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As manufacturing demographics change from mass production to mass customization,

advances in human-robot interaction in industries have taken many forms. However, the

topic of reducing the programming effort required by an expert using natural modes of

communication is still open. To answer this challenge, we propose an approach based

on Interactive Reinforcement Learning that learns a complete collaborative assembly

process. The learning approach is done in two steps. First step consists of modeling

simple tasks that compose the assembly process, using task based formalism. The

robotic system then uses these modeled simple tasks and proposes to the user a set

of possible actions at each step of the assembly process via a GUI. The user then

“interacts” with the robotic system by selecting an option from the given choice. The

robot records the action chosen and performs it, progressing the assembly process.

Thereby, the user teaches the system which task to perform when. In order to reduce the

number of actions proposed, the system considers additional information such as user

and robot capabilities and object affordances. These set of action proposals are further

reduced by modeling the proposed actions into a goal based hierarchy and by including

action prerequisites. The learning framework highlights its ability to learn a complicated

human robot collaborative assembly process in a user intuitive fashion. The framework

also allows different users to teach different assembly processes to the robot.

Keywords: human robot collaboration, interactive reinforcement learning, reasoning, knowledge modeling,

cognition

INTRODUCTION

Human robot interaction (HRI) is realized in various forms. Depending on the kind of interaction
and the nature of the task involved, different classifications of HRI exist in literature (Shen, 2015).
In this work, we use the classification of HRI in industrial scenarios as given in Pichler et al.
(2017); they are (a) Human robot coexistence—where both agents (human and robot) operate
in a close proximity on different tasks (b) Human robot assistance—where the robot passively
aids the human in a task (helping in lifting heavy objects). (c)Human robot collaboration—where
both agents simultaneously work on the same work piece (each agent has their own task to do on
the work piece). An example of such a collaborative robotic system is shown in Figure 1.
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FIGURE 1 | Robot manipulating object of interest in coordination with human user in an integrated cognitive architecture, where the robot perceives, reasons, plans,

executes and adapts. The image also depicts the object tracking, action recognition and communication Akkaladevi et al. (2018).

In this work, we present such a human robot collaborative
architecture. The main focus of the work is on the learning
framework that is based on this cognitive architecture, that
enables a user to easily teach the robotic system a complete
human robot collaborative process. To achieve this, the work
combines two different kinds of learning methodologies. Firstly,
the robotic system uses task based formalism (Nicolescu and
Mataric, 2003), to learn simple manipulation tasks (such as
picking, placing, etc) of objects. Then these simple tasks are
combined in an intuitive fashion to learn the complete assembly
process. Where, given a set of objects, the robotic system having
learned simple tasks, proposes a set of possibilities to the user.
The user then selects the appropriate task to be carried out
at that point of time. These set of task proposals are done in
an intelligent fashion considering the user capabilities, robot
capabilities and manipulations that are possible on the available
objects. This interaction process of robot proposal and user
interactions is based on interactive reinforcement learning that
is described in detail in the next sections.

The work presented in this paper is based on our extensive
previous work (Akkaladevi et al., 2016b, 2017b,c, 2018; Pichler
et al., 2017). The main contribution of this paper can
be summarized as follows: First, we present an interactive
reinforcement based learning framework, where the robotic
system proactively proposes a set of solutions (in an intelligent
fashion) to users and learns the assembly process. Second, we
improve the knowledge-modeling framework to easily represent
human robot collaborative processes. Finally, we clarify the role
of the action hierarchy and action prerequisites in reducing the
effort required in learning the assembly process. Note that the
discussion of related work in this paper represents a revised
version of the discussions in Pichler et al. (2017) and Akkaladevi
et al. (2017b) with additional details.

The remaining part of the paper is organized as follows.
The state of the art dealing with various learning approaches,
where a user teaches a robot is provided in detail in section
State of the Art. The architecture that enables the proposed
learning approach is given in section KoMoCog Architecture.
The main idea of the learning approach and the way in which
simple tasks are learned (using task based formalism) and then
later combined to form the complete assembly process (user
interaction based reinforcement learning) is given in section
LearningMethodology. The experimental setup and the complete
learning process in action are shown and discussed in section
Experimental Setup and the Learning approach in Practice.
Finally, some concluding remarks and possible next steps are
given in section Evaluation.

STATE OF THE ART

In the research community there is a growing interest to
solve the challenge of robots learning in complex real-world
environments (Dautenhahn, 2007; Goodrich and Schultz, 2007;
Bauer et al., 2008; Argall et al., 2009). In the literature, different
methods for developing agents, which can learn activities from
a human instructor, are described. Common to all methods is
the reduction of programming effort. However, the problem of
reducing the programming effort required by an expert using
natural modes of communication is still an open question
(Pedersen et al., 2016). When viewed from a broader perspective,
learning approaches can be classified as follows:

• Learning by advice
• Learning by programming
• Learning by demonstration
• Learning by interaction
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Learning by advice: This is made possible by the use of
natural forms of communication. The authors in Maclin and
Shavlik (1996) developed a method whereby advice is given
to the learning agent (Reinforcement Learning). In the context
of Markov decision-processes (MDPs), advice means that the
agent is suggested to execute an action if a particular condition
applies. The use of Natural-Language to communicate this advice
is particularly effective for non-experts. Such an interface was
implemented by Kuhlmann et al. (2004) andMoreno et al. (2004).
The detection of Natural-Language data has not yet been solved.
Therefore, many approaches require that advice be coded in the
syntax of scripting or programming languages. This makes access
for non-experts more difficult.

