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Visual Tracking Using Sparse Coding
and Earth Mover’s Distance
Gang Yao and Ashwin Dani*

Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States

An efficient iterative Earth Mover’s Distance (iEMD) algorithm for visual tracking is

proposed in this paper. The Earth Mover’s Distance (EMD) is used as the similarity

measure to search for the optimal template candidates in feature-spatial space in a

video sequence. The local sparse representation is used as the appearancemodel for the

iEMD tracker. The maximum-alignment-pooling method is used for constructing a sparse

coding histogram which reduces the computational complexity of the EMD optimization.

The template update algorithm based on the EMD is also presented. When the camera

is mounted on a moving robot, e.g., a flying quadcopter, the camera could experience

a sudden and rapid motion leading to large inter-frame movements. To ensure that the

tracking algorithm converges, a gyro-aided extension of the iEMD tracker is presented,

where synchronized gyroscope information is utilized to compensate for the rotation

of the camera. The iEMD algorithm’s performance is evaluated using eight publicly

available videos from the CVPR 2013 dataset. The performance of the iEMD algorithm is

compared with eight state-of-the-art tracking algorithms based on relative percentage

overlap. Experimental results show that the iEMD algorithm performs robustly in the

presence of illumination variation and deformation. The robustness of this algorithm for

large inter-frame displacements is also illustrated.

Keywords: visual tracking, earth mover’s distance, sparse coding, gyro-aided tracking, max-alignment pooling,

template update

1. INTRODUCTION

Visual tracking is an important problem for new robotics applications. The information generated
from the sequence of images by the tracking algorithm can be utilized by vehicle navigation,
human-robot interaction, andmotion-based recognition algorithms (Dani et al., 2013; Ravichandar
and Dani, 2015; Chwa et al., 2016). Visual tracking algorithms provide important information
for visual simultaneous localization and mapping (SLAM), structure from motion (SfM), and
vision-based control (Marchand and Chaumette, 2005; Marchand et al., 2005; Comport et al., 2006;
Davison et al., 2007; Dani et al., 2012; Yang et al., 2015).

Image-based tracking algorithms are categorized as point tracking, kernel tracking, or silhouette
tracking (Yilmaz et al., 2006). Distinguishing features, such as color, shape, and region are selected
to identify objects for visual tracking.Modeling the object adapts to the slowly changing appearance
is challenging, due to the illumination variants, object deformation, occlusion, motion blur, or
background clutters. Supervised or unsupervised online learning algorithms are often used to
robustly find and update the distinguishing features of the object, such as using variance ratios
of the feature value’s log likelihood (Collins et al., 2005), the online Ada-boost feature selection
method (Grabner and Bischof, 2006), and incremental learning (Ross et al., 2008).
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Approaches in visual tracking could be generally classified
into two groups, either generative methods or discriminative
methods. For generative methods, the tracked object is modeled
based on the selected features, such as the color histogram,
sparse coding representation, or kernels. Then, correspondence
or similarity measurement between the target and the candidate
across frames is constructed. Similarity measurements are
derived through several methods, such as the Normalized Cross
Correlation (NCC) (Bolme et al., 2010; Zhu et al., 2016), the Earth
Mover’s Distance (EMD) (Zhao et al., 2010; Karavasilis et al.,
2011; Oron et al., 2012; Tahri et al., 2016), the Bhattacharyya
Coefficient (BC) (Comaniciu et al., 2003) and point-to-set
distance metric (Wang et al., 2015, 2016). Location of the
candidate object in the consecutive frames is estimated by using
the Kalman filter, particle filter or gradient descent method.
Discriminative methods regard tracking as a classification
problem and build a classifier or ensemble of classifiers to
distinguish the object from the background. Representative
classification tracking algorithms are the structured Support
Vector Machine (SVM) (Hare et al., 2011), Convolutional Neural
Nets (Li et al., 2016). Ensemble based algorithms such as
ensemble tracking (Avidan, 2007), multiple instance learning
(MIL) (Babenko et al., 2011), and online boosting tracker
(Grabner and Bischof, 2006).

In order to robustly track moving objects in challenging
situations, many tracking frameworks are proposed. Tracking
algorithms with Bayesian filtering are developed to track
moving objects. These algorithms can handle complete occlusion
(Zivkovic et al., 2009). The non-adaptive methods, usually only
model the object from the first frame. Although less error
prone to occlusions and drift, they are hard to track the object
undergoing appearance variations. However, adaptive meth ods
are usually prone to drift because they rely on self updates of
an online learning method. In order to deal with this problem,
combining adaptive methods with the complementary tracking
approaches leads to more stable results. For example, parallel
robust online simple tracking (PROST) framework combines
three different trackers (Santner et al., 2010): tracking-learning-
detection (TLD) framework uses P-N experts to make the
decision on the location of themoving object, based on the results
from the Median-Flow tracker and detectors (Kalal et al., 2012),
and online adaptive hidden Markov model for multi-tracker
fusion (Vojir et al., 2016).

An EMD-based tracker using color histogram [iEMD(CH)] as
an appearance model and its fusion with gyroscope information
is presented in our prior related work (Yao et al., 2016; Yao
and Dani, 2017). However, color histogram model is not robust
to appearance changes. Also, the template update algorithm
is not used in our prior related work. The sparse coding
appearancemodel is based on a dictionary of templates consisting
of the appearance variations of the target. The sparse coding
appearance model has been used in literature and has shown
robust performance in various tracking algorithms (Zhang et al.,
2013). In this paper, we develop a generative tracking method
using sparse coding appearance model along with EMD as a
similaritymeasure. An adaptive template update algorithm is also
developed to update the apprearance model during tracking to

handle the appearance variations. Gyroscope information is used
to aid the initialization of the EMD optimization. Specifically, the
contributions of the paper are

• The maximum-alignment-pooling method for local sparse
coding is used to build a histogram of appearance model.
A template update algorithm is used to adaptively change
the appearance model by an exponential rule based on
EMD measure. An iEMD tracking algorithm is developed
based on this local sparse coding representation of the
appearance model. It is shown using videos from publicly
available benchmark datasets that the iEMD tracker
shows good performance in terms of percentage overlap
compared to the state-of-the-art trackers available in
literature.
• Gyro-measurements are used to compensate for the pan,

tilt, and roll of the camera. Then the iEMD visual tracking
algorithm is used to track the target after compensating for the
movement of the camera. By this method, the convergence of
the algorithm is ensured, thus providing a more robust tracker
which is more capable of real-world tracking tasks.

The paper is organized as follows. Related work on the
computation of the EMD and its application for visual tracking
is illustrated in section 2. In section 3, the iEMD algorithm
for visual tracking is developed. In section 4, the target
is modeled as the sparse coding histogram. For the sparse
coding histogram, the maximum-alignment-pooling method is
proposed to represent the local image patches. In section 5, two
extensions of the iEMD algorithm that includes the template
update method, and the method of using the gyroscope data
for ego-motion compensation are discussed. In section 6, the
iEMD tracker is validated on eight publicly available datasets, and
the comparisons with eight state-of-the-art trackers are shown.
Experimental results using the gyro-aided iEMD algorithm are
compared with tracking results without gyroscope information.
The conclusions are given in section 7.

