AUTHOR=Dufek Jan , Murphy Robin TITLE=Visual Pose Estimation of Rescue Unmanned Surface Vehicle From Unmanned Aerial System JOURNAL=Frontiers in Robotics and AI VOLUME=6 YEAR=2019 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2019.00042 DOI=10.3389/frobt.2019.00042 ISSN=2296-9144 ABSTRACT=
This article addresses the problem of how to visually estimate the pose of a rescue unmanned surface vehicle (USV) using an unmanned aerial system (UAS) in marine mass casualty events. A UAS visually navigating the USV can help solve problems with teleoperation and manpower requirements. The solution has to estimate full pose (both position and orientation) and has to work in an outdoor environment from oblique view angle (up to 85° from nadir) at large distances (180 m) in real-time (5 Hz) and assume both moving UAS (up to 22 m s−1) and moving object (up to 10 m s−1). None of the 58 reviewed studies satisfied all those requirements. This article presents two algorithms for visual position estimation using the object's hue (thresholding and histogramming) and four techniques for visual orientation estimation using the object's shape while satisfying those requirements. Four physical experiments were performed to validate the feasibility and compare the thresholding and histogramming algorithms. The histogramming had statistically significantly lower position estimation error compared to thresholding for all four trials (p-value ranged from ~0 to 8.23263 × 10−29), but it only had statistically significantly lower orientation estimation error for two of the trials (