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This paper describes a new unsupervised machine-learning method for simultaneous

phoneme and word discovery from multiple speakers. Phoneme and word discovery

from multiple speakers is a more challenging problem than that from one speaker,

because the speech signals from different speakers exhibit different acoustic features.

The existing method, a nonparametric Bayesian double articulation analyzer (NPB-DAA)

with deep sparse autoencoder (DSAE) only performed phoneme and word discovery

from a single speaker. Extending NPB-DAA with DSAE to a multi-speaker scenario is,

therefore, the research problem of this paper.This paper proposes the employment of

a DSAE with parametric bias in the hidden layer (DSAE-PBHL) as a feature extractor

for unsupervised phoneme and word discovery. DSAE-PBHL is designed to subtract

speaker-dependent acoustic features and speaker-independent features by introducing

parametric bias input to the DSAE hidden layer. An experiment demonstrated that

DSAE-PBHL could subtract distributed representations of acoustic signals, enabling

extraction based on the types of phonemes rather than the speakers. Another experiment

demonstrated that a combination of NPB-DAA and DSAE-PBHL outperformed other

available methods accomplishing phoneme and word discovery tasks involving speech

signals with Japanese vowel sequences from multiple speakers.

Keywords: word discovery, phoneme discovery, parametric bias, Bayesian model, neural network

1. INTRODUCTION

Infants discover phonemes and words from speech signals uttered by their parents and the
individuals surrounding them (Saffran et al., 1996a,b). This process is performed without
transcribed data (i.e., labeled data) in a manner that differs from most of the recent automatic
speech recognition (ASR) systems. In the field of developmental robotics, a robot is regarded as
the model of a human infant. Developing a machine-learning method that enables a robot to
discover phonemes and words from unlabeled speech signals is crucial (Cangelosi and Schlesinger,
2015). This study aims to create a machine-learning method that can discover phonemes and
words from unlabeled data for developing a constructive model of language acquisition similar
to human infants and to leverage the large amount of unlabeled data spoken by multiple speakers
in the context of developmental robotics (Taniguchi et al., 2016a). The main research question of
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this paper is how to extend an existing unsupervised phoneme
and word discovery method [i.e., nonparametric Bayesian double
articulation analyzer (NPB-DAA) with a deep sparse autoencoder
(DSAE)] and develop a method that can achieve unsupervised
phoneme and word discovery from multiple speakers.

Most available ASR systems are trained using transcribed
data that must be prepared separately from the learning
process (Kawahara et al., 2000; Dahl et al., 2012; Sugiura
et al., 2015). By using certain supervised learning methods and
model architectures, an ASR can be developed with a very
large transcribed speech data corpus (i.e., a set of pairs of
text and acoustic data). However, human infants are capable
of discovering phonemes and words through their natural
developmental process. They do not need transcribed data.
Moreover, they discover phonemes and words at a time when
they have not developed the capability to read text data. This
evidence implies that infants discover phonemes and words in
an unsupervised manner via sensor–motor information.

It is widely established that 8-month-old children can
infer chunks of phonemes from the distribution of acoustic
signals (Saffran et al., 1996b). Caregivers generally utter a
sequence of words rather than an isolated word in their
infant-directed speech (Aslin et al., 1995). Therefore, word
segmentation and discovery is essential for language acquisition.
Saffran et al. explained that human infants use three types
of cues for word segmentation: prosodic, distributional, and
co-occurrence (Saffran et al., 1996a,b). Prosodic cues include
information related to prosody, such as intonation, tone, stress,
and rhythm. Distributional cues include transitional probabilities
between sounds and appearance frequencies of a certain sequence
of sounds. Co-occurrence cues relate sounds and entities in the
environment. For example, a child may notice that “dog” is often
uttered in the presence of a pet.

In this study, we focus on distributional cues. Saffran et al.
also reported that 8-month-old infants could perform word
segmentation from continuous speech using solely distributional
cues (Saffran et al., 1996a). Thiessen et al. reported that
distributional cues appeared to be used by human infants by the
age of 7 months (Thiessen and Saffran, 2003). This is earlier than
for other cues. However, the computational models that discover
phonemes and words from human speech signals have not been
completely explored in the fields of developmental robotics and
natural language or speech processing (Lee and Glass, 2012; Lee
et al., 2013, 2015; Kamper et al., 2015; Taniguchi et al., 2016b,c).
The unsupervised word segmentation problem has been studied
for a long time (Brent, 1999; Venkataraman, 2001; Goldwater
et al., 2006, 2009; Johnson and Goldwater, 2009; Mochihashi
et al., 2009; Sakti et al., 2011; Magistry, 2012; Chen et al., 2014;
Takeda and Komatani, 2017). However, their models did not
assume the existence of phoneme recognition errors, Therefore,
if they are applied to phoneme sequences recognized by a
phoneme recognizer, which usually involves a lot of phoneme
recognition errors, their performance significantly deteriorates.
Neubig et al. extended the sampling procedure proposed by
Mochihashi to handle word lattices that could be obtained from
an ASR system (Neubig et al., 2012). However, the improvement
was limited, and they did not consider phoneme acquisition.

It was indicated that feedback information from segmented
words was essential to phonetic category acquisition (Feldman
et al., 2013). Subsequent to these studies, several others
were conducted to develop unsupervised phoneme and word
discovery techniques (Kamper et al., 2015; Lee et al., 2015;
Taniguchi et al., 2016b,c). This type of research is very similar to
the development of unsupervised learning of speech recognition
systems, which transforms speech signals into sequences of
words. The development of an unsupervised machine-learning
method that can discover words and phonemes is important
for providing fresh insight into developmental studies from
a computational perspective. In this study, we employ NPB-
DAA (Taniguchi et al., 2016b).