2. RELATED WORK

Sparse coding has been successfully applied to model the target
in visual tracking (Zhang et al., 2013). In sparse coding for visual
tracking, the largest sum of the sparse coefficients or the smallest
reconstruction error is used as the metric to find the target from
the candidate templates using particle filter (Mei and Ling, 2009;
Jia et al., 2016). The sparse coding process is usually the L1 norm
minimization problem, which makes the sparse representation
and dictionary learning computationally expensive. To reduce
the computational complexity, the sparse representation as the
appearance model is combined with the Mean-shift (Liu et al.,
2011) or Mean-transform method (Zhang and Hong Wong,
2014). After a small number of iterations by these methods, the
maximum value of the Bhattacharyya coefficient corresponding
to the best candidate is obtained.

In real-world tracking applications, variations in appearance
are a common phenomenon caused by illumination changes,
moderate pose changes or partial occlusions. The Earth Mover’s
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Distance (EMD) as a similarity measure, also known as 1-
Wasserstein distance (Guerriero et al., 2010; Baum et al., 2015),
is robust to these situations (Rubner et al., 2000). However, the
major problem with the EMD is its computational complexity.
Several algorithms for the efficient computation of the EMD
are proposed. For example, the EMD-L1 algorithm is used
for histogram comparison (Ling and Okada, 2007) and the
EMDs are computed with the thresholded ground distances
(Pele and Werman, 2009). In the context of visual tracking,
although the EMD has the merit of being robust to moderate
appearance variations, the efficiency of the computation is still
a problem. Since solving the EMD is a transportation problem—
a linear programming problem (Rubner et al., 2000), the direct
differential method cannot be used. There are some efforts to
employ the EMD for object tracking. The Differential Earth
Mover’s Distance (DEMD) algorithm (Zhao et al., 2010) is
first proposed for visual tracking, which adopts the sensitivity
analysis to approximate the derivative of the EMD. However, the
selection of the basic variables and the process of identifying and
deleting the redundant constraints still affect the efficiency of the
algorithm (Zhao et al., 2010). The DEMD algorithm combined
with the Gaussian Mixture Model (GMM), which has fewer
parameters for EMD optimization, is proposed in Karavasilis
et al. (2011). The EMD as the similarity measure combined
with the particle filter for visual tracking is proposed in Oron
et al. (2012). In this paper, the sparse coding is used along with
EMD similarity measure for the visual tracking. To the best
of our knowledge, this is the first work that combines sparse
coding representationwith the EMD similaritymeasure for visual
tracking.

The success of the gradient descent based tracking algorithm
depends on the assumption that the object motion is smooth and
contains only small displacements (Yilmaz et al., 2006). However,
in practice, this assumption is always violated due to the abrupt
rotation and shaking movement of the camera mounted on a
mobile robot, such as a flying quadcopter. Efforts have beenmade
to combine the gyroscope data with tracking algorithms, such
as the Kanade-Lucas-Tomasi (KLT) tracker or the MI tracker
(Hwangbo et al., 2011; Park et al., 2013; Ravichandar and Dani,
2014). In our paper, to robustly track a static object using a
moving camera, gyroscope data are directly utilized to estimate
the initial location of the static object. When both the camera and
the object being tracked are in motion, the gyroscope sensor data
are utilized to compensate for the rotation of the camera, because
rotation has a greater impact on the positional changes compared
with the translation in video frames. Then, the iEMD tracking
algorithm is applied to track the moving object. The robustness
of the tracking algorithm is improved due to the compensation of
the camera’s ego-motion. Therefore, our method makes the EMD
tracker more robust to this situation.

3. ITERATIVE EMD TRACKING
ALGORITHM

In the context of visual tracking, first a feature space is chosen to
characterize the object, then, the target model and the candidate

model are built in the feature-spatial space. The probability
density functions (histograms) representing the target model and
the candidate model are (Comaniciu et al., 2003)

target model: p̂ =
{

p̂u
}

u=1,...,NT
and

∑NT
1 p̂u = 1

candidate model: q̂(y) =
{

q̂v(y)
}

u=1,...,NC
and

∑NC
1 q̂v(y) = 1,

where p̂u is the weight of the uth bin of the target model p̂,
assuming the center of the template target is at (0, 0), q̂v is the
weight of the vth bin of the candidate model q̂(y), assuming
the center of the template candidate is at y, NT and NC are the
numbers of the bins.

Based on the target model and the candidate model, the
dissimilarity function is denoted as f (p̂, q̂(y)). The optimization
problem for tracking is to estimate the optimal displacement
ŷ which gives the smallest value of f (p̂, q̂(y)). Thus, the
optimization problem is formulated as

ŷ = arg min
y

f (p̂, q̂(y)) (1)

In (1), the center of the template target is assumed to be
positioned at (0, 0), and the center of the template candidate is
at y. The goal is to find the candidate model located at ŷ that
gives the smallest value of the dissimilarity function f (p̂, q̂(y)).
The differential tracking approaches are usually applied to
solve this optimization problem, with the assumption that the
displacement of the target between two consecutive frames is very
small.

The optimization problem in (1) is solved using the iEMD
algorithm as described in the following sub-sections. The iEMD
algorithm iterates between finding the smallest EMD between
template target and the template candidate based on the current
position yk by the transportation-simplex method (see section
3.2 for details) and finding the best position yk+1 leading to the
smallest EMD by gradient method (see section 3.3 for details).

3.1. EMD as a Similarity Measure
In this section, the EMD between the target model p̂ and the
candidate model q̂(y) is used as the similarity measure. Solving
the EMD is a transportation problem—a linear programming
problem as shown in Figure 1. Intuitively, given the target model
and the candidate model, each bin of both models are cross
compared. The costs between the bins from two different models
are predefined. Then the EMD is considered as the smallest
overall cost of sending the weights of one bin from the target
model to another bin of the candidatemodel. The EMD is defined
as (Rubner et al., 2000)

D⋆(fuv(p̂, q̂(y))) , min
fuv

(

NT
∑

u=1

NC
∑

v=1

duvfuv(p̂, q̂(y))

)

(2)

subject to

NT
∑

u=1

fuv(p̂, q̂(y)) = wC,v, 1 ≤ v ≤ NC (3)
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FIGURE 1 | EMD comparison of the two templates (No permission is required from the copyright holders and/or the depicted individuals for the use of these images.

The original images are obtained from the EC Funded CAVIAR project/IST 2001 37540, found at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/).

