling reasoning from vision

and language understanding,” in Neural Information Processing Systems

(Montreal, QC).

Zhang, S., Sridharan, M., and Wyatt, J. (2015). Mixed logical inference and

probabilistic planning for robots in unreliable worlds. IEEE Trans. Robot. 31,

699–713. doi: 10.1109/TRO.2015.2422531

Zhang, T., Dai, D., Tuytelaars, T., Moens, M.-F., and Gool, L. V. (2017). Speech-

Based Visual Question Answering. Technical report. Available online at: https://

arxiv.org/abs/1705.00464

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Riley and Sridharan. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 20 December 2019 | Volume 6 | Article 125

https://arxiv.org/abs/1809.03707
https://doi.org/10.1109/TRO.2015.2422531
https://arxiv.org/abs/1705.00464
https://arxiv.org/abs/1705.00464
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Integrating Non-monotonic Logical Reasoning and Inductive Learning With Deep Learning for Explainable Visual Question Answering
	1. Introduction
	2. Related Work
	3. Architecture
	3.1. Feature Extraction Using CNNs
	3.2. Classification Using Non-monotonic Logical Reasoning or Decision Trees
	3.2.1. ASP-Based Inference With Commonsense Knowledge
	3.2.2. Decision Tree Classifier

	3.3. Answering Explanatory Questions
	3.4. Learning State Constraints
	3.5. Planning With Domain Knowledge

	4. Experimental Setup and Results
	4.1. Execution Traces
	4.2. Experimental Results: Classification + VQA
	4.3. Experimental Results: Learn Axiom + VQA
	4.4. Experimental Results: Learn Axiom + Plan
	4.5. Computational Effort

	5. Discussion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