Learning by programming: The approaches falling under
this category use the task-level programming paradigm for
easy and quick re-programming by non-experts. The task-level
programming paradigm (Nicolescu and Mataric, 2003) is built
upon on a set of actions, where the actions have the capability
to alter the current world state. These set of actions can be
seen as formal descriptions of compliant robot motions and
are composed of primitives. These primitives are simple, atomic
movements, and are combined to form a task (Finkemeyer
et al., 2005). The task could consists of a single action in simple
cases and have multitude of actions in complex scenarios. An
example of a primitive is typically a sensory input or a single
robot motion, described using the Task Frame Formalism (TFF)
(Bruyninckx and De Schutter, 1996). From the perspective of
the robot operation, any given assembly task is (and could be)
broken down into a form of action primitiveswhich the robot can
interpret (Mosemann and Wahl, 2001). The main prerequisite
for using a (TFF) is to model the world state (in terms of action
primitives) and maintain it online. The main drawback of this
approach is that the modeling complexity increases exponentially
as the complexity of the task increases. To alleviate this problem,
we suggest using generic recipes (Nicolescu and Mataric, 2003)
instead of using such action primitives to build up the assembly
task. The terms recipe and skill are used analogously in this
paper. When compared to the action primitives, the recipes are
abstracted on a higher level and hence form a bridge between
complex tasks and the primitives.

There is an active interest in the research community to
use TFF and the approaches differ based on how primitives
are combined to describe the task. For example, to support
hierarchies and concurrencies in the task, a visual programming
tool for defining the flow control is proposed in Steinmetz and
Weitschat (2016). In Pedersen and Krüger (2015), an automated
task planning and execution system is shown as a sequence of
skills and their parameters, based on the desired goal state and
the current state from the world model. To deal with variations
in the assembly process, a programming framework that uses
knowledge- based components is proposed in Dean-Leon et al.
(2016). To allow portability across different platforms, the work
in Holz et al. (2015) details an integrated skill-based framework
coupled with task planning.

Learning by demonstration (LBD): Is a popular method by
which agents learn by physically presenting the task through the
human being Billard et al. (2008). The work in Argall et al. (2009)

provides a detailed overview of relevant methods. A disadvantage
of LBD is that complicated tasks can only be presented with
difficulty (e.g., if several robotic systems are to solve a problem
at the same time). A human-in-the-loop adaptation to correct
a batch-learned policy iteratively and improve accuracy and
precision is described in Ko et al. (2015). To allow users to
generate skills and robot program primitives for later refinement
and re-use is proposed in Stenmark and Topp (2016).

Learning by interaction: With the environment is another
interesting approach. Recent trend points toward applying
Reinforcement learning (RL) (Sutton and Barto, 1998) for this
purpose. In these approaches, learning arises from interaction
with the environment. The agent (robot) learns how to behave
(which actions to perform when) in order to complete a task
in the given environment. The agent learning process (using
RL) takes place over discrete time steps by interacting with
the environment and gaining experience about the outcome.
To reach an optimal policy (the set of actions that lead
to the maximum reward), a substantial interaction with the
environment is required. As a result, the RL approach leads to
a memory-intensive storage of all state action pairs in case of
complex tasks (Kartoun et al., 2010). Slow convergence toward
a satisfactory solution is also another drawback of the RL
approaches. To overcome these problems, recent approaches
use a human teacher in the loop to provide feedback (reward)
instead of allowing the agent to “aimlessly” interact with the
environment (Thomaz et al., 2006; Suay and Chernova, 2011;
Griffith et al., 2013; Knox et al., 2013). The human teacher in the
loop provides feedback, which is used by RL approach to speed
up the convergence time required to reach an optimal policy.
Such approaches are termed as interactive reinforcement learning
(IRL) approaches.

The work in Thomaz et al. (2006) argues that a run-time
human feedback as a reward to the IRL approach is beneficial
for both the human teacher (to understand the perspective
of the robot) and the robot (which learns the optimal policy
with help of the learning algorithm). The user study in this
work suggests that the human teachers employ the feedback
via a single communication channel for various communicative
intents (feedback, guidance, and motivation). Using this as basis,
the work in Suay and Chernova (2011) conducted a study to
realize such IRL approach for efficient real-world robotic systems.
In this study, the feedback provided by the user is 2-fold: first a
reward for preceding actions of the robot and then a guidance
for subsequent actions. The results show that such an approach
reduces the learning time of the robot in particular when a
large state-space (number of interactions possible by the robot
in a given environment) is considered. Another approach to
accelerate the learning process is given in Peng et al. (2016).

To train an agent manually via evaluate reinforcement, a
framework that uses real-valued feedback from a human trainer
about the agent behavior is described in Knox and Stone (2009).
Such a feedback allows the trainer to build the agent’s policy
(interactive shaping). This shaping directly modifies the action
policy (the selection mechanism) of the IRL algorithm. Instead of
using the feedback as an indirect influence, the work in Griffith
et al. (2013) uses it to make a direct statement about the action
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policy. A framework (TAMER) to apply the approach mentioned
in Knox and Stone (2009) for real-world robotic system is given
in Knox et al. (2013). In Rozo et al. (2013, 2014), the robot learns
both the desired path and the required amount of force to apply
on an object during the interaction.

There are not many approaches which attempt applying IRL
toward real-world scenarios. This is especially true for robot
learning in real-world industrial settings. The work in Pedersen
et al. (2016) and Pedersen and Krüger (2015) demonstrates
partial application of IRL to practical demonstrations. Their work
demonstrates a use case specific learning and are limited to the
number of actual interactions between the human and the robot.
Also, a complete human robot collaborative assembly process
with varying number of objects is not considered.

In contrast, our work builds upon the idea of task based
programming (Pichler et al., 2017) to teach the robot simple tasks
and then uses reinforcement based interactive learning to teach
the robot the sequence of these simple tasks that correspond
to a complete assembly process. The advantage of the proposed
approach is that the robotic system (that has already learned
simple tasks) provides a set of solutions to the user for a given
set of objects, the user then selects the optimal sequence of these
tasks to complete the assembly process.