NC
∑

v=1

fuv(p̂, q̂(y)) = wT,u, 1 ≤ u ≤ NT (4)

NT
∑

u=1

NC
∑

v=1

fuv(p̂, q̂(y)) = 1 (5)

fuv(p̂, q̂(y)) ≥ 0, 1 ≤ u ≤ NT , 1 ≤ v ≤ NC (6)

where D⋆ is the optimal solution to this transportation problem,
fuv(p̂, q̂(y)) is the flow (weight) from the uth bin of p̂ to the vth
bin of q̂(y), duv is the ground distance (cost) between the uth and
the vth bins, the subscript T denotes the object target and C is the
object candidate, wT,u is the weight from the uth bin of p̂, and
wC,v is the weight from the vth bin of q̂(y).

3.2. EMD as a Function of Weights
Writing the above equation set (2–6) in a matrix form as

D⋆ = min
f

dTf

s.t. Hf = w; f > 0
(7)

where the d = [d11, · · · d1NC , · · · dNT1, · · · dNTNC ]
T ∈ R

NTNC

is the ground distance vector, f = [f11, · · · f1,NC , · · ·
fNT1, · · · fNTNC ]

T ∈ R
NTNC is the flow vector, w = [wT

NC
,wT

NT
]T ∈

R
NT+NC is the weight vector consisting of the weight vectors

wNC ∈ R
NC from q̂(y) and wNT ∈ R

NT from p̂, and

H ∈ R
(NT+NC)×NTNC is the matrix which consists of 0 and

1s.
In order to relate the EMD with the weight vector, the

above primal problem in (7) is restated in its dual form as

(Dantzig and Thapa, 2006)

D⋆ = max
π

wTπ

s.t. HTπ ≤ d
(8)

where π ∈ R
NT+NC is a vector of variables to be optimized in the

dual problem. By solving this dual problem in (8), the optimal
solution D⋆ is calculated and directly represented as the linear
equation of weights. However, considering the computation
efficiency, the optimal solution (EMD) is first calculated from the
primal problem in (7) using the transportation-simplex method,
and then the EMD is represented as the function of the weights
by the matrix transformation.

Using the transportation-simplex method (Rubner et al.,
2000), the optimal solution to the EMD problem in (7) is
calculated. The transportation-simplex method is a streamlined
simplex algorithm, which is built on the special structure of
the transportation problem. In order to reduce the number of
iterations of the transportation-simplex method, the Russell’s
method is used to compute the initial basic feasible solution
(Rubner et al., 2000; Ling and Okada, 2007).

The computation of the EMD is a transportation problem,
which has exactly NT + NC − 1 basic variables fB ∈ R

NT+NC−1,
and each constraint is a linear combination of the other NT +

NC − 1 constraints, which could be considered as redundant
and discarded (Dantzig and Thapa, 2006). Based on the optimal
solution to the linear programming problem, the flow vector is
separated into basic variables and non-basic variables as f =

[fTB , f
T
NB]

T ∈ R
NTNC , and the ground distance vector d and H

will be transformed as d = [dTB , d
T
NB]

T ∈ R
NTNC and H =

[HB,HNB]T∈ R
(NT+NC)×NTNC , where dB ∈ R

NT+NC−1, andHB ∈

R
(NT+NC)×(NT+NC−1). In order to derive the EMD as a function of

the weights of the candidate model, the matrix transformation
is performed. First, the last row of the constraint matrices (7)
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is deleted which is considered as the redundant constraint and
then the matrices HB, H, and w are formulated as H∗B ∈

R
(NT+NC−1)×(NT+NC−1), H∗ = [H∗B,H

∗
NB]

T∈ R
(NT+NC−1)×NTNC

and w∗ = [wT
NC

,wT
NT−1

]T ∈ R
NT+NC−1.

The problem in (7) is reformulated based on the optimal
solution as

D⋆ − dB
TfB − dNB

TfNB = 0 (9)

H∗BfB +H∗NBfNB = w∗ (10)

Left multiplying (10) withH∗−1B yields

fB +H∗−1B H∗NBfNB = H∗−1B w∗ (11)

Left multiplying (11) by dB
T and adding the resultant to (9) gives

D⋆ + (−dNB
T +MH∗NB)fNB = Mw∗ (12)

whereM = dB
TH∗−1B is aNC+NT−1-dimensional vector. Since

fNB = 0NTNC−NT−NC+1, using (12) the EMD D⋆ is given by

D⋆ = M[wT
NC

, 0]TNC+NT−1
+M[0,wT

NT−1
]TNC+NT−1

(13)

3.3. Gradient Method to Find the Template
Displacement
Based on the Equation (13), the gradient method is utilized to
find the displacement y of the target candidate as

∂D⋆

∂y
= M

[

∂wT
NC

∂y
, 0

]T

NC+NT−1

(14)

The optimal location ŷ of the template candidate q̂(y) is
found by iteratively performing: (1) calculate the smallest EMD
and reformulate it as (13); (2) search for the new location
of the template candidate along the direction of (14). When
the EMD no longer decreases, the iteration stops. By this
method, the best match of the template target and the template
candidate will be found. The EMD plays three roles in this
algorithm: (1) it provides a metric of the matching between
the template target and the template candidate; (2) it assigns
more weights to the best matches between the histogram
bins and assigns smaller weights or no weights to unmatched
bins by linear optimization; (3) matched bins are used for
finding the location of the template candidate, and the gradient
vector of the EMD for searching the optimal displacement is
calculated.

The pseudo-code for the iEMD tracking algorithm is given in
Algorithm 1.

4. TARGET MODELING BASED ON
HISTOGRAMS OF SPARSE CODES

Sparse codes histogram (SCH) has been widely used as feature
descriptors in many fields (Zhang et al., 2013). Given the image
set of the first L image templates from a video, a set of K

Algorithm 1: iEMD tracking algorithm.

1 Set the maximum iteration number niter ;
2 Calculate the target model from the image I0 using (18);
3 Get the new image frame Ik+1;
4 Construct the candidate model from Ik+1 using (19);
5 Compute EMDpre between the target model and the
candidate model;

6 for n=0 to niter do

7 Represent the EMDpre by its weight vector wT using
(13);

8 Calculate the derivative of the EMD with respect to the
displacement y using (14);

9 Move the template candidate in Ik+1 along the gradient
vector by one pixel;

10 Compute EMD between the target model and the new
candidate model;

11 if EMDpre < EMD then

12 break;
13 end

14 else

15 n=n+1;
16 Set the EMDpre = EMD ;
17 end

18 end

overlapped local image patches are sampled by a sliding window
of size m × n from each template to build a dictionary 8 ∈

R
(mn)×(LK). Each column of 8 is a basis vector, which is a

vectorized local image patch extracted from the set of image
templates. The basis vectors are overcomplete where mn < LK.
Similarly, for a given image template target I, a set of overlapped

local image patches E =
{

ǫr|ǫr ∈ R
(mn)×1, r = 1 · · · J

}

are

sampled by the same sliding window of size m × n with the step
size of one pixel. Each image patch ǫr , which represents one fixed
part of the target object, can be encoded as a linear combination
of a few basis vectors of the dictionary 8 as follows

ǫr = 8ar + n (15)

where ar ∈ R
(LK)×1 is the coefficient vector which is sparse and

n ∈ R
(mn)×1 is the noise vector. The coefficient ar is computed

by solving the following L1 norm minimization problem (Zhang
et al., 2013; Mairal et al., 2014)

min
ar
‖ǫr −8ar‖

2
2 + λ ‖ar‖1

s.t. (ar)k ≥ 0,∀k
(16)

where ar =
[

a11, · · · , a1K , · · · , aL1, · · · , aLK
]T

is the sparse
coefficients of the local patch, aij corresponds to the jth patch of
the ith image template of the dictionary, and λ is the Lagrange
multiplier.