The double articulation structure in spoken language is a
characteristic structural feature of human language (Chandler,
2002). When we develop an unsupervised machine-learning
method based on probabilistic generative models (i.e., the
Bayesian approach), it is critical to clarify our assumption about
the latent structure embedded in observation data. The double
articulation structure is a two-layer hierarchical structure. A
sentence is generated by stochastic transitions between words,
a word corresponds to a deterministic sequence of phonemes,
and a phoneme exhibits similar acoustic features. This double
articulation structure is universal for languages.

Taniguchi et al. (2016b) developed NPB-DAA to enable a
robot to obtain knowledge of phonemes and words in an
unsupervised manner, even if the robot did not know the number
of phonemes and words, a lists of phonemes, or words and
transcriptions of the speech signals. Taniguchi et al. introduced
the DSAE to improve the performance of NPB-DAA. They
demonstrated that it outperformed a conventional off-the-shelf
ASR system trained using transcribed data (Taniguchi et al.,
2016c). The main research purpose of developing NPB-DAA
with DSAE was to develop an unsupervised phoneme and word-
discovery system that could be regarded as a computational
explanation of the process of human language acquisition, rather
than to develop a high-performance ASR system.

The experiments conducted in (Taniguchi et al., 2016b,c)
used speech data obtained from only one speaker. The NPB-
DAA with DSAE did not assume learning environments where a
robot learned phonemes and words from multiple speakers. The
direct application of NPB-DAA with DSAE to a multi-speaker
scenario is highly likely to be ineffective. Extending NPB-DAA
with DSAE to a multi-speaker scenario is, therefore, the research
objective here.

In the studies of unsupervised phoneme and word discovery,
learning from speech signals obtained from multiple speakers
has been recognized as challenging (Dunbar et al., 2017;
Kamper et al., 2017). To explain the essential challenge, an
example of the discrimination of “a” from “i” is considered.
Figure 1 provides a schematic of the explanation that follows.
Fundamentally, the phoneme discovery problem can be regarded
as a type of clustering problem. A machine-learning method for
unsupervised phoneme and word discovery should be capable
of identifying and distinguishing clusters of “a” and “i.” If the
acoustic feature distributions of “a” and “i” are sufficiently
different, a proper unsupervised machine-learning method could
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FIGURE 1 | Schematic of speaker-dependent and speaker-independent acoustic features. Each shape represents each phoneme (e.g., “a,” “i,” and “u”), and each

type of circle represents each speaker. In the left feature space, each phoneme is embedded in a speaker-dependent manner. If a clustering method is performed on

this feature space, speaker-dependent phonemes will be discovered. In the speaker-independent feature space shown in the right, no phoneme depends on each

speaker. If speaker-independent feature representations are obtained by subtracting speaker-dependent features, an appropriate clustering method is expected to

achieved phoneme discovery in an unsupervised manner.

form two clusters (i.e., acoustic categories). For example, DSAE
can form reasonable feature representations, and NPB-DAA
can simultaneously categorize phonemes and words. If explicit
feature representations are formed, a standard clustering method
(e.g., Gaussian mixture model) can also perform phoneme
discovery to a certain extent. However, in a multi-speaker
setting, the acoustic feature distribution of each phoneme can
differ, depending on the speakers. That is, “a” from the first
speaker and “a” from the second speaker will exhibit different
feature distributions in the feature space. The direct application
of a clustering method on the data tends to form different
clusters (i.e., phoneme categories) for “a” from the first and
second speakers. To enable a robot to acquire phonemes and
words from the speech signals obtained from multiple speakers,
it must omit, cancel, or subtract speaker-dependent information
from the observed speech signals. In Figure 1, the speaker-
dependent features and the speaker-independent features
are extracted. If speaker-independent feature representations
can be formed similarly, the proposed clustering method
(e.g., NPB-DAA) will likely identify phonemes from the
extracted features.

How to omit, cancel, or subtract speaker-dependent
information is a crucial challenge in unsupervised phoneme
and word discovery from multiple speakers. Conventional
studies on ASR, which can use transcribed data, adopt an
approach that omits the differences between multiple speakers
by using transcribed data. Although “a” from speakers A and B
exhibit different distributions, by using label data, the pattern
recognition system can learn that both distributions should be
mapped to label “a.” In the scenario of supervised learning,

deep learning-based speech recognition systems adopt these
types of approaches by exploiting a considerable amount of
labeled data and the flexibility of neural networks (Hannun
et al., 2014; Amodei et al., 2016; Chan et al., 2016; Chiu
et al., 2018). This approach was not suitable for this study,
because the research question is different. With this study,
we intend to investigate unsupervised phoneme and word
discovery. The system should not use transcription. Instead,
we focus on speaker index information (i.e., “who is speaking
now?”) to subtract speaker-dependent acoustic features. We
assume that the system can sense “who is speaking now?”
(i.e., speaker index)1. To apply the speaker index and subtract
speaker-dependent information from acoustic features, we
employed the concept of parametric bias in the study of neural
networks. Neural networks have been demonstrated to exhibit
rich representation learning capability and has been widely
used for more than a decade (Hinton and Salakhutdinov, 2006;
Bengio, 2009; Le et al., 2011; Krizhevsky et al., 2012; Liu et al.,
2014). In the context of developmental robotics, Tani and Ogata
et al. proposed and explored recurrent neural networks with
parametric bias (Tani et al., 2004; Ogata et al., 2007; Yokoya
et al., 2007). Parametric bias is an additional input that can
function as a gray switch to modify the function of the neural
network. In our study, the speaker index was manually provided
as an input of parametric bias as a part of dataset. Moreover,
neural networks can encode independent feature information

1It is widely established that infants can distinguish individuals around them in

their early developmental stage. Therefore, the assumption is reasonable from the

developmental perspective as well.
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FIGURE 2 | Overview of proposed method, NPB-DAA with DSAE-PBHL. First, a robot observes spoken utterances with speaker indices using a speaker recognition

method (e.g., face recognition). DSAE-PBHL, which accepts speaker-dependent features and the speaker index as input, extracts speaker-independent feature

representations and passes them to NPB-DAA. NPB-DAA segments the feature sequences and identifies words and phonemes (i.e., language and acoustic models)

in an unsupervised manner.

into each neuron if it is trained under suitable conditions. This is
called “disentanglement.” The property of disentanglement has
attracted much attention in recent studies (Bengio, 2009; Chen
et al., 2016; Higgins et al., 2017). The arithmetic manipulability
rooting on this characteristic of the neural network has also
gained attention. It was demonstrated that Word2Vec (i.e.,
skip-gram for word embedding) could predict the representation
vector of “Paris” by subtracting the vector of “Japan” from that
of “Tokyo” and adding that of “France” (Mikolov et al., 2013a,b).
Considering these concepts, we propose DSAE-PBHL to subtract
speaker-dependent information.

