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Colleagues often shake hands in greeting, friends connect through high fives, and

children around the world rejoice in hand-clapping games. As robots become more

common in everyday human life, they will have the opportunity to join in these

social-physical interactions, but few current robots are intended to touch people in

friendly ways. This article describes how we enabled a Baxter Research Robot to both

teach and learn bimanual hand-clapping games with a human partner. Our system

monitors the user’s motions via a pair of inertial measurement units (IMUs) worn on the

wrists. We recorded a labeled library of 10 common hand-clapping movements from 10

participants; this dataset was used to train an SVM classifier to automatically identify

hand-clapping motions from previously unseen participants with a test-set classification

accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the

motions of its human gameplay partner, so that it can join in hand-clapping games. This

system was evaluated by N = 24 naïve users in an experiment that involved learning

sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns,

and completing a free interaction period. The motion classification accuracy in this less

structured setting was 85.9%, primarily due to unexpected variations in motion timing.

The quantitative task performance results and qualitative participant survey responses

showed that learning games from Baxter was significantly easier than teaching games

to Baxter, and that the teaching role caused users to consider more teamwork aspects

of the gameplay. Over the course of the experiment, people felt more understood by

Baxter and became more willing to follow the example of the robot. Users felt uniformly

safe interacting with Baxter, and they expressed positive opinions of Baxter and reported

fun interacting with the robot. Taken together, the results indicate that this robot achieved

credible social-physical interaction with humans and that its ability to both lead and follow

systematically changed the human partner’s experience.

Keywords: physical human-robot interaction, social robotics, motion classification, human-robot teaming,

hand-clapping games
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INTRODUCTION

As robot use expands from independent operation in factories to
cooperative responsibilities in environments like hospitals and
schools, social skills become an increasingly important factor
for robot developers to consider. Socially capable robots are
known to be able to deliver better interaction experiences in
everyday human-populated environments (Fong et al., 2003).
Although direct physical contact between humans and robots
introduces new safety requirements, mastering such interactions
could increase a robot’s ability to help people (Ikemoto et al.,
2012) and promote the acceptance of robots by the general
population.

Human children frequently engage in hand-clapping games
(patterns of hand-to-hand contacts carried out by two people)
for entertainment, to learn about others, and to make friends
(Brodsky and Sulkin, 2011). Accordingly, as an initial foray into
equipping robots with social-physical human-robot interaction
(spHRI) skills, we chose to investigate human-robot hand-
to-hand contact during playful hand-clapping games like
“Pat-a-cake” and “Slide.” We prepared to run this study
by connecting our past work on classifying human hand-
clapping motions recorded via inertial sensors (Fitter and
Kuchenbecker, 2016c) with our previously developed methods
for making a robot clap hands in human-like ways (Fitter
and Kuchenbecker, 2016b). The result of this union is sensor-
mediated human-robot interaction (HRI) during which each
participant (the human and the robot) physically mimics the
movements of the other one at different times during the
game.

After section Related Work presents related work, section
Hand Motion Classification describes how we developed a
capable system for repeatedly classifying human hand-clapping
motions. Section Hand-Clapping Study Methods details our
exploration and evaluation of a skilled Baxter robot that
claps hands with people in various game modes. Sections
Results and Discussion outline the results of this user
study and discuss the findings and their implications for
HRI.

RELATED WORK

Our work sits at the intersection of social robotics and physical
HRI (pHRI). The field of social robotics studies robots in social
scenarios, usually without physical contact between the robot
and the interacting humans (Fong et al., 2003). Within this
field, the subtopic of socially assistive robotics leverages unique
robot strengths in areas such as education and healthcare (Feil-
Seifer and Mataric, 2005). In contrast, pHRI focuses more on
interaction safety issues rather than social design (De Santis et al.,
2008). pHRI might also be used to help a robot stay safe while
navigating an unknown environment (Iwata and Sugano, 2005).
Only a handful of pHRI investigations consider the social aspects
of robotic contact. One previous study of how a human feels
when touched by a robot in a medical setting found that people
preferred procedural medical touch to compassionate pats from
a robot (Chen et al., 2011). Experiments at this social-physical

intersection, such as our work and the following related topics,
elucidate how people perceive social-physical robots and how
researchers can appropriately apply spHRI to aid people.