Once a solution to (16) is obtained, the maximum-alignment-
pooling method is used to construct the sparse coding
histograms. Combining the coefficients corresponding to the
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dictionary patches that have the same locations in the template
using āj =

∑L
i=1 aij (Jia et al., 2012), a new vector ār =

[ ā1, · · · , āj ]T ∈ R
K×1 is formulated. The weight of the rth local

image patch ǫr in the histogram of sparse codes is computed by
using p̂ru = ‖ār‖∞. The p̂ru value corresponds to the uth image
patch from ār . With J local image patches from the template
target, the histogram is constructed as

p̂ = [ p̂11, · · · , p̂ru, · · · , p̂JK ]T ∈ R
J×1 (17)

In the spatial space, the Epanechnikov kernel is used to represent
the template. The Epanechnikov kernel (Comaniciu et al., 2003)
is an isotropic kernel with a convex profile which assigns
smaller weights to pixels away from the center. Given the target
histogram p̂ in (17), the isotropic kernel is applied to generate
the histograms of target weighted by the spatial locations. The
weights of the histogram of the target wT,u are computed using

wT,u = γ

J
∑

r=1

(

1−
∥

∥

∥

cr

h

∥

∥

∥

2
)

∣

∣p̂ru
∣

∣ (18)

where cr is the center of the rth image patch of the template
target, h is template size and γ is the normalization constant.
The candidate histogram q̂ is built in the same way as p̂. An
isotropic kernel is applied to the elements of the q̂ for generating
the histogram of candidate with spatial locations. The weights of
the candidate histogram wC,v(xi − y) are computed using

wC,v(xi − y) = γ

J
∑

r=1

(

1−

∥

∥

∥

∥

cr − y

h

∥

∥

∥

∥

2
)

∣

∣q̂rv
∣

∣ (19)

where y is the displacement of the rth image patch of the template
candidate. The ground distance duv for the EMD in (2) is defined
by

duv = α ‖ǫu − ǫv‖
2
2 + (1− α) ‖cu − cv‖

2
2 (20)

where α ∈ (0, 1) is the weighting coefficient, ǫu ∈ R
(mn)×1,

ǫv ∈ R
(mn)×1 are the vectors of the normalized pixel values of the

image patch from the target and candidate templates, sampled in
the same way as the image patches from the dictionary, and cu, cv
are the corresponding centers of the image patches.

5. EXTENSIONS OF THE TRACKING
ALGORITHM

5.1. Template Update
In order to make the tracker robust to significant appearance
variations during long video sequences, the outdated templates in
the dictionary should be replaced with the recent ones. To adapt
to the appearance variations of the target and alleviate the drift
problem only the latest template in dictionary is replaced based
on the weight ωi, which is computed by

ωi = γ ∆i
0 × exp(−D∗k) (21)

where ωi is the weight associated with the template, γ0 is a
constant, ∆i is the time elapsed since the dictionary was last

updated measured in terms of image index k and D∗
k
is the EMD

value corresponding to the template Ik.

Algorithm 2: Template update procedure.

Input : The tracked template Ik and the EMD value D∗
k
at

frame k, the current dictionary
8i−1 =

[

d1, d2, · · · , dK
]

at index i− 1, and the
associated weights of the latest template in
dictionary ωi−1.

Output: The updated dictionary 8i and weights ωi.
1 Compute the weight of the current template using

ωi = exp(−D∗
k
);

2 Update ωi−1 via (21);
3 if ωi < ωi−1 then

4 ωi−1 ← ωi;
5 Calculate the reconstructed template via (22);
6 dK ← 8Ta

∗
k
;

7 end

If the weight of the current template based on (21) is smaller
than the weight of the latest template in the dictionary, the
template is replaced with the current one. In order to avoid
the errors and noises affecting the dictionary update algorithm,
the reconstructed template is used to replace the one in the
dictionary. Firstly, the following problem is solved in order to
recompute the sparse code coefficients, ak,

min
ak

∥

∥Ik − [ 8T Imn×mn ]ak
∥

∥

2
2 + λ ‖ak‖1 (22)

where 8T ∈ R
(mn)×K is a dictionary formed using the vectorized

template image with the size m × n as columns, Imn×mn is the
identity matrix, ak ∈ R

K+mn is the vector of the sparse coding
coefficients, and λ is the Lagrange multiplier (cf., Jia et al., 2012).
Then the reconstructed template is calculated using 8Ta

∗
k
, where

a∗
k
∈ R

K is computed using components of ak corresponding to
the dictionary. The reconstructed template is used to replace the
latest template in the dictionary. The detailed steps of the update
scheme are given in Algorithm 2.

5.2. Gyroscope Data Fusion for Rotation
Compensation
The general idea of the gyro-aided iEMD tracking algorithm
is combining the image frames from the camera with the
angular rate generated by the gyroscope for visual tracking.
Synchronization of the camera and the gyroscope in time is
required. The spatial relationship between the camera and the
gyroscope must also be pre-calibrated. Then, the angular rate
generated by the gyroscope is applied to compensate for the ego-
motion of the camera. After the compensation of the ego-motion
of the camera, the iEMD tracker is applied for tracking. In this
section, details of the gyro-aided iEMD tracking algorithm are
explained.

When a camera is mounted on a moving robot, the motion
of the camera will cause a large displacement of the target
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between two consecutive frames. If the displacement is larger
than the convergence region, the tracking algorithm will become
susceptible to the large appearance changes and fail (Comaniciu
et al., 2003; Hwangbo et al., 2011; Ravichandar and Dani, 2014).
In order to improve the robustness of the tracking algorithm,
the displacement caused by the camera rotation is estimated
and compensated by fusing the data from the gyroscope, which
is a commonly used sensor on flying robots. The rotation of
the camera causes a larger displacement of the target compared
with the translation movement in video-rate frames. Thus, the
translation is neglected here.