The overview of our approach, unsupervised phoneme
and word discovery using NPB-DAA with DSAE-PBHL, is
depicted in Figure 2. First, a robot observes spoken utterances
with speaker indices using a speaker recognition method
(e.g., face recognition). DSAE-PBHL, which accepts speaker-
dependent features and speaker index as input, extracts speaker-
independent feature representations and passes them to NPB-
DAA. NPB-DAA then segments the feature sequences and
identifies words and phonemes (i.e., language and acoustic
models) in an unsupervised manner.

We propose an unsupervised learning method that can
identify words and phonemes directly from speech signals
uttered by multiple speakers. The method based on NPB-
DAA and DSAE-PBHL is a form of unsupervised learning,
except for the use of an index of a speaker, which is
assumed to be estimated by the robot (i.e., a model of a
human infant).

The remainder of this paper is organized as follows:
Section 2 describes existing methods to create a background
for this study. Section 3 briefly describes the proposed
method: a combination of NPB-DAA and DSAE-PBHL.
Section 4 describes two experiments that evaluate the
effectiveness of the proposed method using actual sequential
Japanese vowel speech signals. Section 5 concludes
this paper.

2. BACKGROUND

The proposed method comprises NPB-DAA and DSAE-PBHL,
an extension of DSAE (see Figure 2). In this section, we briefly
introduce NPB-DAA (Taniguchi et al., 2016b). Then, we describe
DSAE (Ng, 2011; Liu et al., 2015; Taniguchi et al., 2016c).

2.1. NPB-DAA
The hierarchical Dirichlet process hidden language model
(HDP-HLM) is a probabilistic generative model that models
double articulation structures (i.e., two-layer hierarchy)
characteristic of spoken human language (Taniguchi et al.,
2016b). Mathematically, HDP-HLM is a natural extension
of the HDP hidden semi-Markov model (HDP-HSMM),
which is a type of generalization of the hidden Markov model
(HMM) (Johnson and Willsky, 2013). NPB-DAA is the name
of an unsupervised learning method for phoneme and word
discovery based on HDP-HLM. Figure 3 shows the graphical
model of HDP-HLM.

Whereas HDP-HMM assumes that the latent variable transits
between them following Markov process, HDP-HLM assumes
that the latent variable, the index of phoneme, transits according
to the word bigram language model. In HDP-HSMM, a
superstate persists for a certain duration determined by the
duration distribution and outputs an observation using a
corresponding emission distribution. Meanwhile, in HDP-HLM,
a latent word persists for a certain duration, and the model
outputs observations with a sequential transition of latent letters
(i.e., phonemes). Note that, in the HDP-HLM terminology, the
variable corresponding to a phoneme is called a “latent letter.”
The variable corresponding to a word is called a “latent word.”

Because HMM-based ASR has language and acoustic models,
HDP-HLM has both these as latent variables in its generative
model. Because of the nature of Bayesian non-parametrics (i.e.,
Dirichlet process prior), HDP-HLM can determine the number
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FIGURE 3 | Graphical model of HDP-HLM (Taniguchi et al., 2016b). HDP-HLM has language, word, and acoustic models as latent variables of an integrated

probabilistic generative model. HDP-HLM can infer these models and latent sequences of words (i.e., latent words) and phonemes (i.e., latent letters) using a blocked

Gibbs sampler.

of phonemes and words via the inference process. It is not
necessary to fix the number of phonemes and words (i.e.,
the number of latent letters and words) beforehand. In the
graphical model, the s-th latent word corresponds to superstate
zs. Superstate zs = i has a sequence of latent letters, wi =

(wi1, . . . ,wik, . . . ,wiLi ). Here, wik is the index of the k-th latent
letter of the i-th latent word. Li represents the string length of wi.
The generative process of HDP-HLM is as follows:

βLM ∼ GEM(γ LM) (1)

πLM
i ∼ DP(αLM ,βLM) i = 1, 2, . . . ,∞ (2)

βWM ∼ GEM(γWM) (3)

πWM
j ∼ DP(αWM ,βWM) j = 1, 2, . . . ,∞ (4)

wik ∼ πWM
wik−1

i = 1, 2, . . . ,∞ k = 1, 2, . . . , Li

(5)

(θj,ωj) ∼ H × G j = 1, 2, . . . ,∞ (6)

zs ∼ πLM
zs−1

s = 1, 2, . . . , S (7)

lsk ∼ wzsk s = 1, 2, . . . , S k = 1, 2, . . . , Lzs (8)

Dsk ∼ g(ωlsk ) s = 1, 2, . . . , S k = 1, 2, . . . , Lzs (9)

xt = lsk t = t1sk, . . . , t
2
sk

t1sk =
∑

s′<s

Ds′ +
∑

k′<k

Dsk′ + 1 t2sk = t1sk + Dsk − 1 (10)

yt ∼ h(θxt ) t = 1, 2, . . . ,T (11)