We are energized by prior research that combines social
robotics and pHRI because touch is an essential pathway for
human connection and emotion (Sonneveld and Schifferstein,
2008). In particular, physical interaction with the hands greatly
aids human understanding and serves as a channel for complex
sensation and expression (Klemmer et al., 2006). A few instances
of spHRI appear in previous literature. The Haptic Creature
Project, for example, explores an expressively actuated cat-sized
furry robotic companion that responds to physical contact from
humans (Yohanan andMacLean, 2008). Haptic feedback has also
been leveraged to explore the subjective and objective results of
physical human-robot collaboration in tasks such as joint target
acquisition and object manipulation (Reed and Peshkin, 2008;
Feth et al., 2011). In our spHRI work, the robot has a humanoid
form and directly touches the human, rather than interacting
through an external object.

Our research on bimanual hand-clapping robots additionally
draws on the area of social motor coordination (also known
as joint action). This topic is being actively explored not only
in the HRI community, but also in research on human-human
interaction (Schmidt et al., 2011). For example, one investigation
proposes a video game that uses electrodermal activity-sensing
controllers to detect hand-to-hand contacts between players for
more enjoyable social gameplay (Baba et al., 2007). Similar
research efforts by Kim et al. (2014) outline the design and testing
of an electrodermal activity-sensing wrist-worn watch designed
to increase intimacy in a workplace environment. In the HRI
space, our initial inspiration for a jointly-acting hand-clapping
robot was the popular PR2 demo entitled “Please do not touch
the robot,” during which people can high five, fist bump, and
hug the Willow Garage PR2 robot (Romano and Kuchenbecker,
2011).

Our social-physical Baxter robot is designed to use inertial
measurement units (IMUs) to understand the hand motions of
its human partner. Previous research has shown that motion
classification using IMUs and other inertial sensing systems can
be more efficient and accurate than processing of visual input.
Past studies of body-mounted sensors for action recognition
include motion prediction for full-body ambulatory behaviors
from five IMUs (Altun and Barshan, 2010; Altun et al.,
2010) and motion and gesture recognition from a complex
system of IMUs and accelerometers (Chavarriaga et al., 2013).
Almost all such work hinges on machine learning principles
introduced by early work in this field (Jain et al., 2000).
More recently, researchers used a commercial IMU suit and
a neural network for each robot joint to enable a human to
teleoperate the full body of a Nao humanoid robot (Stanton
et al., 2012). These related pieces of research all demonstrate
that machine learning from IMU data can facilitate reliable
near-real-time interpretation of human movement without
the occlusion and lighting problems that often affect visual
data.

Past work on playful spHRI also shaped our approach.
Investigations of robot play activities like hugging (Kanda et al.,
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2004) and performing magic (Nuñez et al., 2014) inform our
interaction design and analysis strategies. A study of the physical
play activities people exhibit with a small humanoid robot further
parallels our work and similarly performs activity recognition
using IMU data (Cooney et al., 2010). Previous work on dancing
robots additionally blends touch with social interaction, allowing
a human dance partner to guide a robotic dancer (Kosuge et al.,
2003). This play research influenced how we processed data,
designed motion, and selected scenarios to investigate.

HAND MOTION CLASSIFICATION

We previously demonstrated that a machine-learning pipeline
trained on data from hand-worn IMUs can reliably classify hand-
clapping motions (Fitter and Kuchenbecker, 2016c). In this past
work, the two IMUs were attached to the backs of the human
participant’s hands using skin-safe adhesive. This attachment
method did not always succeed in the presence of hair or sweat, it
did not let the participant comfortably contact the robot with the
backs of their hands, and it did not allow for easy removal of the
sensors during breaks in the experiment.

Before building on our hand motion classification work, we
needed a more robust and convenient way to attach the IMUs
to participants’ hands. Once developed, the new attachment
method needed to be validated to confirm that the new form
factor enabled accurate hand motion classification. This section
describes how we achieved these two tasks and compares this
updated approach to our previous work.

Motion Classification Methods
In anticipation of intensive human-robot interactive gameplay
scenarios, we chose to record participant motion via the same
nine-axis Sparkfun MPU9150 IMU breakout boards used in
prior work (Fitter and Kuchenbecker, 2016c). These sensors
were affixed to each participant’s wrists with Velcro straps
that looped through custom 3D-printed housings, as shown in
Figure 1. In addition to increasing the consistency and comfort
of the sensor attachment, this scheme facilitated detaching
and reattaching the sensors as needed during the experiment.
While our sensors communicate via a lightweight cable, future
iterations of this sensor system could be designed to use wireless
communication.