The contributions to the state of the art include:

• Easy intuitive programming framework to learn an assembly
process using user interactions

• Applicability to human robot collaborative assembly tasks with
varying complexity.

KoMoCog ARCHITECTURE

To deal with theHRC assembly process the robotic system should
be enabled with cognitive capabilities in order to perceive, reason,
plan and execute as shown in Figure 2.

The learning framework is based on the KoMoCog
architecture and is equipped with the following: (a) Perception
Reasoning (PR) understands and interprets the current state of
the environment and the assembly task from data provided by
the perception system combined with the robot state received
from the planning and execution system. The PR is equipped
with real-time 3D tracking of objects with the help of the
Multi Object Tracker (Akkaladevi et al., 2016a, 2017a) and
an action recognition system to recognize the current action
performed by the human (Akkaladevi and Heindl, 2015). The
object tracker and the action recognition system are combined
to recognize the events (actions that interact with objects) using
an event detector (Akkaladevi et al., 2016b); (b) Knowledge
Management (KM) represents and abstracts different aspects of
the assembly process in the HRC environment. This includes
representing the abilities and possible activities of the human
and the robot, interplay between human/robot activities and
object configurations, current state of the human and the robot
with respect to the task; (c) Task State Reasoning (TSR) reasons
about the current assembly state by combining information
about the current state (given by perception reasoning) and the
assembly process knowledge (knowledge management), to make

decisions, to plan the next actions accordingly in coordination
with the planning and execution system, to behave intelligently,
to interact naturally with humans and aid in completing the
task. The knowledge management, perception reasoning and the
task state reasoning modules together constitute the Cognitive
Reasoning System in the architecture. (d) Action Execution
(AE): This module is responsible for plan generation, where the
plan consists of actions required to achieve the given task (goals).
This includes planning of the task, scheduling of the actions and
also includes planning under uncertainty for an efficient human
robot collaboration. The plans generated are carried out in real-
world where the robot plans its path (path/navigation planning)
and manipulates the environment accordingly. The AE is also
equipped with communication interfaces that provide a GUI-
interface for human robot communication and simulations
of the robot’s planned behavior. A detailed description of the
architecture is given in Akkaladevi et al. (2016b) and Pichler
et al. (2017).

Modeling Knowledge in HRC Assembly
Process
An assembly process AP in its simplest form can be defined
as a sequence of States S, a set of Events V and a set of
Relations R. The set of States S defines the individual steps of
the assembly process. The set of Events V drives the progress of
the assembly process from one step to another. The Relations
R specify the effect of a given Event V on a given State S in
progressing the assembly process. The architecture consists of
KM that defines the corresponding data structures to manage
and abstract the knowledge of the assembly process. This includes
task state descriptions, robotic system configuration, capabilities
of the robotic system and human operator, involved objects,
their configurations and affordances, the properties of agent’s
(human, robot) actions and their corresponding effects on
objects. The KM framework is an extended implementation of
KnowRob (Tenorth and Beetz, 2013), as KnowRob provides
the following knowledge processing features: (a) mechanisms
and tools for action centric representation, (b) automated
acquisition of grounded concepts through observation and
experience, (c) reasoning about and managing uncertainty, and
fast inference.

The knowledge is represented using ontologies (description
logics) based on the Web Ontology Language (OWL). SWI
Prolog is used for loading, accessing and querying the ontologies.
The representation consists of two levels: Classes that abstract
terminological knowledge (type of objects, events and actions)
and Instances which represent the actual physical objects or
the actions that are actually performed. Properties establish
relations (links) between Classes, and these links are also
valid for the Instances of the respective Classes. For example,
Properties define if an Agent Agent ǫ {Human, Robot} can
perform a particular action (defined in Classes) on/with a
Target ǫ {Objects, Robot, Human}.

The KnowRob framework provides a suitable basis (base
ontologies) for modeling actions, objects of interest, and
capabilities of humans and robots. A collection of Prolog

Frontiers in Robotics and AI | www.frontiersin.org 4 November 2018 | Volume 5 | Article 126

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Akkaladevi et al. Learning Framework for Human-Robot Collaboration

FIGURE 2 | KoMoCog Architecture for human robot collaboration depicting various modules and their communication interfaces.

rules are also provided for parsing ontologies and loading
them into the Prolog database, thus making the ontology data
accessible for database queries. We extended the base ontologies
to express an HRC Assembly Process description. Moreover,
Prolog rules were also extended to provide functionalities
such as (a) posting a snapshot created by the Perception
System into the database, (b) checking if recorded perception
data fulfills the constraints of an assembly process state,
(c) projecting the expected outcome of an action that is
planned for execution, and (d) deriving the expected succeeding
assembly process state. All these functions rely on Prolog
queries (e.g., unification and proof search in the database,
difference-list operations) and ontologies (e.g., deducing facts
which are not explicitely asserted in a database through so-
called “computables” (Tenorth and Beetz, 2013 and ontology-
reasoning).

An AP in HRC involves presence and manipulation of several
objects. The AP consists of different steps, where each step
requires a particular kind of manipulation on specific objects. For

the robotic system to successfully complete the AP, it should (a)
determine the current state in the AP, (b) choose/plan a necessary
action to progress the AP, (c) execute the planned action, (d) and
verify if the action was successful. All these steps are iteratively
executed until the AP is successfully completed.