The gyroscope provides the angular rate along three axes,
which measure the pan, tilt, and roll of small time intervals ∆t.
In the case of pure rotation without translation, the angular rate
ωy is obtained along three axes x, y and z. Let q(k), q(k+ 1) ∈ H

denote the quaternion of two frames k and k+ 1 during time ∆t,
the relationship between them is given as (cf. Spong et al., 2006)

q(k+ 1) = q(k)+
1

2
�(ω) · q(k) ·∆t (23)

where �(ω) is the skew-symmetric matrix of ω as

�(ω) =

[

0 −ωT

ω −[ω]×

]

(24)

After the quaternion q(k+ 1) = m+ ai+ bj+ ck is normalized

and updated, the rotation matrix Rk+1
k

is calculated as

Rk+1
k
=





1− 2b2 − 2c2 2ab− 2cm 2ac+ 2bm
2ab+ 2cm 1− 2a2 − 2c2 2bc− 2am
2ac− 2bm 2bc+ 2am 1− 2a2 − 2b2



 (25)

Thus, the estimated homography matrix between two templates
is estimated by

Hgyro = KRk+1
k

K−1 (26)

where,K is the intrinsic camera calibrationmatrix that is accessed
by calibrating the camera. The homography matrix is update
d to the newest frame location p(k + 1) = [xc, yc, 1]T , where
(xc, yc) is the center point of the template, based on the following
equations:

H
k+1 = H

k
H
−1
gyro (27)

p(k+ 1) = H
k+1 · p(k) (28)

for the first frame, H0 = I3×3. This new location p(k + 1) =
[xc, yc, 1]T is then used as the initial guess of the object candidate.

The pseudo-code for gyro-aided iEMD algorithm is given in
Algorithm 3.

Algorithm 3: Gyro-aided iEMD tracking algorithm.

1 Set the maximum iteration number niter , nscal;
2 Capture the image I0;
3 if t = 0 then
4 Display the first image It ;
5 Request user to select template to be tracked ;
6 Construct the target model from the template;
7 end

8 while tracking do
9 Capture the image It+1;
10 Obtain the angular rate from gyroscope;
11 Integrate angular rates to obtain inter-frame rotation,

Rt+1t using (25);
12 Compute 2D homographyHgyro using (26);
13 Initialize the location of the template using (28);
14 Track the target by the iEMD tracking algorithm from

Algorithm 1

15 end

6. EXPERIMENTS

In this section, the iEMD algorithm is validated on real datasets.
The algorithm is implemented in MATLAB R2015b, the C code
in Rubner et al. (2000) is adopted for the EMD calculation, and
the software in Mairal et al. (2014) is used for sparse modeling.
The platform is Microsoft Windows 7 professional with Intel(R)
Core(TM) i5-4590 CPU. Eight publicly available datasets are
chosen to validate the iEMD tracking algorithm. The main
attributes of the video sequences are summarized in Table 1.
The Car2, Walking, Woman, Subway, Bolt2, Car4, Human8, and
Walking2 sequences are from the visual tracker benchmark (Wu

TABLE 1 | The main attributes of the video sequences.

Sequence Frames Image size Target size IV SV OCC DEF MB FM BC

Car4 659 360× 240 107× 87 X X

Walking 412 768× 576 24× 79 X X X

Woman 550 352× 288 21× 95 X X X X X X

Subway 175 352× 288 19× 51 X X X

Bolt2 293 480× 270 34× 64 X X

Car2 913 320× 240 64× 52 X X X X X

Human8 128 320× 240 30× 91 X X X

Walking2 500 384× 288 31× 115 X X

Target size, the initial target size in the first frame; IV, illumination variation; SV, scale variation; OCC, occlusion; DEF, deformation; MB, motion blur; FM, fast motion; BC, background

clutters.
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et al., 2013) (CVPR 2013, http://www.visual-tracking.net). The
length of the sequences varies between 128 and 913 frames with
one object being tracked in each frame.

The tracker is initialized with the ground-truth bounding box
of the target in the first frame. Then the tracking algorithm runs
till the end of the sequence and generates a series of the tracked
bounding boxes. Tracking results from consecutive frames are
compared with the ground truth bounding boxes provided by

this dataset. The relative overlap measure is used to evaluate this
algorithm as (Wu et al., 2013)

overlap =
Rtr ∩ Rgt

Rtr ∪ Rgt
(29)

where Rtr is the tracking result, represented by the estimated
image region occupied by the tracked object, Rgt is the ground

TABLE 2 | The average overlap (in percentage) obtained by the tracking algorithms on eight datasets.

Sequence ASLA Frag IVT L1APG LOT MTT STRUCK iEMD(CH) iEMD

Car4 75.4 18.8 87.6 24.9 4.2 44.7 48.9 – 82.0

Walking 77.2 53.7 76.6 75.3 70.4 66.6 57.1 22.5 67.1

Woman 14.8 14.7 14.7 16.2 8.9 16.7 73.2 15.7 60.7

Subway 75.6 44.0 15.9 16.2 56.0 6.8 62.6 17.9 63.9

Bolt2 1.1 32.6 1.6 1.1 51.8 1.1 1.2 38.9 50.1

Car2 86.4 25.9 89.3 92.4 8.6 91.5 68.8 – 86.2

Human8 8.8 9.7 5.5 15.6 70.4 9.8 14.7 31.1 60.2

Walking2 37.1 27.4 79.5 75.6 33.5 78.5 51.0 34.5 71.2

Average 47.1 28.4 46.3 39.7 38.0 39.5 47.2 26.8 67.7

For each sequence, the first, second, and third ranks are marked in red, green, and blue respectively. The last row is the average value of the percentage overlap for each tracker overall

sequences.

FIGURE 2 | Success plots (A–H) for the nine tracking algorithms on the eight sequences.

Frontiers in Robotics and AI | www.frontiersin.org 8 August 2018 | Volume 5 | Article 95

http://www.visual-tracking.net
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Yao and Dani Tracking With SC and EMD

truth bounding box. Rtr ∩ Rgt is the intersection and Rtr ∪ Rgt is
the union of the two regions. The range of the relative overlap is
from 0 to 100%.

6.1. Results for the iEMD Tracker With
Sparse Coding Histograms
In this subsection, the performance of the iEMD tracker with
sparse coding histograms and the template update method
is evaluated using the eight sequences. In our approach,
the object windows are re-sized to 32 × 32 pixels for all
the sequences, except for the Walking sequence, in which
the object windows are resized to 64 × 32 pixels due to
the smaller object size. The local patches in each object
window are sampled with the size 16 × 16 pixels with
step size 8 in sequences like Car4, Walking and Car2. For
other sequences, the local patches in each object window are
sampled with the size 8 × 8 pixels with step size 4. In the
case of the abrupt motions of the object, 4 more particles

are generated by moving the template in the surrounding
area of the initial object position. For each particle, the
template is enlarged and shrunk by 2% in case of the scale
variations. Video 1 shows the comparisons of tracking methods
on eight tracking video sequences (Supplementary Material
section).