With the sensors in this configuration, we aimed to classify
hand motions using an updated version of the best method from
our past work; it used training and testing data to create a linear
support vector machine (SVM) that classifies individual hand-
clapping motions based on particular features of the recorded
data (Fitter and Kuchenbecker, 2016c). We slightly modified
the set of target motions being learned to increase the diversity
of hand-clapping games that could be constructed from them.
This new set of motions requires wrist and hand movements
that are largely similar to those studied in our prior work.
However, relocating the IMU from the hand to the wrist prevents
the system from observing the motion of the wrist joints and
therefore reduces the expressivity of the captured data; thus it was
possible that the wrist-worn sensors would necessitate a different
type of data analysis.

FIGURE 1 | A plastic housing and integrated strap securely attach each

inertial measurement unit to the user’s wrist. The individual whose hands are

shown in this image provided written consent for this image to be published.

Hand-Clapping Game Selection
This investigation of motion classification accuracy from wrist-
worn IMUs involved 10 motion primitives. Nine of the motions
were the same as primitives studied in our previous work (Fitter
and Kuchenbecker, 2016c), and one motion was new. Our
previous investigations discovered that many participants were
not able to snap their fingers, and also that people tended to pause
at specific parts of various hand-clapping games. Accordingly,
our updated experiment traded the previously used “right snap”
motion for a stationary “stay” motion. Figure 2 shows the set
of primitives used in this investigation: back five (B), clap (C),
double (D), down five (DF), front five (F), lap pat (LP), left five
(L), right five (R), stay (S), and up five (UF).

To investigate the overall performance of prospective
classifiers, we needed to select several hand-clapping games that
use sequences of our chosen motion primitives and offer a range
of classification challenge levels. This data collection considered
the following six hand-clapping games, half of which are different
from the patterns used in our previous work:

• Pat-a-cake: LP-C-R-C-L-C
• Slide junior: C-R-C-L-C-B-F
• Double double: D-D-F-F-D-D-B-B-D-F-D-B-D-D-F-B
• Down up clap: DF-UF-C
• Sailor: C-R-C-L-C-F-F-F
• We will rock you: LP-LP-C-S

In each of these hand-clapping games, pairs of people typically
repeat the listed motions over and over along with a verbal chant.
For the purposes of this investigation, a single person outfitted
with sensors instead pantomimed the motions alone, in the style
of someone who is teaching their partner a new hand-clapping
game. This approach allowed us to first focus on classifying
motions and later add layers of complexity to the interaction.

Human Hand-Clapping Behavior
We conducted an experiment to collect a rich dataset
for automatic classification of hand-clapping motions. Ten
participants enrolled in our data collection, gave informed
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FIGURE 2 | Labeled images of a person performing the studied set of hand-clapping motions. The individual shown in these images provided written consent for

these images to be published.

consent, and successfully completed the experiment. The
University of Pennsylvania Institutional Review Board (IRB)
approved all experimental procedures under protocol 822527.
No formal demographic survey was administered in this data
collection, but experimenter notes show that the participant
population was composed entirely of technically trained students
who all possessed normal motor function in their arms and
hands. Each participant came to the lab for a single session that
lasted about 30minutes. The participant’s wrists were outfitted
with IMUs as shown in Figure 1. The raw x, y, and z-axis
accelerometer, gyroscope, and magnetometer readings from both
wrists were read by an Arduino Teensy and sent to our data
processing program via a USB connection at 200Hz.

We recorded two datasets from each participant: (1) a training
set that contained selected pairs of motions repeated 10 or more
times and (2) a test set with each of the six hand-clapping games
repeated three or more times in sequence. Training data were
used for model training and cross validation, while testing data
were reserved for a separate round of model evaluation. The
training set was designed to include all 17 pairs of sequential
motions that appear in the chosen hand-clapping games. Some
of these pairs consist of the same motion repeated over and
over, while the rest show transitions between two different hand-
clapping motions.

Motion Classification Results
We sought to discover whether our system could classify
all of the recorded hand-clapping motions using sensor data
recorded from the wrist-worn IMUs. In order to classify each
hand-clapping motion, we parsed full IMU recordings into
individual hand-clapping motion data segments by applying a
first-order Butterworth high-pass filter with a cutoff frequency
of 25Hz to the root-mean square (RMS) of the x- and z-axis
accelerations from both IMUs together. Local maxima finding
on the resulting signal proved effective for identifying the center
of each hand clapping motion, assuming consistent participant
clapping tempo and correct execution of hand-clapping motions.