Determine the Current State in the AP
Given the assembly process and assuming it begins with the
initial state, the TSR queries the knowledge management system
for information regarding the current state (initial state) in the
AP. This data includes process state constraints that describe (a)
spatial relations between objects, present in the workspace, (b)
required states of the human and robot and (c) Event descriptions
that lead to subsequent assembly process states. Based on the
given spatial relation constraints the TSR deduces the objects
of interest for the given state. A snapshot of the current scene
(object locations—Tracking, human and robot states—Action
Recognition and Robot Proprioception) needs to be created.
The TSR triggers the PR with the given information (a) objects

Frontiers in Robotics and AI | www.frontiersin.org 5 November 2018 | Volume 5 | Article 126

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Akkaladevi et al. Learning Framework for Human-Robot Collaboration

of interest available in workspace and b) robot and human in
given state (e.g., IDLE state), and requests the validation of
these constraints. The PR then waits for a stable response of
all perception sources, i.e., Object Tracker, Action Recognition
and Robot proprioceptive feedback to validate the information
provided by TSR. Afterwards, PR posts this snapshot into the
Prolog database using a specific rule. Now the verification
rule is triggered, which uses the KnowRob built-in computable
comp_spatial to verify if the spatial relation constraints are
fulfilled and also compares detected human and robot states with
the given process state constraints. The built-in computable are
functions that help to verify the spatial relations of objects, given
the current configuration of objects in the AP. If the verification
succeeds, the given process state is assumed to be verified and the
related Event descriptions are evaluated to deduce the next action
to be executed.

The given Cognitive Architecture needs to deal with multiple
instances of the same object type in the assembly process. In
order to express a spatial relation constraint to be valid for a
number of instances, we combined the expressiveness of OWL-
Classes and their related OWL-Instances: We model a certain
spatial relation of a certain pair of object types as an OWL-Class
(e.g., “Sphere-onTopOf-WorkTable”). To express a number of
distinct configurations of this spatial relation, an instance of the
considered OWL-Class is created and asserted with an OWL-
Data-Property (e.g., an integer value) that describes the required
quantity.

Planning of Actions
The physical execution of an action, deduced by the TSR, requires
its proper parametrization based on the given assembly process
knowledge. Each type of action is modeled as an OWL-Class in
the assembly process specific ontology. An action type OWL-
Class describes the principal primitive (e.g., PickAndHold or
Insert) and also describes the object types and targets affected by
that action, as well as the type of actor that is capable of executing
it. The related parametrization problem is described as finding
concrete instances of objects, targets and the actor and generating
a specific action instance. Considering the fact of multiple object
instances available, e.g., for picking an object “Sphere,” the main
question is the following: Which object instance shall be chosen?
Our solution to this problem is to let the Planning and Execution
System (PES) decide on selecting an appropriate instance. Even
before triggering the execution, the TSR computes the expected
action outcome, by projecting the potential action result with
respect to the current state in order to acquire information on the
expected changes in the environment (added/removed number of
object instances, changed states of human and robot).

Execution of Planned Action
For triggering the execution, TSR executes a Prolog rule to get
all possible candidates for object instances, target instances, and
actor instances available. This data is forwarded to the PES that
triggers human action execution (notification on GUI) or robot
execution, dependent on the actor type, and configures the PR
accordingly to initiate verification of the action.

TABLE 1 | An example use case with type of object and action possibilities.

Objects Possible actions

Base (B) Pick

Heater (H) Hold

Ring (R) Mount

Tray (T) Receive

Compound (H+B) Place

Compound (H+B+R) Idle

Compound (H+B+R+T)

The Verification of action executed is performed in two
steps. Firstly, the response of the PES (i.e., success or failure)
is considered and second, the TSR tries to verify the whether
the expected changes in environment did happen accordingly
(e.g., object instances removed/added). This is performed by
configuring the PR to check whether specific objects were
removed/added at certain locations, or a human/robot state
change has happened. If the action results could be verified,
the TSR tries to compare the predicted state (using the given
assembly process knowledge) to the perceived current state.
From this step on, the procedure is repeated until a final state
is reached.

LEARNING METHODOLOGY

A detailed description of the task based formalism to reduce the
programming effort for users is given in Pichler et al. (2017).
However, this approach is suitable for teaching a task that has
lower complexity (does not consists of too many human robot
object interactions). It is possible to teach a complicated task
using the approach mentioned in Pichler et al. (2017), but
the effort required is exponentially increasing depending on
the complexity. The mathematical description of the complex
assembly process is given in section Formal Description of
Assembly Process.

The solution to teach the robotic system a complex human
robot collaborative assembly process is to first teach the simple
tasks (that include one or two agent-object interactions). During
the second stage, the robotic system can propose a set of possible
simple tasks (actions). The reason for choosing the robot to
propose a set of actions is to make the learning process more
interactive and flexible. The user can then choose the sequence in
which these actions should take place, thereby creating a recipe
for the complete assembly process. However, simply proposing
a set of actions to the user (given the already learned simple
tasks) is not a valid solution, as there could be many possible
actions and as a result could overwhelm the user with too many
options to choose from. For example, consider the following
situation, as shown in Table 1. Let an action be performed by
either the robot or the human. In such a scenario, given 7
Objects and (5 + 1) actions each for the robot and the human,
the total number of possible actions proposed would be (7 ∗

5) +1 for each robot and the human. Resulting in a total of

72 actions. Such a huge state-action space (possible actions for
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Algorithm 1: Algorithm describing the learning process.

Given: Set of Objects, human and robot capabilities,
initial status(human, robot and object configuration);
Set FinaiState= false;
while FinalState= false do

Step l: (Propose Set of Possible Actions using;
Action Hierarchy);
Consider the following to reduce state-action space:;
Human capabilities;
Robot capabilities;
Object affordances;
Result: Generate preliminary set of actions for the
current State;
Step 2: Further reduce action-state space;
use:Act ionPrerequisites;
Result: Final list of possible actions;
Step 3: Wait for user selection;
Step 4: Execute selected action;
Step 5: Record resulting state (Object configuration,
human state, robot state);
Step 6: Query user (if finalstate);
if FinalState then

FinalState= true:
contmue;

end if

endwhile

the current state) for proposing actions is too much for users to
handle.