Here, GEM represents a stick-breaking process (SBP), and DP
represents the Dirichlet process (DP). βWM represents the based
measure of the Dirichlet process for the word model, and αWM

and γWM are hyperparameters of DP and SBP, respectively. A
word model is a prior distribution of a sequence of latent letters
composing a latent word. DP(αWM ,βWM) generates a transition
probability, πWM

j , which is a categorical distribution over the

subsequent latent letter of the j-th latent letter. Similarly, βLM ,
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DP(αLM , and βLM) represent the based measure of the DP
for the language model and hyperparameters of DP and SBP,
respectively. DP(αLM ,βLM) generates a transition probability,
πLM
i , which is a categorical distribution over the subsequent

latent letter of the i-th latent letter. The notations, LM and WM,
represent language and word models, respectively. The emission
distribution, h, and duration distribution, g, have parameters θj
and ωj drawn from the base measures, H and G, respectively.
The variable, zs, is the s-th word in the latent word sequence.
Moreover, Ds is the duration of zs, lsk = wzsk is the k-th latent
letter of the s-th latent word, and Dsk is its duration. Variables, yt
and xt , represent the observation and latent state corresponding
to a latent letter at time t. The times, t1

sk
and t2

sk
, represent the start

and end times, respectively, of lsk.
If we assume the duration distribution of a latent letter to

follow a Poisson distribution, the model exhibits an effective
mathematical feature because of the reproductive property of
Poisson distributions. The duration, Dsk, is drawn from g(ωlsk ).

Therefore, the duration of wzs is Ds =
∑Lzs

k=1
Dsk. If we

assume Dsk to follow a Poisson distribution (i.e., g is a Poisson
distribution), Ds also follows a Poisson distribution. In this
case, the parameter of the Poisson duration distribution of wzs

becomes
∑Lzs

k=1
ωlsk . The observation, yt , corresponding to xt =

ls(t)k(t), is generated from h(θxt ). Here, s(t) and k(t) are mappings
that indicate the corresponding word, s, and the letter, k, at time t.

Following the process described above, HDP-HLM
can generate time-series data exhibiting a latent double
articulation structure. In this study, we assumed that the
observation, yt , corresponded to the acoustic features. In
summary, {ωj, θj}j=1,2,...,∞ represents acoustic models, and
{πLM

i ,wi}i=1,2,...,∞ represents language models. The inference of
the latent variables of this generative model corresponds to the
simultaneous discovery of phonemes and words. An inference
procedure for HDP-HLM was proposed in Taniguchi et al.
(2016b), based on the blocked Gibbs sampler for HDP-HSMM
proposed by Johnson and Willsky (2013). The pseudocode of the
procedure is described in Algorithm 1. In this paper, we omit
the details of the procedure. For further details, please refer to
the original paper (Taniguchi et al., 2016b).

2.2. DSAE
In Taniguchi et al. (2016c), features extracted using DSAE were
used as the input of NPB-DAA.DSAE is a representation learning
method comprising several sparse autoencoders (SAE) (Ng,
2011). By stacking several autoencoders and assigning penalty
terms to the loss function for improving robustness and sparsity,
DSAE is obtained. In DSAE, each SAE attempts to minimize
the reconstruction errors and learn efficient and essential
representations of the input data (i.e., speech signals).

Figure 4 shows an overview of DSAE. In this study, we
assumed that the original input of speech signals were converted
into Mel frequency cepstral coefficients (MFCC), following the
process described in Taniguchi et al. (2016c). The time-series data
is obtained as a matrix, O ∈ R

DO×NO . Here, NO represents the
amount of data. The acoustic feature at time t is represented by

Algorithm 1: Blocked Gibbs sampler for HDP-HLM (Taniguchi
et al., 2016b)

Initialize all parameters.
ObserveM time series data, {ym1 :Tm}m∈{1,2,...,M}.
repeat

form = 1 toM do

// Backward-filtering procedure
for i = 1 to N do

BTm (i)← 1
end for

for t = Tm − 1 to 0 do
for i = 1 to N do

Bt(i) =
∑N

j=1 B
∗
t (j)p(zs(t+1) = j|zs(t) = i)

B∗t (i) =
∑Tm−t

d=1
Bt+d(i)p(Ds(t+1) = d|zs(t+1) = i)

p(yt+1 : t+d|i, d)
end for

end for

// Forward-sampling procedure
s← 1, Dsum

s ← 0
while Dsum

s < Tm do

// Sampling a superstate representing a latent word
zms ∼ p(zms | y

m
1 :Tm

, zms−1, FDsum
s
= 1)

// Sampling duration of the superstate
Dm
s ∼ p(Dm

s |zs, FDsum
s
= 1)

Dsum
s+1 ← Dsum

s + Dm
s

s← s+ 1
end while

Sm ← s− 1
for s = 1 to Sm do

// Sampling a tentative latent letter sequence
w̄m
s ∼ P(w|ym

Dsum
s−1+1 :D

sum
s

, {πWM
j ,ωj, θj}j=1,2,...,J)

end for

end for

// Update model parameters
for j = 1 to J do
{ωj, θj} ∼ P(ωj, θj|{z

m
1 : Sm

,Dm
1 : Sm

, w̄m
1 : Sm

, ym1 :Tm}m)
end for

{πLM
i }i,β

LM ∼ P({πLM
i }i,β

LM|{zm1 : Sm}m)
for i = 1 to N do

wi ∼ p(wi|{z
m
1 : Sm

,Dm
1 : Sm

, ym1 :Tm}m)
end for

{πWM
i }i,β

WM ∼ p({πWM
i }i,β

WM|{wi}i)
until a predetermined exit condition is satisfied.

ot ∈ R
DO , as follows:

ot = (ot,1, ot,2, . . . , ot,DO )
T , (12)

where DO represents the dimension of vector ot .
In this study, the hyperbolic tangent function, tanh(·), was

used as the activation function of SAE. To fit the input data to
the range of tanh(·) for reconstruction, the input vector ot was
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FIGURE 4 | Overview of DSAE. DSAE comprises stacked autoencoders having regularization terms in their objective functions to improve generalization capability.

Each layer is trained to minimize reconstruction errors.

normalized as follows:

vt = (vt,1, vt,2, . . . , vt,DO )
T vt,d = 2

( ot,d − Omin,d

Omax,d − Omin,d

)

− 1,

(13)

where Omax,d and Omin,d are the maximum and minimum
values, respectively, of the d-th dimension of all data: o ∈ O.