We applied the linear SVM technique that was found to most
accurately classify hand motions in our previous work (Fitter
and Kuchenbecker, 2016c). From each motion recording, we
extracted a feature set composed of basic statistical measures
(maximum, minimum, mean, variance, skewness, and kurtosis)
from each x-, y-, and z-axis channel of the accelerometer and
gyroscope, the RMS acceleration for each hand, and high-
and low-pass filtered data from each of these channels (cutoff
frequency of 25Hz). As in prior work, we did not use the
magnetometer because its readings were found to be unreliable
in the indoor setting of the data collection. We also added a
new set of Boolean features that indicate whether the measured
acceleration range along each axis was greater than a threshold
of 0.8 g. This new set of features was designed to detect changes
in hand orientation that could help distinguish a clap from
a lap pat after systematic errors distinguishing between these
two motions in our previous work. A leave-one-subject-out
cross-validation (LOSOCV) technique during model training let
us compute a generalizable training-set classification accuracy.
We also computed the test-set classification accuracy using the
trained models. All calculations were performed in Python with
the scikit-learn library using the default settings.

We examined the confusion matrices for this model’s
performance on the parsed training feature set and the parsed
test feature set, as seen in Figures 3, 4, respectively. The 97.3%
overall training-set accuracy stems from high values along the
diagonal of the training confusion matrix, indicating excellent
performance. Similarly, the 97.0% overall test-set classification
accuracy stems from the strong diagonal of the test confusion
matrix. Note that the 10 motions are not exactly evenly
represented in either the training or testing set, so the two overall
accuracy values differ slightly from the averages of the diagonal
entries in the two confusion matrices

The overall classification accuracies indicate that the linear
SVM classification strategy that worked best in our previous
work also performs very well on data gathered from wrist-worn
IMUs. The negligible difference between training and testing
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FIGURE 3 | Confusion matrix of linear SVM classifier performance on the training dataset.

FIGURE 4 | Confusion matrix of SVM classifier performance on the test dataset.
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accuracies further shows that this technique generalizes well to
hand-clapping motions performed as part of a longer sequence.
Thus, this is the classifier we employed to enable our robot to
understand motions pantomimed by a human partner.

HAND-CLAPPING STUDY METHODS

We conducted a study to explore how people perceive different
leadership and game generation experiences during bimanual
hand-clapping interactions with a robot. The University of
Pennsylvania IRB approved all experimental procedures under
protocol 825490. Motivated by the desire to understand how
our IMU machine learning pipeline can fit into meaningful
spHRI applications, we were especially curious to discover
what roles people prefer to play in these types of interactions,
how structured or open-ended the interactions should be,
and how users respond to inevitably varied machine learning
performance.

Hardware Systems
This study centered on two MPU9150 9-DOF IMU sensors
strapped to the wrists of a human user. The same 12 channels
of IMU data discussed previously (x, y, and z-axis accelerometer
and gyroscope readings from each hand) were transmitted from
an Arduino Teensy to our data processing program via a USB
connection at 200Hz. The robotic agent for this investigation
was a Rethink Robotics Baxter Research Robot, a sturdy human-
sized platform that can exert human-level forces on the user’s
hands and can bear hand contacts without breaking or falling
over. Our Baxter robot was equipped with two non-articulated
custom hands, as shown in Figure 5. These custom hands are 3D-
printed and covered with flexible silicone rubber, as presented in
our previous work (Fitter and Kuchenbecker, 2016b). A small
rolling table was placed between Baxter and the participant to
both provide a lap-like surface against which Baxter could tap for
the lap pat (LP)motion and to keep the user at a constant distance
away from the robot.

To equip Baxter with knowledge of how to perform each
hand-clapping motion in the bimanual clapping games, we
physically moved Baxter’s arms to preparatory poses and action
poses for each motion, aiming to imitate the poses of a person’s
arms during these actions. Our control strategy used the Baxter
software development kit’s raw position controller and trajectory
planning using cubic interpolation between successive key poses
to allow Baxter to move smoothly and fairly quickly while playing
games with a person.

Experiment Setup
24 participants (14 male and 10 female) enrolled in our study
and gave informed consent. Participants were aged from 18
to 38 years (M = 24.4 years, SD = 5.2 years) and were
mostly technical students (18 technically trained students, 2 non-
technical students, 2 technically trained research assistants, 1
technically trained engineer, and 1 non-technical homemaker).
Sixteen of the robot users originated from the United States,
three from China, two from India, two from South Korea, and
one from Belgium. All participants had full function in their

FIGURE 5 | The experiment setup for the bimanual human-robot

hand-clapping study. The individual shown in this image provided written

consent for this image to be published.

arms and hands. Twenty-two participants were right-handed,
and two were left-handed. We did not exclude left-handed
participants because the experiment activities have balanced right
and left hand roles, and also because some left-handed users
were included in the dataset used to create the classifier. To
help situate our results, we requested information about each
user’s applicable experience using robots. Participant experience
with robotics ranged from 0 to 94 (M = 65.25, SD = 23.11)
out of 100, with 100 being highest, and the group’s experience
with Baxter spanned the full range from 0 to 100 (M = 35.79,
SD= 30.97).