To reduce the state-action space and enable fluent human
robot collaboration we propose the following algorithm as
shown in Algorithm 1. We assume that the assembly process
starts with an initially known state (known object, human,
robot and object configuration in the environment). The system
first detects the available objects, the current human state and
robot state (as mentioned in section KoMoCog Architecture)
and proposes a set of possible actions. The initially generated
possibilities are reduced in two steps. First, the user capabilities
and the robot capabilities together with object affordances are
considered to reduce the action possibilities. Then, these action
possibilities are further reduced using action hierarchy and action
prerequisites. More details are described in sections Modeling of
Human Capabilities, Robot Capabilities, and Object Affordances
and Action Hierarchy and Prerequisites, respectively. Given a
reduced list of action possibilities, the user is requested to
select a suitable action. Once selected, the action is executed
(in case the human chooses to perform the action, the event
detection system waits until the action is executed) and then
the resulting state is recorded. The user is also to notify the
system if the resulting state is a final state or not. In case
of a final state, the assembly process is completed and the
complete sequence is stored. Otherwise, the system continues
with proposing a next set of possible action in the resulting
state.

Formal Description of the Assembly
Process
An assembly process (AP) in its simplest form can be defined as a
sequence of States S, a set of Events V and a set of Relations R.
The terms State and task state are used analogously in this
work. The set of States S defines the individual steps of the
assembly process. The set of Events V drives the progress of
the assembly process from one state to another. The Relations
R specify the effect of a given Event V on a given State S in
progressing the assembly process. A detailed formal description
of the AP and its constituents is given in Akkaladevi et al.
(2016b). The architecture consists of a knowledge management
framework based on KnowRob (Tenorth and Beetz, 2013),
that defines the corresponding data structures to manage and
abstract the knowledge of the assembly process. This includes
task state descriptions, robotic system configuration, capabilities
of the robotic system and human, involved objects, their
configurations and affordances, the properties of agent’s (human,
robot) actions and their corresponding effects on objects. The
advantage of using KnowRob framework as basis is that it
provides the knowledge processing features that include: (a) tools
and mechanisms for action-centric representation (b) automated
acquisition of grounded concepts through observation and
experience (c) fast inference and reasoning capabilities with
possibility to manage uncertainties. Ontologies (description
logics) based on the Web Ontology Language (OWL) is used for
knowledge representation. The SWI Prolog engine is used for
loading, accessing‘ and querying the ontologies. The knowledge
representation consists of two levels: Classes that abstract
terminological knowledge (type of objects, events and actions—
taxonomic fashion) and Instances which represent the actual
physical objects or the actions that are actually performed.
Properties establish relations (links) between Classes, and these
links are also valid for the Instances of the respective Classes.
For example, Properties define if an Agent ǫ {Human, Robot} can
perform a particular action (defined in Classes) on/with a Target
ǫ {Objects, Robot, Human} (Akkaladevi et al., 2016b, 2017b).

Modeling of Human Capabilities, Robot
Capabilities, and Object Affordances
The term capability refers to the possibility of an agent (human,
robot or both) to perform a particular action on a particular
object. The term object affordances in this context means, the
possible actions that an object provides for an agent.

A simplified, schematic overview of the knowledge
representation for Assembly Process model is given in Figure 3.
Blue circles represent classes (also called concepts) in OWL.
Arrows describe relations of different types. Object-Properties
describe relations among classes, and apply for all instances of
a class too. Data-Properties are used to relate literals of simple
data types with classes and instances. The ‘SubclassOf ’ property
is used to establish class hierarchies, where a sub-class inherits
property restrictions from its super-class.

A ProcessDescription refers to exactly one initial and one final
ProcessState (PS). Starting from the initial PS, subsequent PSs
can be reached via Action-State-Pairs (APSs). An ASP denotes
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FIGURE 3 | Schematic overview of knowledge representation for the assembly process.

FIGURE 4 | Modeling of object affordances and compound objects.

a possible transition from a given PS to a subsequent PS, which
will be taken if the Action associated to the ASP was executed.
By associating more than one ASP with a PS, different execution
paths or variants for an assembly process can bemodeled. If more
than one ASP is existing for a certain PS, each ASP needs to be
associated with a literal Q-Value in order to provide a specific
weightage factor for a certain ASP transition.

A ProcessState is characterized by an arbitrary number
of constraints, currently three different types: Object-Spatial-
RelationConstraints describe a spatial relationship between
two object instances (eg: onTopOf, toTheSideOf, inFrontOf,...).
HumanActionConstraints describe an action of the human actor,
optionally applied to an object (eg Idle, Holding-Object-X,
Picking-Object-Y,...). Robot-StateConstraints describe a required
state of the robot system (e.g.: Idle, Reached-Target X,...). This
description of a PS serves as basis for creating hypotheses on the
current state of an assembly process, considering the current state
of the environment.

Figure 4 describes the definition of objects and compound
objects, as well as modeling of object-affordances; i.e., actions that
can be executed on a specific object type and is that is therefore
“supported” by the object. A Compound Object consists of part-
objects, where certain sub-parts of the compound object can also
be declared as visually detectable. Visually detectable means that
the object part is visible from outside, and there is a change to
enable detection using an object recognition system.

For each object class, a list of actions can be defined that are
supported by the concrete object. For example, if object class
“XY” can be picked by a human (considering e.g., weight of
the object and shape), an Instance of “SupportedAction” class
is created and linked to the class of “Human” agent and to the
action class “PickObject.”

As a result, with the help of modeled human and robot
capabilities and object affordances the possible set of action
proposals can be reduced. Considering the earlier example in
Table 1, we can reduce the proposal of actions to the one given
in Table 2.

In Table 2, the use case is modeled in such a fashion that the
user cannot manipulate object (heater), while the robot cannot
manipulate object (base). Given this information, the number
of possible actions are reduced drastically from 72 action to 33

actions as shown inTable 2. However, 33 possible actions are still
too many to be considered for user interaction and hence they
need to be further reduced. This is done by dividing the possible
actions into a hierarchy and including prerequisites as described
in the next section.