Each SAE has an encoder and a decoder. The encoder of the
l-th SAE in DSAE is

h
(l)
t = tanh(W(l)

e v
(l)
t + b(l)e ). (14)

Following this function, regarding the t-th datum, a vector of the

l-th layer, v
(l)
t , is transformed to a vector of the l-th hidden layer,

h
(l)
t ∈ R

D
(l)
H . Each decoder is represented as follows: the vector of

the l-th layer, r
(l)
t ∈ R

D
(l)
V , is obtained from the vector of the l-th

reconstruction layer.

r
(l)
t = tanh(W

(l)
d
h(v

(l)
t )+ b

(l)
d
), (15)

where W
(l)
e ∈ R

D
(l)
H×D

(l)
V in (14) is the weight matrix, and

b
(l)
e ∈ R

D
(l)
H is the bias of the encoder. Moreover, RD

(l)
V and

R
D
(l)
H represent the dimensions of the input and hidden layers,

respectively. Similarly,W
(l)
d
∈ R

D
(l)
V ×D

(l)
H in (15) is the weight

matrix of the decoder, and b
(l)
d
∈ R

D
(l)
V is the bias.

The loss function is defined as follows:

E(V(l)) =
1

2NV

NV
∑

t=1

||r
(l)
t − v

(l)
t ||

2
2 +

α

2
(||W(l)

e ||
2
2 + ||W

(l)
d
||22)

+β

D
(l)
H
∑

i=1

KL(η||h̄
(l)
i ). (16)

Because the dimensions of the weight matrices, W
(l)
e and W

(l)
d
,

were high, it was necessary to prevent the penalty terms,

W
(l)
e , W

(l)
d

(i.e., L2 norm), and β
∑D

(l)
H

i=1 KL(η||h̄
(l)
i ) (i.e., sparse

term). This is the Kullback–Leibler divergence between the two

Bernoulli distributions having η and h̄
(l)
i as their parameters. This

type of DSAE is introduced in Ng (2011). The following are
details of the sparse term:

KL(η||h̄
(l)
i ) = η log

η

h̄
(l)
i

+ (1− η) log
1− η

1− h̄
(l)
i

h̄
(l)
i =

1

2

(

1+
1

NV

NV
∑

t=1

h
(l)
t,i

)

, (17)
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FIGURE 5 | Overview of DSAE-PBHL. DSAE-PBHL has parametric bias input only for a part of the hidden layer. Neurons in the hidden layer receiving projections from

parametric-bias neurons are encouraged to encode speaker-dependent information that can predict the speaker index. On the contrary, the other neurons in the

hidden layer are expected to be discouraged to encode speaker-dependent information and code speaker-independent information.

where η ∈ R is a parameter that regulates sparsity. Moreover,

h̄
(l)
i represents the average of the i-th dimension’s activation. The

vector, h̄(l) ∈ R
D
(l)
H h̄

(l)
i , is defined by combining h̄

(l)
i . In this study,

to calculate the sparse term, h̄(l) was normalized from (−1, 1)
to (0, 1), because tanh(·) was used as an activation function.
To optimize the DSAE, a simple back-propagation method was
used (Rumelhart et al., 1985).

As described above, we can obtain the weight matrices,H(l) =
(

h
(l)
1 , . . . , h

(l)
t

)

∈ R
D
(l)
H×NV , for obtaining V(l+1) ∈ R

D
(l)
H×NV . By

stacking the optimized SAE’s, high-level feature representations
can be obtained.

3. DSAE-PBHL

This section describes our proposed DSAE-PBHL, which
employs a feature extractor that extracts speaker-independent
features frommultiple speakers. We use DSAE-PBHL with NPB-
DAA for unsupervised phoneme and word discovery in a multi-
speaker scenario.

This section describes DSAE-PBHL, which subtracts speaker-
dependent features in the latent space. DSAE-PBHL is a DSAE
with a final layer. A part of this layer receives speaker index
information from the other network. The layer is used to subtract
speaker-dependent information in a self-organizing manner.
Figure 5 shows an overview of DSAE-PBHL. The L-th layer (i.e.,
the final layer) receives parametric bias input from a different
network (see the right nodes of the network in Figure 5).
However, the vital aspect of DSAE-PBHL is that some of the

nodes in the final layer receives a projection from the network

representing speaker index information. The input vector, v
(L)
t ∈

R
D
(L)
V , comprises the parametric bias, p

(L)
t ∈ R

D
(L)
P , and a vector,

x
(L)
t ∈ R

D
(L)
X , obtained from the (L− 1)-th SAE.

v
(L)
t = (x

(L)
t , p

(L)
t )T ∈ R

D
(L)
V , (18)

where D
(L)
X and D

(L)
P represent the dimensions of x

(L)
t and p

(L)
t ,

respectively. Note that D
(L)
V = D

(L)
X + D

(L)
P .

Next, the vector of the L-th hidden layer, h
(L)
t ∈ R

D
(L)
H ,

x
(L)
t ,p

(L)
t , is defined using z

(L)
t ∈ R

D
(L)
Z ,s

(L)
t ∈ R

D
(L)
S as follows:

h
(L)
t = (z

(L)
t , s

(L)
t )T ∈ R

D
(L)
H , (19)

where D
(L)
Z and D

(L)
S represent the dimensions of z

(L)
t and s

(L)
t ,

respectively. Note that D
(L)
H = D

(L)
Z + D

(L)
S .

The encoder of the L-th SAE used (14) in a similar
fashion as the general DSAE. However, the weight matrix of

the encoder was trained to map the input vectors, x
(L)
t and

p
(L)
t , to the latent vectors, z

(L)
t and s

(L)
t , in the hidden layer

and generate speaker-independent feature representations and
speaker-identifiable representations.