Each participant came to the lab for a single 60-minutes
session. The user stood facing Baxter throughout the experiment
(as illustrated in Figure 5) and played various bimanual hand-
clapping games with the robot, making hand-to-hand contact
with Baxter throughout, as two people would when playing hand-
clapping games. At the beginning of the session, the experimenter
read a script to relay relevant background information on Baxter,
described the experiment interaction, and asked the user to
complete an opening survey about their perceptions of Baxter.
Next, the participant was led through two sample interactions,
one in which Baxter taught the user a simple game (C-R-C-L),
and one in which the user taught the same game to Baxter.

In the main experiment, the user played hand-clapping games
with Baxter in four blocks that each contained three interaction
trials of a particular game. Over these three repetitions, either
Baxter or the user would repeatedly teach the same motion
sequence in order to give their partner a chance to practice it and
improve. The block conditions varied in leadership assignment
and game spontaneity, but every taught or learned game was
eight motions long. After each block, the user completed a survey
about their perception of the interactions within that set of three
repetitions. After the four blocks, the user entered a free-play
mode during which they could teach Baxter additional games
and/or learn more games from Baxter. Finally, the participant
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completed a closing survey followed by a brief demographic
survey.

Data Processing Pipeline
The machine learning pipeline for human-led trials waited for
the user to demonstrate an entire hand-clapping game and then
parsed and classified each demonstrated hand-clapping motion
from the full game recording. To help the pipeline identify
meaningful portions of IMU data, we divided the experiment
into discrete gameplay interactions that were fairly structured.
At the beginning of a human-led trial, the experimenter asked
the human user to be very still. When ready, the user would
demonstrate the hand-clapping game to Baxter at the tempo
of an ambient metronome that was set to 75 BPM. We relied
on the participant pantomiming game motions at close to the
metronome’s tempo to give the motion parser a good guess
of the inter-motion time interval. After the demonstration
was complete, the user would return to being still and the
experimenter would press a key on the Baxter workstation to
relay the information that the demonstration was over.

At this point, the processing algorithm would have all
the data from the human hand-clapping game demonstration.
Thresholding on the gyroscope signal helped to determine
precisely when the game demonstration started and stopped,
which we took to be the transitions from stillness to general
hand motion and general hand motion back to stillness. Within
the portion of data identified to be the hand-clapping game
demonstration, we could again use the first-order Butterworth
high-pass filtered RMS acceleration of the x- and z-axis
accelerations from both IMUs together to parse the motion
recordings. Finding the local maxima of the resulting signal,
combined with the knowledge of the stimulus spacing from the
ambient metronome tempo, had seemed to be a good tool for
identifying the center of each hand clapping motion when we
tested this experiment with pilot participants. As in section Hand
Motion Classification, the midpoints between local maxima were
assumed to be the motion starting points.

Once themotion data was parsed, each section of data believed
to represent a single hand-clapping motion was ready to undergo
the feature extraction and classification processes outlined in
section Hand Motion Classification. After the extraction of the
features mentioned previously, the hand-clapping motion was
classified using the linear SVM model trained in section Hand
Motion Classification. Classified sequences of motions were
reciprocated by the Baxter robot after the data processing step,
for the final result of clapping gameplay with the user.

Conditions
To begin understanding natural-feeling human-robot
hand-clapping gameplay interactions, we needed to create
opportunities for both Baxter and the user to lead complex
interactions. We also aimed to strike a balance between
well-controlled data collection and spontaneous natural play.
Accordingly, we designed the experiment interactions to vary
leadership assignment and spontaneity across trials. All other
aspects of Baxter’s behavior were kept as consistent as possible
from trial to trial.

Leadership Conditions
In each block of hand-clapping game interactions, either Baxter
or the human user was assigned to lead the game. When
Baxter was the leader, it demonstrated eight hand-clapping
motions while displaying a yellow neutral face, and then it
smiled, changed to displaying a purple face, and repeated the
same eight motions, this time making physical contact with the
hands of the user. Within a block, this process was repeated
three times with the same hand-clapping game to promote
human mastery of that particular game. The facial expressions
used in the study were adapted from the Baxter Open-Source
Face Database (Fitter and Kuchenbecker, 2016a) and appear in
Figure 6.