The performance of the proposed algorithm is compared
with eight state-of-the-art tracking algorithms on eight video
sequences. These state-of-the-art trackers include: ASLA (Jia
et al., 2012), Frag (Adam et al., 2006), IVT (Ross et al.,
2008), L1APG (Mei and Ling, 2011), LOT (Oron et al.,
2012), MTT (Zhang et al., 2012), STRUCK (Hare et al.,
2011), and iEMD(CH) (Yao et al., 2016; Yao and Dani,
2017). The source codes of the trackers are downloaded from
the corresponding web pages and the default parameters are
used. The average percentage overlap obtained by all the
tracking algorithms on eight video sequences are reported in
Table 2. The iEMD tracker achieves the highest average overlap

FIGURE 3 | The visual tracking results obtained by the nine tracking algorithms on the eight video sequences (No permission is required from the copyright holders

and/or the depicted individuals for the use of these images. The original images are obtained from the CVPR 2013 database: http://cvlab.hanyang.ac.kr/tracker

benchmark/datasets.html).
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over all the sequences. The iEMD tracker also achieves the
second best tracking results on the 5 out of 8 sequences. In
Figure 2, the tracking results of the eight video sequences are
shown. The success plot shows the ratios of frames at the
different thresholds of the relative overlap values varied from
0 to 1.

Representative tracking results obtained by iEMD algorithm
are shown in Figure 3. In the Human8 and Bolt2 sequences,
the targets have significant illumination variations, and
deformations, respectively. Only LOT, iEMD and iEMD(CH)
trackers are able to track targets in all the frames. The size of
the template estimated by the iEMD(CH) tracker is shrinked
and not accurate. The LOT and iEMD trackers use the EMD
as the similarity measure and their appearance models are
based on local image patches, which make the trackers more
robust to illumination changes and deformations (Rubner
et al., 2000; Oron et al., 2012). In woman sequence, all the
trackers start to drift away from the target in frame 124 except
for the iEMD and STRUCK trackers. For the Car2 and Car4
sequences, there are significant illumination changes when
the targets pass underneath the trees and the overpasses.
The LOT and Frag trackers start drifting away from frame
72 in Car2 sequences. In Car4 sequence, the LOT tracker
starts to lose the target from frame 15, and the Frag and
L1APG trackers drift away when the car passes the overpass
in frame 249. In Walking2 sequence, the LOT, Frag, and

ASLA trackers start tracking the wrong target in frame 246,
due to the similar colors of the clothes between the two
people.

6.2. Results for the Gyro-Aided iEMD
Tracking Algorithm
The test of the gyro-aided iEMD tracking algorithm is conducted
using the sequence including 100 frames from the dataset
provided by CMU (Hwangbo et al., 2011). The images are taken
in front of a desk with motions, such as shaking and rotation.
The frame sequences have a resolution of 640× 480 at 30 frames
per second (FPS). The gyroscope is carefully aligned with the
camera and the tri-axial gyroscopic values are sampled at 11Hz
in the range of ±200deg/sec (Hwangbo et al., 2011). Using the
time stamps of the camera and the gyroscope, the angular rate
data are synchronized with the frames captured by the camera.

The comparisons between the tracking results using the
iEMD tracker with and without the gyroscope information are
illustrated in Figure 4. The head of the eagle is chosen as the
target and the ground truth is manually labeled in each frame.
The magenta box indicates the estimated image region without
using the gyroscope data, and the cyan box is the tracking results
of the gyro-aided iEMD tracker. Without the gyroscope data, the
tracker loses the target after the frame 15. However, the head
of the eagle is successfully tracked with our gyro-aided iEMD
tracking algorithm.

FIGURE 4 | Results of the iEMD tracker in presence of rapid camera motion; the magenta boxes indicate the results of the iEMD tracker without the gyroscope

information, and the cyan boxes indicate the results of the gyro-aided iEMD tracker (No permission is required from the copyright holders and/or the depicted

individuals for the use of these images. The original images are obtained from the database: http://www.cs.cmu.edu/~myung/IMUKLT/).
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TABLE 3 | Evaluation results on the CMU dataset using the iEMD tracker with and

without the gyroscope information.

Relative overlap with the ground truth Gyro-aided No gyro-aided

Average overlap (%) 43.6 10.6

Overlap > 0 100 13.3

Overlap > 40% 58.9 1.1

The performances of the iEMD tracker with and without the
gyroscope information on the CMU sequence are summarized
in Table 3. The value of the average overlap, the percentage
of the total frame numbers of which the overlap is greater
than 0 and 40% are reported. Gyroscope information provides
a good initial position for the iEMD tracker to estimate
the location of the target. Thus, the gyro-aided iEMD
tracking algorithm is robust to the rapid movements of the
camera.

7. DISCUSSION

As a cross-bin metric for the comparison of the histograms,
the advantages of the EMD are demonstrated in situations
such as illumination variation, object deformation and partial
occlusion. The iEMD algorithm uses the transportation-simplex
method for calculating the EMD. The practical running time
complexity of the transportation-simplex method is supercubic
[a complexity in �(N3)

⋂

O(N4)] (Rubner et al., 2000), where N
represents the number of the histogram bins. Other algorithms
for calculating the EMD can be used to further reduce the
running time (Ling and Okada, 2007; Pele and Werman, 2009).
For our current impelementation in MATLAB, the average
run time computed over the eight test sequences is 1.4 FPS.
Compared to the algorithms used in Table 2, which has an
average run time of 1 FPS or less (for algorithms implemented
in MATLAB), iEMD algorithm performs better in terms of
FPS (Wu et al., 2013). Furthermore, the experimental results,
especially the Human8 and Bolt2 sequences, show that the
iEMD tracker is robust to the appearance variations. The
experimental results of Walking2 show that the iEMD tracker
can discriminate the target from the surroundings with similar
colors. The tracking results fromWoman and Subway sequences
demonstrate the robustness to partial occlusions. In Figures 2,
3 and Table 2, the tracking results of the iEMD(CH) (Yao
et al., 2016; Yao and Dani, 2017) are also presented using six
out of eight videos which has color images. The iEMD(CH)
algorithm cannot be tested on Car2 and Car4 videos because
they have gray images. Since the sparse coding histogram
is used as the appearance model and the template update
method is adopted to handle the appearance changes of the
target, the performance of the iEMD with the sparse coding

histogram is significantly better than our prior work using the
iEMD(CH).

8. CONCLUSION AND FUTURE WORK

This paper presents iEMD and gyro-aided iEMD visual tracking
algorithms. The local sparse representation is used as the
appearance model for the iEMD tracker. The maximum-
alignment-pooling method is used for constructing a sparse
coding histogram which reduces the computational complexity
of the EMD optimization. The template update algorithm based
on the EMD is also presented. The iEMD tracker is robust
to variations in appearance of the target, deformations and
partial occlusions. Experiments conducted on eight publicly
available datasets show that the iEMD tracker is robust to the
illumination changes, deformations and partial occlusions of
the target. To validate the gyro-aided iEMD tracking algorithm,
experimental results from the CMU dataset, which contains
rapid camera motion are presented. Without the gyroscope
measurements, the iEMD tracker fails on the CMU dataset.
With the help of the gyroscope measurements, the iEMD
algorithm is able to lock onto the target and track it successfully.
The above experimental results show that the proposed iEMD
tracking algorithm is robust to the appearance changes of
the target as well as the ego-motion of the camera. As a
gradient descent based dynamic model, the iEMD tracker, which
provides good location prediction, can be further improved
with more effective particle filters. The metrics used by sparse
coding, such as the largest sum of the sparse coefficients or
the smallest reconstruction error, can be combined with the
EMD to make the tracker more discriminant. In future, an
efficient impelementation of iEMD tracker in C/C++ will be
pursued.