W(L)
e =

(

W
(L)
z,x W

(L)
z,p

W
(L)
s,x W

(L)
s,p

)

∈ R
D
(L)
H ×D

(L)
V , (20)
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where, W
(L)
z,x ∈ R

D
(L)
Z ×D

(L)
X , W

(L)
z,p ∈ R

D
(L)
Z ×D

(L)
P , W

(L)
s,x ∈ R

D
(L)
S ×D

(L)
X ,

W
(L)
s,p ∈ R

D
(L)
S ×D

(L)
P ,W

(L)
z,p = 0.

Similarly, the decoder function (15) was used, and the weight
matrix of the decoder function was modified as follows:

W
(L)
d
=

(

W
(L)
x,z W

(L)
x,s

W
(L)
p,z W

(L)
p,s

)

∈ R
D
(L)
V ×D

(L)
H , (21)

where W
(L)
x,z ∈ R

D
(L)
X ×D

(L)
Z , W

(L)
x,s ∈ R

D
(L)
X ×D

(L)
S , W

(L)
p,z ∈ R

D
(L)
P ×D

(L)
Z ,

W
(L)
p,s ∈ R

D
(L)
P ×D

(L)
S , andW

(L)
p,z = 0.

Furthermore, the error function and optimization method
were identical to those of the general DSAE. After the training

phase, z
(L)
t was obtained by excluding s

(L)
t from the vector of the

L-th hidden layer. h
(L)
t and was used as a feature vector (i.e.,

observation, of NPB-DAA). The reason we considered it likely

that z
(L)
t encoded a speaker-independent feature representation

is that the network was trained to cause s
(L)
t to have a

speaker-identifiable representation. This was because s
(L)
t , alone,

was forced to contribute to reconstructing the speaker-index

information (i.e., parametric bias). As Figure 5 shows, s
(L)
t

was connected only to the input of the parametric bias (i.e.,

speaker index). If z
(L)
t involves speaker-dependent information

that can be used to predict the speaker index, the representation
is redundant. Therefore, such speaker-dependent information

is likely to be mapped onto s
(L)
t . Thus, it is likely that

z
(L)
t becomes encoding information that does not contribute
to the speaker identification task (i.e., it becomes speaker-
independent information).

4. EXPERIMENT

To evaluate the proposed method, we conducted two
experiments. First, we tested whether DSAE-PBHL could
extract speaker-independent feature representations using
speech signals representing isolated Japanese vowels and an
elementary clustering method. Second, we tested whether NPB-
DAAwith DSAE-PBHL could successfully perform unsupervised
phoneme and word discovery from speech signals obtained from
multiple speakers.

4.1. Common Conditions
In the following two experiments, we used the common dataset.
The procedure of creating data was identical to that used in
previous papers (Taniguchi et al., 2016b,c). We asked two male
and two female Japanese speakers to read 30 artificial sentences
aloud once at a natural speed, and we recorded their voice using
a microphone. In total, 120 audio data items were recorded. We
named the two female datasets as K-DATA and M-DATA and
the two male datasets as H-DATA and N-DATA. The 30 artificial
sentences were prepared using five artificial words {aioi, aue, ao,
ie, uo} comprising five Japanese vowels {a, i, u, e, o}. By reordering
the words, 25 two-word sentences (e.g., “ao aioi,” “uo aue,” and
“aioi aioi”) and five three-word sentences (i.e., “uo aue ie,” “ie
ie uo,” “aue ao ie,” “ao ie ao,” and “aioi uo ie”) were prepared.

The set of two-word sentences comprised all feasible pairs of
the five words (5 × 5 = 25). The set of three-word sentences
were determinedmanually. This dataset imitated the dataset used
in Taniguchi et al. (2016c), where NPB-DAA with DSAE were
proposed and evaluated on a dataset using a single speaker for
comparison. NPB-DAA requires huge computational cost, and
unsupervised phoneme and word discovery from a large-scale
dataset remains a very hard problem. Therefore, we evaluate our
method on this small dataset.

The input speech signals were provided asMFCCs, which have
been widely used in ASR studies. The recorded data were encoded
into 39-dimensional MFCC time series data using the HMM
Toolkit (HTK)2. The frame size and shift were set to 25 and
10 ms, respectively. 12-dimensional MFCC data were obtained
as input data by eliminating the power information from the
original 13-dimensional MFCC data. As a result, 12-dimensional
time-series data at a frame rate of 100 Hz were obtained.

In DSAE-PBHL, 39-dimensional MFCC was compressed by
DSAE, whose variation in the dimensions was 39 → 20 →
10 → 6. The speaker index was provided to the final layer as

a 4-dimensional input. In the final layer, the dimensions of z
(L)
t

and s
(L)
t were 3 and 3, respectively. We used z(L) as an input

of clustering methods (e.g., k-means, Gaussian mixture models
(GMM), and NPB-DAA). In DSAE, the 39-dimensional MFCC
was compressed by DSAE, whose variation in the dimensions was
39→ 20→ 10→ 6→ 3. The parameters in DSAE were set as
α = 0.003, β = 0.7, and η = 0.5.

4.2. Experiment 1: Vowel Clustering Based
on DSAE-PBHL
This experiment evaluated whether the DSAE-PBHL could
extract speaker-independent representations from the
perspective of a phoneme-clustering task rather than a
word-discovery task.

4.2.1. Conditions

For quantitative evaluation, we applied two elementary clustering
methods (i.e., k-means and GMM) to the extracted feature
vectors to examine whether the DSAE-PBHL extracted speaker-
independent feature representations. If the elementary clustering
methods could identify clusters corresponding to each vowel, it
would imply that each phoneme formed clustered distributions
to a certain extent. The clustering performance was quantified
with the adjusted Rand index (ARI), which is a standard
evaluation criterion of clustering. We also tested three types of
coding of parametric bias (i.e., sparse coding and codings 1 and 2,
Table 1). As a baseline method, we employed DSAE and MFCC.
Furthermore, we applied DSAE and the clustering methods
separately to the four datasets (i.e., H-DATA, K-DATA,M-DATA,
and N-DATA) and calculated the average ARI. This result can be
considered an upper limit of performance. The codes of scikit-
learn3 were used for k-means and GMM. The number of clusters
of methods was fixed as five (i.e., the exact number). Regarding
the other hyperparameters, the default settings of scikit-learn

2Hidden Markov Model Toolkit: http://htk.eng.cam.ac.uk/
3http://scikit-learn.org/stable/
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TABLE 1 | ARI in the phoneme-clustering task.