When the participant was leading, they demonstrated a
sequence of eight hand-clapping game motions to a metronome
beat, paused briefly while Baxter “thought” about the motions,
and then played the game with Baxter, making physical contact
with the robot. Again, within a block, this process was repeated
three times with the same hand-clapping game to promote robot
mastery of that particular game. Baxter again showed the yellow
neutral face during the demonstration and the purple happy face
when it was time for interactive play.

Spontaneity Conditions
When people play hand-clapping games with one another, the
interaction often begins with the swapping of known hand-
clapping game activities and then gradually becomes more
complex or inventive. To promote this same type of natural
development over the course of this experiment, we introduced
a second “spontaneity” condition variable.

In the non-spontaneous interactions, the game leader (Baxter
or the human participant) was instructed to teach a specific game
to the other party. For Baxter, this instruction was delivered
in code, and for the human user, it was delivered via verbal
instructions from the experimenter. Two specific games were
used for the non-spontaneous interactions: (1) Game A: LP-C-
R-C-L-C-B-F and (2) Game B: D-F-D-B-D-D-DF-UF. If Baxter
taught the user Game A, the user would teach Baxter Game B,
and vice versa. The games were randomly assigned and balanced
across users to prevent a confound between the conditions and
the game motion sequence itself.

When the person was leading non-spontaneous gameplay,
Baxter did not use the data processing pipeline to attempt to
identify and reciprocate the human motion pattern. Instead,
Baxter performed pre-set routines with two canned mistakes in

FIGURE 6 | The two Baxter facial expressions used in this bimanual clapping

study.
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the first repetition, one canned mistake in the second repetition,
and none in the final repetition. The mistakes were consistent
for each non-spontaneous game and were designed based
on common machine learning classifier errors. This behavior
ensured that even if our IMU system did not work well in
this new application, we would be able to understand how a
consistently improving robot would be received by human users.
Additionally, the human wrist IMU data was recorded during
these trials, which allowed us to include the would-be accuracy
of the data processing pipeline’s classification of these patterns in
our overall machine learning results.

During spontaneous gameplay, games were still required to be
eight motions long and had to begin with either a clap or lap pat
as those two bimanual movements provide a distinct beginning
signal in the recorded data. Otherwise, Baxter and the participant
were free to choose their own sequence of hand-clappingmotions
from the set given in section Hand Motion Classification, minus
“stay,” which was omitted because pilot participants had difficulty
maintaining the rhythmwhen the sequence included this pausing
move. To generate a random new game, Baxter employed a
random number generator and a transition matrix of typical
hand-clapping game motion transitions to create its own pattern.
In human spontaneous lead cases, the user was free to create a
game that followed the few guidelines mentioned above. Across
the three interactions in a spontaneous play block, the robot and
person were expected to repeat the same game to foster mastery
by the team.

Overall Block Flow
To maintain an organic interplay throughout the experiment
and allow the user to master the robotic system in the limited
time available, we used the same block order for all participants.
We present both the disadvantages and the advantages of this
experiment structure in the discussion of this article. The order
of the interaction blocks was always as follows:

1) Baxter-led non-spontaneous
2) Human-led non-spontaneous
3) Baxter-led spontaneous
4) Human-led spontaneous
5) Free play

This order gradually increased the autonomy of each partner
while giving the human user time to become familiar with the
system before leading an interaction. The transfer of leadership
back and forth mimicked the natural tendency of people to take
turns teaching their own clapping games when exchanging oral
cultural traditions.

Data Collection
Our software recorded the IMU data from the human user and
the sequences of motions performed by Baxter. We also asked
participants to complete four surveys: (1) a robot evaluation
after hearing introductory information about Baxter, (2) an
interaction block survey after each trio of hand-clapping game
repetitions, (3) a concluding survey after the final free-play
interaction, and (4) a basic demographic survey after the
concluding survey. The block perception survey used questions

from the pleasure-arousal-dominance (PAD) emotional state
model (also used by Ammi et al., 2015), TheNational Aeronautics
and Space Administration (NASA) task load index (TLX)
(Hart and Staveland, 1988), and an enjoyability survey used
by Heerink et al. (2008), plus a safety rating question, as
displayed in Table 1. Later in this article, we bundle the PAD
and safety questions together under the acronym “PADS.”
Questionnaires (1) and (3) were adapted from the unified theory
of acceptance and use of technology (UTAUT) and other metrics
employed by Weiss et al. (2008) and Heerink et al. (2009); the
questions are shown in the plot titles of Figure 7. The block
survey and concluding survey also included the following free-
response questions to help elicit experiential information from
users:

• What aspects of this activity did you enjoy?
• What aspects of this activity were most challenging?
• Why would or wouldn’t you want to do this activity with a

robot?
• What other activities would you want to do with this robot?

