AUTHOR=Ise Takeshi , Oba Yurika TITLE=Forecasting Climatic Trends Using Neural Networks: An Experimental Study Using Global Historical Data JOURNAL=Frontiers in Robotics and AI VOLUME=6 YEAR=2019 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2019.00032 DOI=10.3389/frobt.2019.00032 ISSN=2296-9144 ABSTRACT=
Climate change is undoubtedly one of the biggest problems in the 21st century. Currently, however, most research efforts on climate forecasting are based on mechanistic, bottom-up approaches such as physics-based general circulation models and earth system models. In this study, we explore the performance of a phenomenological, top-down model constructed using a neural network and big data of global mean monthly temperature. By generating graphical images using the monthly temperature data of 30 years, the neural network system successfully predicts the rise and fall of temperatures for the next 10 years. Using LeNet for the convolutional neural network, the accuracy of the best global model is found to be 97.0%; we found that if more training images are used, a higher accuracy can be attained. We also found that the color scheme of the graphical images affects the performance of the model. Moreover, the prediction accuracy differs among climatic zones and temporal ranges. This study illustrated that the performance of the top-down approach is notably high in comparison to the conventional bottom-up approach for decadal-scale forecasting. We suggest using artificial intelligence-based forecasting methods along with conventional physics-based models because these two approaches can work together in a complementary manner.