Method k-means GMM PB: [H-PB], [K-PB], [M-PB], [N-PB]

DSAE-PBHL (Sparse coding) 0.536 0.519 [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0]

DSAE-PBHL (coding 1) 0.514 0.429 [0,0,0,1], [0,0,1,0], [0,0,1,1], [0,1,0,0]

DSAE-PBHL (coding 2) 0.448 0.362 [0,0,1,1], [0,1,1,0], [1,1,0,0], [1,0,0,1]

DSAE 0.212 0.222

MFCC 0.243 0.182

Upper limit 0.626 0.599

The underlined values represent the highest scores within the comparative methods.

were used. The other settings followed the common conditions
described in section 4.1.

4.2.2. Results

Table 1 presents the ARI averaged over 20 trials for k-means,
GMM, and each method. This result demonstrates that DSAE-
PBHL exhibited significantly higher performance than DSAE
and MFCC in the representation learning of acoustic features
from multiple speakers in phoneme clustering. Among the three
coding methods, sparse coding (i.e., one-hot vector) achieved the
best score. In numerous cases of deep learning, sparse coding
exhibited effective characteristics. Therefore, this result appears
to have been consistent. However, even with different cases of
encoding methods, DSAE-PBHL outperformed other methods.
As considered likely, DSAE-PBHL did not attain the upper limit.
However, it reduced the difference.

Figures 6–9 visualize feature representations extracted by
DSAE and DSAE-PBHL with three types of coding. The final 3-
dimensional representation is mapped to a 2-dimensional space
using principal component analysis (PCA) for the purpose of
visualization. In each figure, the left side reveals a scatter plot
of the data from the four speakers, and the right shows the
scatter plot of the data from H-DATA and K-DATA (i.e., a male
and a female speaker). On the one hand, it was observed that
DSAE formed speaker-dependent distributions (see Figure 6).
For example, “a” from H-DATA and “a” from K-DATA formed
entirely different clusters in the feature space. On the other hand,
DSAE-PBHL formed speaker-independent representations to a
certain extent (Figures 7–9).

The right side of Figure 6 shows a clear split between the
data from speaker H and those from speaker K. This implies
that speech signals from different speakers form different clusters
in the feature space. In that formed by DSAE, “o” spoken
by H was more similar to “a” spoken by H than “o” spoken
by K. The first principal component correlated to the type
of phonemes and the second principal component correlated
to the speakers. This clearly shows that DSAE formed hugely
speaker-dependent feature spaces. In contrast, the two figures
in Figure 7 did not show a big difference. This implies that
feature representations of phonemes from every speaker and
those from an individual speaker are distributed in a similar
manner. Figures 8, 9 also had similar tendency. This means that
DSAE-PBHL successfully formed speaker-independent feature
spaces. This is quantitatively presented in Table 1.

4.3. Experiment 2: Simultaneous Phoneme
and Word Discovery From Multiple
Speakers Using NPB-DAA With
DSAE-PBHL
This experiment evaluated whether NPB-DAAwithDSAE-PBHL
could discover phonemes and words from speech signals from
multiple speakers.

4.3.1. Conditions

The hyperparameters for the latent language model were set
to γ LM = 10.0 and αLM = 10.0. The maximum number
of words was set to seven for weak-limit approximation. The
hyperparameters of the duration distributions were set to α =

200 and β = 10. Those of the emission distributions were set to
µ0 = 0, σ 2

0 = 1.0, κ0 = 0.01, and ν0 = 17 = (dimension+5).
The Gibbs sampling procedure was iterated 100 times for NPB-
DAA. 20 trials were performed using different random-number
seeds. Sparse coding of parametric bias was employed as the
coding method of the speaker index. We compared NPB-DAA
with DSAE-PBHL, NPB-DAA with MFCC, and NPB-DAA with
DSAE. Similar to Experiment 1, we calculated the performance
of NPB-DAA with DSAE, which learned speakers separately, as
an upper limit of the model. Moreover, we used the off-the-
shelf speech recognition system, Julius4, which has a pre-existing
true dictionary comprising {aioi, aue, ao, ie, uo} to output ARI
reference values. We used two types of Julius: the HMM-based
model and the deep neural network (DNN) model: Julius DNN.

4.3.2. Results

Similar to Experiment 1, Table 2 presents ARIs for each
condition. The rows with “(MAP)” list the score when NPB-
DAA exhibits the highest likelihood. The other rows list the
average score of 20 trials. Column SS represents the single-

speaker setting. Speech signals from different speakers are

input separately and learned independently. This condition is

considered an upper limit of the proposed model. Columns AM

and LM illustrate whether the method uses pre-trained acoustic

4Julius: http://julius.sourceforge.jp/
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FIGURE 6 | Feature representations extracted by DSAE visualized using PCA. (Left) all data, (Right) H-DATA and K-DATA.

FIGURE 7 | Feature representations extracted by DSAE-PBHL (sparse coding) visualized using PCA. (Left) all data, (Right) H-DATA and K-DATA.

and language model (i.e., uses transcribed data), respectively.

This demonstrates that NPB-DAA with DSAE-PBHL (MAP)

(i.e., our proposed method) outperformed the previous models.