The experiment was additionally videotaped for later analysis of
user and robot behavior.

Hypotheses
This experiment sought to test the four main hypotheses detailed
below:

• H1: Users will enjoy teaching hand-clapping games to Baxter as
much as learning games from Baxter. In human-human game
interactions, some people prefer to lead and others prefer to
follow the lead of others. Some individuals may enjoy both
leading and following depending on the interaction scenario.
Because of this balance of preferences, we believed that people
might rank robot pleasantness and interaction enjoyment the
same regardless of who leads the game.

• H2: Participants will find spontaneous hand-clapping
interactions more fun and engaging than scripted ones.
In this experiment’s prototyping and piloting phases, we
originally considered scripting all of the hand-clapping
actions throughout the experiment blocks, but pilot users
expressed a strong desire to create and teach their own
hand-clapping games. This feedback led us to modify the
experiment protocol into the currently described state.
We additionally wanted to test this hypothesis to ascertain
whether the pilot user preferences generalize to other users.

• H3: Participation in the experiment will alter the way
people perceive the robot. Specifically, we administered a
UTAUT-inspired survey before and after the experiment to
determine whether the interactions caused any changes in user
perception of Baxter. Playing games with Baxter in this study
might be a pleasant or unpleasant social experience that would
alter later user responses.

• H4: Our proposed machine learning pipeline will perform well
at classifying hand-clapping motions in this new use scenario
with a robot in the loop. Our machine learning strategies
performed well on previous test datasets, but we wanted
to test whether the linear SVM classifier would provide
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TABLE 1 | Content of the block questionnaire used in the bimanual clapping study.

Block Evaluation

Please rate the following on the provided sliding scales:

How safe did this robot behavior seem? How engaged did you feel throughout this set of interactions?

How pleasing is this robot behavior? How well did you perform during this set of interactions?

How energetic is this robot behavior? How well did the robot perform during this set of interactions?

How dominant is this robot behavior? How rushed did you feel during this set of interactions?

How much did you enjoy this set of interactions? How calm did you feel during this set of interactions?

Free response section. Please respond briefly to the following questions:

Describe your experience interacting with the robot in this way, including any positive or negative aspects of the experience.

similar motion classification accuracy in a more realistic and
demanding interaction scenario.

These hypotheses helped guide the design of the experiment
blocks and the interactions described previously in this section.

RESULTS

All 24 users who enrolled in the study successfully completed
the experiment. 23 of them were willing to physically contact the
robot to play hand-clapping games. The other one person was
bothered by the sound of Baxter’s motors and only occasionally
clapped hands with the robot; this individual’s data were not
excluded from the analysis because they still took part in the
entire experiment.

This section focuses on statistical analyses of the questionnaire
responses using paired t-tests and repeated measures analysis of
variance (rANOVA). The t-tests enable us to discover whether
the experiment changed user opinions of Baxter. The rANOVAs
(using the R “aov” function and an α = 0.05 significance level)
tell us how different hand-clapping game experiences affected
block survey responses on the PADS, enjoyment, and TLX
questionnaire scales. We also consider overall user comments
and the success of the hand-clapping game motion classifier.

Before/After Survey Results
We gathered matched sets of robot perception survey responses
before and after the experiment. The overall user responses
appear in Figure 7. Paired t-tests reveal that the answers to two
questions significantly changed. Namely, after the experiment
participants reported feeling more understood by the robot
(REC2: p = 0.023, Mbefore = 35.54, Mafter = 52.33) and
also more willing to follow the example of the robot (ATT2:
p = 0.031, Mbefore = 65.29, Mafter = 78.04). Additionally, user
ratings on the overall reciprocity-focused questions were higher
after the experiment than before (REC1 + REC2: p = 0.010,
Mbefore = 45.35,Mafter = 60.52).

Block Survey Results
The within-subjects factor for our rANOVA was game block
condition, giving a design space of four blocks with a cross of
two leadership conditions and two cooperation conditions. We
had initially designed the block differences as a 2 by 2 space, but
after running the experiment, we realized that ordering played
a role in the users’ perceptions and that experiences in the

paired conditions were sometimes quite different. Accordingly,
we concluded that the most appropriate analysis tool was a one-
way rANOVA comparing the four different block conditions
as distinct levels of the factor. When an effect was significant
for a particular outcome measure, post-hoc multiple comparison
tests using the R “multcomp” library revealed which pairs
of conditions had statistically significant differences. We also
calculated the effect size using eta squared.

The rANOVA results for the block survey are summarized in
Table 2, and breakdowns of interaction block effects on different
question groupings appear throughout the following paragraphs.