Action Hierarchy and Prerequisites
The list of action possibilities given inTable 1 are categorized into
three layers as shown in Table 3.

As shown in Table 3, Atomic Actions are generic,
fundamental movements and are applicable to the representation
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TABLE 2 | The state-action space after considering user capabilities, robot

capabilities and object affordances.

Objects of interest Human

capabilities

(Hu)

Robot

capabilities

(Ro)

PRIOR KNOWLEDGE

Base (B) Pick 3 Pick 4

Heater (H) Hold 3 Show 4

Ring (R) Mount 3 Handover 4

Tray (T) Receive 3 Place 4

Compound (H + B) Place 3

Compound (H + B + R) Idle 1 Idle 1

Compound (H + B + R + T)

Total, 7 Objects; 16 Human actions + 17 Robot actions = 33 actions.

TABLE 3 | Hierarchy of action possibilities.

Atomic actions Basic actions Collaborative actions

Single motion single

actor

Multiple motions

single actor

Multiple motions

multiple actors

Pick object

(Human or robot)

Pick and place: Pick

object + Place object

on location

Mount: Robot idle +

Human insert object

onto other object

Place object on

location (Human or

robot)

Pick and insert: Pick

object + Insert object

onto other object

Pick and mount: Robot

idle + Human pick and

insert object onto other

object

Insert object onto other

object (Human or robot)

Pick and hold: Pick

object + Hold object

Handover: Robot idle+

Human receive object+

Robot release object+

Robot go back

Hold object

(Human or robot)

Idle (Human or robot)

Receive object (Human)

Release (Robot)

Move to position

(Robot)

of actions performed by humans or robots, e.g., “Pick object.”
Atomic actions are independent of the concrete assembling
process and represent the basic building blocks for more
complex actions. They are adapted for a specific assembly task by
means of a parameter assignment, but they do not usually lead
to the assembly process progressing from one state to the next.
Basic Actions are specific to the robot or humans and consist of
a combination of atomic actions (e.g., “pick and hold object”).
A basic action is always associated with prerequisites, which
determine the feasibility of the action. The preconditions allow a
logical linking of the basic actions to collaborative actions, which
represent the highest hierarchy level. Collaborative actions are
always a combination of actions involving both actors, humans
and the robot (“handover of an object”). Basic and Collaborative
Actions usually lead from one assembly process state
to the next.

For the description of atomic actions, the following
assumption was made: An Atomic Action is executed by
exactly one agent (property performedBy), can involve at most
one object of interest (objectActedOn) and can be applied at a
certain location or to a certain object (toLocation). The capability
of an agent to be able to perform a certain class of action,
independent of the involved object types, is also given by the
performedBy property. For example, if property performedBy
restricts a certain action class to values of “Human or Robot,”
both types of actors Robot and Human can perform the action.
The semantic modeling of these actions is given in Figure 5.
Note that only basic actions and collaborative actions are then
proposed as they are goal oriented. The atomic actions are only
used as building blocks for basic and collaborative actions.

Action prerequisites (humanActionPrerequisite and
robotActionPrerequisite) are used to describe dependencies
to actions of human and robot, which are required to have
been executed directly before executing the given action. These
prerequisites can be provided for collaborative and basic actions.
In this way, dependencies like “Pick Object needs to be executed
by an actor before being able to place the same object” or “An
actor can only pick an object, if it did not pick something else
right before,” can be described. For a given action type, a union
of prerequisite actions can be defined, i.e., different valid action
prerequisites can be defined for one action at once. Consider for
example, the user has already picked an object. Logically, the user
can then place the object down on the table or keep holding it.
It is not physically plausible to pick another object while already
holding onto an object. The system models these relations as
prerequisites and thereby, the basic actions are given in Table 4.

Similarly, the prerequisites to follow when proposing
collaborative actions are given in Table 5.

Considering Tables 4, 5, the number of possible actions in
the initial state are now reduced to 9 actions for the user
(consider Table 4, human is idle, hence the user can perform
three actions and by considering the object affordances, the user
can manipulate 3 objects in the initial state) and 9 actions for
the robot. Given these reduced set of actions based on the user
selection, the corresponding action is stored for that state. This is
done with the help of interactive learning and is explained in the
next section.

Reinforcement Learning
Reinforcement Learning (RL) is an area of machine learning
that defines a class of algorithms that enable a robot to learn
from its experience. In this work, the standard notation of
Markov Decision Process (MDP) is used to define Reinforcement
learning. In aMDP, any state st+1 occupied by the robot is defined
as st+1 = f (st , at), where st is the previous state and at is the
action taken in state st . The 5-tuple < S, A, P, R, γ >, define the
MDP, where S is the set of possible world states, andA denotes the
set of actions available to the agent in each state. The probability
function P: S× A→ Pr[S], describes the transition probability of
State st to State st+1, when an action at is performed on State st .
The reward function is defined as R: S × A → R, and γ denotes
the discount factor (0 ≤ γ ≤ 1). P and R together describe the
dynamics of the system. The goal of a RL algorithm is to find an
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FIGURE 5 | Semantic modeling of actions.

TABLE 4 | Action prerequisites-human and robot basic actions.

Human and robots basic events

Idle

Pick and Place Pick and Insert Pick and Hold

Idle Idle Place Insert

Idle Idle

optimal policy π by approximating the functionQ : S × A → R.
Here, Q maps the state-action pairs to the expected reward. The
optimal policy n: S → A maximizes the expected reward. The
optimal policy, π defines the best possible action to perform in
a given state with the goal of obtaining the maximum reward.