AUTHOR CONTRIBUTIONS

GY: co-developed the algorithm and coded and validated the
results. AD: co-developed the algorithm and verified the
results.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Peter Willett, Iman Salehi,
and Harish Ravichandar for their help.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2018.00095/full#supplementary-material

Video 1 | Comparisons of Tracking Methods.

REFERENCES

Adam, A., Rivlin, E., and Shimshoni, I. (2006). “Robust fragments-based tracking
using the integral histogram,” in IEEE Computer Society Conf. on Computer

Vision and Pattern Recognition (New York, NY), 798–805.

Avidan, S. (2007). Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell.

29, 261–271. doi: 10.1109/TPAMI.2007.35
Babenko, B., Yang, M. H., and Belongie, S. (2011). Robust object tracking with

online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell.

33, 1619–1632. doi: 10.1109/TPAMI.2010.226

Frontiers in Robotics and AI | www.frontiersin.org 11 August 2018 | Volume 5 | Article 95

https://www.frontiersin.org/articles/10.3389/frobt.2018.00095/full#supplementary-material
https://doi.org/10.1109/TPAMI.2007.35
https://doi.org/10.1109/TPAMI.2010.226
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Yao and Dani Tracking With SC and EMD

Baum, M., Willett, P., and Hanebeck, U. D. (2015). On Wasserstein Barycenters
and MMOSPA estimation. IEEE Signal Process. Lett. 22, 1511–1515.
doi: 10.1109/LSP.2015.2410217

Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M. (2010). “Visual object
tracking using adaptive correlation filters,” in IEEE Conference on Computer

Vision and Pattern Recognition (San Francisco, CA), 2544–2550.
Chwa, D., Dani, A. P., and Dixon, W. E. (2016). Range and motion

estimation of a monocular camera using static and moving objects.
IEEE Trans. Control Syst. Technol. 24, 1–10. doi: 10.1109/TCST.2015.
2508001

Collins, R. T., Liu, Y., and Leordeanu, M. (2005). Online selection of
discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27,
1631–1643. doi: 10.1109/TPAMI.2005.205

Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-based object
tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–577.
doi: 10.1109/TPAMI.2003.1195991

Comport, A. I., Marchand, E., Pressigout, M., and Chaumette, F. (2006).
Real-time markerless tracking for augmented reality: the virtual visual
servoing framework. IEEE Trans. Visual. Comput. Graph. 12, 615–628.
doi: 10.1109/TVCG.2006.78

Dani, A. P., Fischer, N. R., and Dixon, W. E. (2012). Single camera
structure and motion. IEEE Trans. Automatic Control 57, 238–243.
doi: 10.1109/TAC.2011.2162890

Dani, A. P., Panahandeh, G., Chung, S.-J., and Hutchinson, S. (2013). “Image
moments for higher-level feature based navigation,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (Tokyo), 602–609.
Dantzig, G. B., and Thapa, M. N. (2006). Linear Programming 1:

Introduction. Berlin: Heidelberg; Springer-Verlag.
Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). MonoSLAM:

Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell.

29, 1052–1067. doi: 10.1109/TPAMI.2007.1049
Grabner, H. and Bischof, H. (2006). “On-line boosting and vision,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (New
York, NY), 260–267.

Guerriero, M., Svensson, L., Svensson, D., and Willett, P. (2010). “Shooting two
birds with two bullets: how to find minimum mean OSPA estimates,” in
International Conference on Information Fusion (Edinburgh), 1–8.

Hare, S., Saffari, A., and Torr, P. H. (2011). “STRUCK: structured output
tracking with kernels,” in International Conference on Computer Vision

(Barcelona), 263–270.
Hwangbo, M., Kim, J.-S., and Kanade, T. (2011). Gyro-aided feature tracking for

a moving camera: fusion, auto-calibration and GPU implementation. Intl J.

Robot. Res. 30, 1755–1774. doi: 10.1177/0278364911416391
Jia, X., Lu, H., and Yang, M.-H. (2012). “Visual tracking via adaptive structural

local sparse appearance model,” in IEEE Conference on Computer Vision and

Pattern Recognition (Providence, RI), 1822–1829.
Jia, X., Lu, H., and Yang,M. H. (2016). Visual tracking via coarse and fine structural

local sparse appearance models. IEEE Trans. Image Process. 25, 4555–4564.
doi: 10.1109/TIP.2016.2592701

Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-learning-detection. IEEE
Trans. Pattern Anal. Mach. Intell. 34, 1409–1422. doi: 10.1109/TPAMI.2011.239

Karavasilis, V., Nikou, C., and Likas, A. (2011). Visual tracking using
the earth mover’s distance between gaussian mixtures and Kalman
filtering. Image Vision Comput. 29, 295–305. doi: 10.1016/j.imavis.2010.
12.002

Li, H., Li, Y., and Porikli, F. (2016). Convolutional neural net bagging for
online visual tracking. Comp. Vision Image Understand. 153, 120–129.
doi: 10.1016/j.cviu.2016.07.002

Ling, H., and Okada, K. (2007). An efficient earth mover’s distance algorithm
for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell.

29, 840–853. doi: 10.1109/TPAMI.2007.1058
Liu, B., Huang, J., Yang, L., and Kulikowsk, C. (2011). “Robust tracking using local

sparse appearance model and K-selection,” in IEEE Conference on Computer

Vision and Pattern Recognition (Colorado Springs, CO), 1313–1320.
Mairal, J., Bach, F., and Ponce, J. (2014). Sparse modeling for image and

vision processing. Foundations Trends Comput. Graph. Vis. 8, 85–283.
doi: 10.1561/0600000058

Marchand, É., and Chaumette, F. (2005). Feature tracking for visual servoing
purposes. Robot. Auton. Syst. 52, 53–70. doi: 10.1016/j.robot.2005.03.009

Marchand, É., Spindler, F., and Chaumette, F. (2005). ViSP for visual servoing: a
generic software platform with a wide class of robot control skills. IEEE Robot.

Automation Mag. 12, 40–52. doi: 10.1109/MRA.2005.1577023
Mei, X., and Ling, H. (2009). “Robust visual tracking using L1 minimization,”

in IEEE 12th International Conference on Computer Vision (Kyoto),
1436–1443.

Mei, X., and Ling, H. (2011). Robust visual tracking and vehicle classification
via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33,
2259–2272. doi: 10.1109/TPAMI.2011.66

Oron, S., Bar-Hillel, A., Levi, D., and Avidan, S. (2012).
“Locally orderless tracking,” in IEEE Conference on

Computer Vision and Pattern Recognition (Providence, RI),
1940–1947.