However, it did not outperform the upper-limit method and

Julius DNN. On the other hand, it is noteworthy that NPB-
DAA with DSAE outperformed Julius, which was trained in a

supervised manner.
Table 3 presents correlation coefficients between ARIs and

log-likelihood for each feature extractor. A high correlation
between ARI and log-likelihood indicates that the extracted
features are suitable for the generative model, i.e., HDP-
HLM, for clustering. DSAE-PBHL had higher correlation
coefficients than the others. The result also suggests that DSAE-
PBHL formed a better feature space for speech signals from
multiple speakers.

This result indicates that DSAE-PBHL can reduce the adverse
effect of obtaining speech signals frommultiple speakers and that
the simultaneous use of NPB-DAA can achieve direct phoneme
and word discovery from speech signals obtained from multiple
speakers, to a certain extent.

5. CONCLUSION

This paper proposed a new method, NPB-DAA with DSAE-

PBHL, for direct phoneme and word discovery from multiple
speakers. DSAE-PBHL was developed to reduce the negative

effect of speaker-dependent acoustic features in an unsupervised
manner by using a speaker index required to be obtained
through another speaker recognition method. This can
be regarded as a more natural computational model of
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FIGURE 8 | Feature representations extracted by DSAE-PBHL (Coding 1) visualized with PCA. (Left) all data, (Right) H-DATA and K-DATA.

FIGURE 9 | Feature representations extracted by DSAE-PBHL (Coding 2) visualized with PCA. (Left) all data, (Right) H-DATA and K-DATA.

TABLE 2 | ARIs in phoneme- and word-discovery tasks.

Method Letter ARI Word ARI SS AM LM

NPB-DAA with DSAE-PBHL (MAP) 0.597 0.373

NPB-DAA with DSAE-PBHL 0.445 0.308

NPB-DAA with DSAE (MAP) 0.160 0.073

NPB-DAA with DSAE 0.234 0.139

NPB-DAA with MFCC (MAP) 0.281 0.115

NPB-DAA with MFCC 0.297 0.104

Upper-Limit (speaker-dependence): NPB-DAA with DSAE (MAP) 0.621 0.627 X

Upper-Limit (speaker-dependence): NPB-DAA with DSAE 0.523 0.448 X

Julius (triphone + word dictionary) 0.552 0.599 – X X

Julius DNN (triphone + word dictionary) 0.693 0.791 – X X

The underlined values represent the highest scores within the comparative methods. The bold values represent the highest scores within a class of baseline methods.
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TABLE 3 | Correlation coefficients between letter and word ARIs and

log-likelihood in phoneme- and word-discovery tasks.

Method DSAE-PBHL DSAE MFCC

Letter ARI 0.297 0.032 0.059

Word ARI 0.392 −0.053 0.013

The underlined values represent the highest scores within the comparative methods.

phoneme and word discovery by humans, because it does
not use transcription. Human infants acquire knowledge of
phonemes and words from interactions with parents and
other individuals that come into contact with the child.
We assumed that an infant could recognize and distinguish
speakers by considering certain other features (e.g., visual
face recognition). This study was aimed at enabling DSAE-
PBHL to subtract speaker-dependent acoustic features and
extract speaker-independent features. The first experiment
demonstrated that DSAE-PBHL could subtract distributed
representations of acoustic signals, enabling the extraction of
speaker-independent feature representations to a certain extent.
The performance was quantitatively evaluated. The second
experiment demonstrated that the combination of NPB-DAA
and DSAE-PBHL outperformed the available unsupervised
learning methods in phoneme- and word-discovery tasks
with speech signals with Japanese vowel sequences from
multiple speakers.

The future challenges are as follows: The experiment was
performed on vowel signals. However, applying NPB-DAA
to more natural speech corpora is our future challenge. It
will involve consonants, which exhibit more dynamic features
than vowels. However, achieving unsupervised phoneme and
word discovery from natural corpora, including consonants and
common vocabularies, continues to be a challenging problem.
Tada et al. applied NPB-DAA with a variety of feature extraction
methods (Yuki Tada, 2017). However, they obtained limited
performance. Therefore, in this study, we focused on vowel data.
Extending our studies to more natural spoken language is one of
our intention.

Applying the method to larger corpora is another challenge.
In this regard, the computational cost is high, and the method
to address data from multiple speakers are problematic.
We consider our proposed method to have overcome
one of these barriers. Recently, Ozaki et. al. reduced the
computational cost of NPB-DAA significantly (Ryo Ozaki,
2018). Therefore, we consider our contribution to be
effective for further study of unsupervised phoneme and
word discovery.

This paper proposed DSAE-PBHL as a proof-of-concept.
DSAE-PBHL is regarded a type of conditioned neural
network. Recently, the relationship between autoencoder
and probabilistic generative model have been recognized via
variational autoencoders (Kingma and Welling, 2013). From
a broader perspective, we propose using conditioned deep
generative models to obtain disentangled representations to

extract speaker-independent acoustic representations. In the
field of speech synthesis, voice conversion methods using a
generative adversarial network have been studied (Kameoka
et al., 2018). We intend to explore the relationship between
our proposal and those studies and integrate them in
future research.

It was demonstrated that DSAE-PBHL could mitigate the
negative effects of multiple speakers by using parametric bias.
However, speech signals from different speakers may depend
on other attributes (e.g., recording environment). In this study,
we did not distinguish recording-dependent features from
speaker-dependent features, but we attempted to subtract such
information by using DSAE-PBHL in an unsupervised manner.
Therefore, each parametric bias may have encoded not only
speaker-dependent information, but also recording-dependent
information. However, from the viewpoint of performance
of phoneme- and word-discovery, the experimental results
suggested that DSAE-PBHL could subtract such information as
well. However, the recording environment and other information
(e.g., prosody information) might also affect acoustic features.
Considering a variety of additional information and developing
a robust phoneme and word discovery system is also our
future challenge.

In the current model, DSAE-PBHL and NPB-DAA were
separately trained. However, as end-to-end learning in numerous
deep learning-based models have indicated, the simultaneous
optimization of feature extraction and post-processing is
essential. We also intend to study the simultaneous optimization
of representation learning and phoneme and word discovery in
the future.
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