In this work, the learning algorithm is based on Q-learning
RL (Watkins and Dayan, 1992), With the successful application
of IRL in Thomaz et al. (2006) and Suay and Chernova
(2011) as inspiration, we extend IRL to be used in learning a
complex human robot collaborative assembly process as shown
in Figure 1.

For generating the options of different actions that can
be chosen/executed at a certain process state, the following
assumption holds: Each learning process starts at the Initial
State of an Assembly Process (e.g., all objects present in work
environment, the actors are idle).

• Given the description of the Initial State (see semantic model,
earlier), and the knowledge about the object classes of interest
for the given use case a list of objects of interest for the given
(initial) process state is generated (from the knowledge of the
process constraints).

• Consider actions that were executed previously (in initial
PS, nothing was executed before): If the last actions include
“Hold” atomic actions, the effects of these previous actions are

TABLE 5 | Action prerequisites to consider for collaborative actions.

Human events Robot events

Pick and hold Pick and hold

COLLABORATIVE EVENT MOUNT

Idle Place

Idle

Idle Pick and hold

COLLABORATIVE EVENT PICK AND MOUNT

Idle Place

Idle

Idle Pick and Hold

COLLABORATIVE EVENT HANDOVER AND INSERT

Idle Place

Idle

Idle Pick and Hold

COLLABORATIVE EVENT HANDOVER AND PLACE

Idle Place

Idle

computed based on defined rules (e.g., Object X is hold by
actor A and not visible in the work space, but can participate
in a future action).

• Based on the defined action prerequisites, a rule is executed to
find all actions, performable by the actor type of interest, which
can be executed by considering only action prerequisites.

• For each possible action type and considering the objects
available and hold by actors, a rule checks for possible
configurations of the given objects and the actor of interest.

• Finally, especially for collaborative actions like
“PickAndMount,” “Mount,” “Handover. . . ,” additional
constraints of the given objectOfInterests for an action and
previously hold objects need to be checked. For example in
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this last step, it is verified e.g., if an object of interest can
be really combined with a previously hold object to build a
compound object.

The rules are partly implemented in an action type specific
fashion. Through the concept of unification in Prolog, and
appropriate constraint-checking rule e.g., for the given action
class, can be determined clearly. The output of the main prolog
rule is as follows: For a given Process-State and the actor(s) of
interest (e.g., human, robot, or collaborative i.e., both actors),
a list of possible actions is returned. Moreover, a list of lists
containing possible objects of interest for each of these actions is
calculated. Lastly, a list containing a lists of lists is returned, which
contains possible combinable targets objects for the given action
and the possible objects of interests. Using this information, a
chosen action to be executed in a given process state, can be
clearly parameterized.

Learning Phase
For the learning process which is based on the Q-learning, the
description above mention the generation of state-action pairs
in the assembly process. In order to learn an optimal policy the
system can either explore or exploit. The strategy to explore and
then observe a reward can be very time consuming, as it require
huge amount of trials to find the optimal policy. The strategy
followed in this work makes use of the human operator to exploit
the users presence to find an optimal policy. In the initial state,
given the state-action space, the system proposes a set of solutions
to the user and initializes the Q table (state-action pair rewards)
with zero. The system uses the criterion mentioned above to
propose a set of plausible state-action pairs to the user. The
user then selects the best possible option (according to the user’s
choice). This state-action pair is then recorded and is stored with
the highest Q value possible. Thus, for the initial state, the chosen
action is performed and the Q value is stored. The resulting state
(as a consequence of performance of the chosen action) is now
the next state to the system. The system observes (perception
reasoning) the resulting state and proposes a new sets of state-
action pairs. The human user then selects another suitable action
for that state, the system stores the highest Q value for the state-
action pair, performs the action accordingly and proceeds to the
next state. In this fashion, the system proposes a set of state-
action pairs to the user in each state, the user selects a suitable
action, the system records the highest Q value for that state and
performs it and proceeds to the next state. After reaching the
final state (specified by the user), the Q table with the optimal
policy is already achieved with the help of user interaction and
the proactive proposal of the system.

Online Phase
During the online phase, the system loads in the learned policy,
observes the current environment and checks if the current state
has an optimal action already learned during the learning phase.
The system proceeds with a suitable action if an optimal action
policy exists for that state observed. This is continued until the
assembly is completed. If in case, the action executed results in
a state not known to the system, a deviation is triggered and a

new policy learning option is given to the user Akkaladevi et al.
(2017b).

EXPERIMENTAL SETUP AND THE
LEARNING APPROACH IN PRACTICE

The experimental setup for the HRC assembly process scenario is
depicted in Figure 6. The objects (base, heater, tray ring) located
in the workspace are related to the chosen assembly process as
described in Table 1 for the evaluation. The setup consists of
a UR-10 robotic manipulator (Universal Robots, 2016) with 6
degrees of freedom, which is equipped with a SCHUNK electric
parallel gripper. Two RGB-D sensors, Kinect 2 and Asus Xtion
Pro provide depth data to the perception system, to enable
human action recognition as well as object localization and
tracking.

Consider the initial case of the assembly process, as shown
in Figure 7. There are 4 objects (H, B, T, R) on the table
and the user and the robot are in idle state. The robotic
system proposes a set of possible actions as described in section
Learning Methodology. The system considers the user and
robot capabilities, object affordances, the action hierarchy and
prerequisites before generating a final set of possible actions.
Initially there are about 18 choices available for the user to
decide between the type of action (and on which object) and
also choose the agent (human or robot) that will perform the
action.

Let the user select an action (human to pick and hold base),
the system executes (in this case waits until the user pick and
holds the base object–this is detected using the event detector
as described in section KoMoCog Architecture). After executing
the action, the system records the state and then suggest the next
set of actions as shown in Figure 8. It should be noted that the
possible actions are now drastically reduced to just 7 actions. The
reason is since the user is already holding the base object, the

FIGURE 6 | Experimental setup including robotic manipulator, 3D sensor

system, Human Machine interactive visualization, objects and human agent

(Akkaladevi et al., 2017b).
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FIGURE 7 | The possible set of actions in the initial state of the assembly process.