Park, J., Hwang, W., Kwon, H., and Kim, K. (2013). A novel
line of sight control system for a robot vision tracking system,
using vision feedback and motion-disturbance feedforward
compensation. Robotica 31, 99–112. doi: 10.1017/S02635747120
00124

Pele, O., and Werman, M. (2009). “Fast and robust earth mover’s distances,” in
IEEE International Conference on Computer Vision, 460–467.

Ravichandar, H. C., and Dani, A. P. (2014). “Gyro-aided image-based
tracking using mutual information optimization and user inputs,” in IEEE

International Conference on Systems, Man and Cybernetics (San Diego, CA),
858–863.

Ravichandar, H. C., and Dani, A. P. (2015). “Human intention inference through
interacting multiple model filtering,” in IEEE Conference on Multisensor Fusion

and Integration (San Diego, CA).
Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental

learning for robust visual tracking. Intl. J. Comput. Vis. 77, 125–141.
doi: 10.1007/s11263-007-0075-7

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s
distance as a metric for image retrieval. Intl J. Comput. Vis. 40, 99–121.
doi: 10.1023/A:1026543900054

Santner, J., Leistner, C., Saffari, A., Pock, T., and Bischof, H. (2010). “Prost: parallel
robust online simple tracking,” in IEEE Conference on Computer Vision and

Pattern Recognition (San Francisco, CA), 723–730.
Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2006). Robot Modeling and

Control, Vol 3. New York, NY: Wiley.
Tahri, O., Usman, M., Demonceaux, C., Fofi, D., and Hittawe, M. (2016).

“Fast earth mover’s distance computation for catadioptric image sequences,”
in IEEE International Conference on Image Processing (Phoenix, AZ),
2485–2489.

Vojir, T., Matas, J., and Noskova, J. (2016). Online adaptive hidden markov
model for multi-tracker fusion. Comput. Vis. Image Understand. 153,
109–119. doi: 10.1016/j.cviu.2016.05.007

Wang, J., Wang, H., and Zhao, W.-L. (2015). Affine hull based target
representation for visual tracking. J. Vis. Commun. Image Represent. 30,
266–276. doi: 10.1016/j.jvcir.2015.04.014

Wang, J., Wang, Y., and Wang, H. (2016). “Adaptive appearance modeling with
Point-to-Set metric learning for visual tracking,” in IEEE Transaction on

Circuits and Systems for Video Technology. doi: 10.1109/TCSVT.2016.2556438
Wu, Y., Lim, J., and Yang, M.-H. (2013). “Online object tracking: a benchmark,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(Portland, OR).
Yang, J., Dani, A. P., Chung, S.-J., and Hutchinson, S. (2015). Vision-based

localization and robot-centricmapping in riverine environments. J. Field Robot.
34, 429–450. doi: 10.1002/rob.21606

Yao, G. and Dani, A. (2017). Gyro-aided visual tracking using iterative
Earth mover’s distance. IEEE Aerospace Electron. Syst. Mag. 32, 52–55.
doi: 10.1109/MAES.2017.160223

Yao, G., Williams, M., and Dani, A. (2016). “Gyro-aided visual tracking
using iterative Earth mover’s distance,” in 19th International Conference on

Information Fusion (FUSION) (Heidelberg), 2317–2323.
Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: a survey. ACM

Comput. Surveys 38:13. doi: 10.1145/1177352.1177355

Frontiers in Robotics and AI | www.frontiersin.org 12 August 2018 | Volume 5 | Article 95

https://doi.org/10.1109/LSP.2015.2410217
https://doi.org/10.1109/TCST.2015.2508001
https://doi.org/10.1109/TPAMI.2005.205
https://doi.org/10.1109/TPAMI.2003.1195991
https://doi.org/10.1109/TVCG.2006.78
https://doi.org/10.1109/TAC.2011.2162890
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1177/0278364911416391
https://doi.org/10.1109/TIP.2016.2592701
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1016/j.imavis.2010.12.002
https://doi.org/10.1016/j.cviu.2016.07.002
https://doi.org/10.1109/TPAMI.2007.1058
https://doi.org/10.1561/0600000058
https://doi.org/10.1016/j.robot.2005.03.009
https://doi.org/10.1109/MRA.2005.1577023
https://doi.org/10.1109/TPAMI.2011.66
https://doi.org/10.1017/S0263574712000124
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1016/j.cviu.2016.05.007
https://doi.org/10.1016/j.jvcir.2015.04.014
https://doi.org/10.1109/TCSVT.2016.2556438
https://doi.org/10.1002/rob.21606
https://doi.org/10.1109/MAES.2017.160223
https://doi.org/10.1145/1177352.1177355
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Yao and Dani Tracking With SC and EMD

Zhang, S., Yao, H., Sun, X., and Lu, X. (2013). Sparse coding based visual
tracking: review and experimental comparison. Pattern Recogn. 46, 1772–1788.
doi: 10.1016/j.patcog.2012.10.006

Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. (2012). “Robust visual tracking via
multi-task sparse learning,” in IEEE Conference on Computer Vision and Pattern

Recognition (Providence, RI), 2042–2049.
Zhang, Z., and Hong Wong, K. (2014). “Pyramid-based visual tracking using

sparsity represented mean transform,” in Proc. of the IEEE Conf. on Computer

Vision and Pattern Recognition (Columbus, OH), 1226–1233.
Zhao, Q., Yang, Z., and Tao, H. (2010). Differential earth mover’s distance with

its applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell.

32, 274–287. doi: 10.1109/TPAMI.2008.299
Zhu, G., Wang, J., and Lu, H. (2016). Clustering based ensemble

correlation tracking. Comp. Vis. Image Understand. 153, 55–63.
doi: 10.1016/j.cviu.2016.05.006

Zivkovic, Z., Cemgil, A. T., and Kröse, B. (2009). Approximate
Bayesian methods for Kernel-based object tracking. Comp.

Vis. Image Understand. 113, 743–749. doi: 10.1016/j.cviu.2008.
12.008

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Yao and Dani. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 13 August 2018 | Volume 5 | Article 95

https://doi.org/10.1016/j.patcog.2012.10.006
https://doi.org/10.1109/TPAMI.2008.299
https://doi.org/10.1016/j.cviu.2016.05.006
https://doi.org/10.1016/j.cviu.2008.12.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Visual Tracking Using Sparse Coding and Earth Mover's Distance
	1. Introduction
	2. Related Work
	3. Iterative EMD Tracking Algorithm
	3.1. EMD as a Similarity Measure
	3.2. EMD as a Function of Weights
	3.3. Gradient Method to Find the Template Displacement

	4. Target Modeling Based on Histograms of Sparse Codes
	5. Extensions of The Tracking Algorithm
	5.1. Template Update
	5.2. Gyroscope Data Fusion for Rotation Compensation

	6. Experiments 
	6.1. Results for the iEMD Tracker With Sparse Coding Histograms
	6.2. Results for the Gyro-Aided iEMD Tracking Algorithm

	7. Discussion
	8. Conclusion and Future work
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