FIGURE 8 | The possible actions after user has picked up the base object.

number of actions for the user is limited and the same applies
for the robot (according to Tables 3, 4).

Given the reduced set of actions, now the user selects the
robot to pick and hold the heater. The robot executes the
actions and now proposed a set of new actions. Note: until
this point, only basic actions were proposed since the action
prerequisite for collaborative actions were not satisfied. After
the robot picks and hold the heater, it realizes that now even
collaborative actions are possible and hence it proposes all

basic actions and collaborative actions possible as shown in
Figure 9.

Considering Figure 8, the number of possible actions
proposed are about 9 each for the human and the robot
in the initial state. When only using agent capabilities and
object affordances as mentioned in Table 2, where the number
of possible actions are 33. While also considering action
hierarchy and prerequisites, the number of options are reduced
further as shown in Figure 8. The use of action prerequisite

Frontiers in Robotics and AI | www.frontiersin.org 12 November 2018 | Volume 5 | Article 126

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Akkaladevi et al. Learning Framework for Human-Robot Collaboration

FIGURE 9 | Robot proposes all possible basic and collaborative actions; User chooses collaborative actions and performs it in coordination with the robot.

is more evident in Figure 9, where the possibilities are further
reduced to 7 and 3, respectively. This way of teaching a
robot an assembly process also has an additional advantage
that different users can teach different ways of doing the
assembly process. The system is capable of remembering different
sequences of doing the assembly process, where an episode
(a complete assembly process) taught by a user can be stored
according to the user profile. This way, user preferences can
be taken care of while performing the assembly process during
runtime.

EVALUATION

For Human Robot Collaboration (HRC) to be possible, the
robotic system should first understand the circumstances under
which it operates and then act, adapt and react accordingly.
However, with the presence of the human at the center of
its unpredictable nature, efficient HRC is quite difficult to
achieve. Recent studies on cognitive architectures (Bauer et al.,
2008; Pedersen and Krüger, 2015; Steinmetz and Weitschat,
2016; Stenmark and Topp, 2016) for HRC suggest that for an
efficient HRC, the robotic system should semantically create
a link between its observations of the environment and the
action chosen for execution in a close loop. This allows the
robotic system to choose a suitable action, execute, verify
and adapt accordingly. The idea of these approaches involve
representing the knowledge about the environment in the HRC
using some form of semantic rules (ontological web description
language, description logic, first order logic). Once defined, the
robotic system utilizes its observation capabilities (perception)
and queries the knowledge base to infer and reason about
the current state of the environment and choose an action
accordingly.

However, modeling the knowledge using OWL is a tedious
process and the complexity increases with the complexity of the
assembly process involved. We argue that the proposed learning
framework allows for ease of modeling the semantic knowledge
in the assembly process. To evaluate this learning framework,
the use case chosen as shown in Figure 6, includes 4 objects

and involves 33 actions. The number of states possible result
in 132 states. The number of states is a result of a number
of combination of states possible with the given set of objects
and the action possibilities. In such a huge state-action space
that involve dynamic human robot collaboration, modeling the
knowledge becomes very tedious as manually creating semantic
link is both time consuming and also has to be updated again
manually.

To reduce such a complex state space, the learning framework
considers the state-space reduction strategy mentioned in
Tables 3–5. The state space is further reduced by considering
human interaction and considering the objects of interest in that
interaction as shown in the video link.

The video link1 shows the complete learning framework in
action. The video shows the individual modules and the object
involved are demonstrates the intended use case. This is followed
by the learning framework, the interaction with the human
operator and the process involved. The video also demonstrates
the capability of the learning process to deal with deviations.
This deviation handling (Akkaladevi et al., 2017b) is not the
focus of the work presented in this paper and hence is not
explained in detail. The second part of the video showcases the
applicability of such a learning framework and compares two
different cognitive architecture. These two cognitive architectures
have the same modules. However, they differentiate each other in
the sense that one exploits the semantic links learned through
the proposed framework and the other, which does not. The
evaluation highlights the obvious advantage of such use. The
framework not only learns the sequence of the assembly process
but also learns the semantic link between each step of the
assembly process. Exploiting the semantic link to understand
the environment, choosing a suitable action and verifying an
executed action is of vital importance to complete an HRC
assembly. This can be only possible if the system is aware of
the changes in the environment, is able to reason, plan and
execute all of which is made possible by the use of the learning
framework.

1Video: https://youtu.be/hIsWTUllu3g
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CONCLUSION

Conventionally, robotic systems were used in highly automated
production scenarios, where robots were installed behind closed
fences and were used to perform repetitive tasks. With the recent
developments in collaborative robotics are allowing these robotic
systems to break the fences and move toward working hand in
hand with the human users. These developments are in line with
recent demographic changes in productions scenarios frommass
production to mass customization, where reconfigurable robotic
systems will play a key role. Programming such re-configurable
robotic system in short amount of time is of vital importance
to manage variations of production processes. In this work, we
presented such a learning framework, where the robotic system
is capable of learning simple tasks (using task based formalism)
and combine these simple tasks in an intelligent fashion to learn
complicated assembly processes.

In this learning framework, the robotic system with the prior
knowledge of simple tasks suggests the user a set of possible
actions, when presented with a set of objects. These proposals
take into consideration the agent capabilities, object affordances
and action hierarchy and prerequisites to reduce the number of

proposal provided to the user. This allows the user to take part
in the learning process and also enables learning of multiple
assembly processes. The next steps in this work would be to
perform detailed evaluations and user studies of the learning
framework considering a number of users (experts and non-
experts). The evaluation criteria would be mainly interested in
the time taken, ease of use and intuitiveness of the learning
framework.
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