PADS Results
We were curious to know how each block condition affected user
ratings of safety and affective characteristics of the robot behavior,
so we performed a one-way rANOVA for each of the PADS
survey questions. There were several statistically significant
trends in these block survey question responses, as outlined in
Table 2 and Figure 8.

Block modes significantly affected user ratings of robot
pleasantness [F(3, 69) = 3.88, p = 0.022, η

2
= 0.058] and

dominance [F(3, 69) = 5.94, p = 0.004, η
2
= 0.105]. Post-hoc

multiple comparison tests revealed that Block 4 (human-led
spontaneous) was rated as less pleasant then Block 3 (robot-
led spontaneous). Block 2 (human-led non-spontaneous) made
Baxter appear less dominant than Block 3, while Block 1 (robot-
led non-spontaneous) made Baxter appear more dominant than
Blocks 2 and 4. No significant differences were found for safety or
energeticness, and safety ratings were uniformly high (M= 79.71,
SD= 21.59).

Enjoyment Results
We also wanted to know how game block experiences influenced
user ratings of enjoyment and engagement, so we performed a
one-way rANOVA for each of the related block survey questions.
There were no statistically significant trends in these responses,
as shown in Table 2 and Figure 9. Enjoyment (M = 74.25,
SD= 19.83) and engagement (M = 78.59, SD=16.75) were both
uniformly rather high.

TLX Results
Lastly, we looked to identify how game block experiences
influenced user ratings of various task-load metrics. We
performed a one-way rANOVA for each of the TLX-inspired
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FIGURE 7 | Differences in participant responses before and after the human-robot hand-clapping experiment. In each subplot, the upper box plot represents

pre-experiment responses and the lower box plot represents post-experiment impressions. Filled-in box plots indicate significant differences. The question coding

abbreviations stand for attitude toward technology (ATECH), cultural context (CC), effort expectancy (EE), forms of grouping (GR), performance expectancy (PE),

reciprocity (REC), self-efficacy from UTAUT model (SE), and attachment (ATT).

block survey questions. There was one statistically significant
trend in the responses, as depicted in Table 2 and Figure 10.

Block modes had statistically significant effects on user
ratings of robot performance [F(3, 69) = 18.95, p < 0.001,
η
2
= 0.332]. The difference in the ratings of block interaction

calmness was also close to significant [F(3, 69) = 2.90, p = 0.057,

η
2
= 0.045]. A post-hoc multiple comparison test revealed that

robot performance appeared to be better in both robot-led blocks
(Blocks 1 and 3,M = 80.65, SD= 17.04) than in both human-led
blocks (Blocks 2 and 4, M = 52.71, SD = 23.72). No significant
differences were found for human performance, rushedness, or
calmness.
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TABLE 2 | p-values for the one-way rANOVA run to determine the effects of the block conditions.

Safety Pleasantness Energeticness Dominance Enjoyment Engagement

Block 0.093 0.022 0.500 0.004 0.061 0.146

Human Perf. Robot Perf. Lack of Rush Calmness

Block 0.104 <0.001 0.702 0.057

Gray shading indicates a statistically significant effect.

FIGURE 8 | Differences in responses to the PADS survey questions across

interaction blocks. Shaded boxes are significantly different from at least one

other condition.

Participant Demographic Results
Differences in participant feedback can stem from either
study conditions or characteristics of the users themselves.
To investigate differences due to participant demographics, we
performed a further set of rANOVA tests with survey timing
or block condition as a fixed factor and participant gender and
region of origin as covariates.

Gender had a significant effect on several user ratings.Women
thought people would be more impressed by their ownership of
Baxter than men did [F(1, 23) = 4.60, p = 0.038, η

2
= 0.084].

Female participants also liked the presence of the robot more
[F(1, 23) = 7.69, p = 0.008, η2

= 0.146] and thought they could
do activities with the robot more [F(1, 23) = 7.13, p = 0.011,
η
2
= 0.134] than male users. Women were additionally more

willing to follow the example of the robot [F(1, 23) = 19.75, p
< 0.001, η

2
= 0.279]. Female robot users also found the robot

more pleasant [F(1, 23) = 10.14, p = 0.002, η
2
= 0.095], found

the interaction more enjoyable [F(1, 23) = 11.00, p = 0.001,

FIGURE 9 | Responses to enjoyment-related survey questions across

interaction blocks. No significant differences were found.

η
2
= 0.104], felt more engaged during the study [F(1, 23) = 8.75,

p = 0.004, η
2
= 0.085], and felt more rushed during the

interactions [F(1, 23) = 11.15, p= 0.001, η2
= 0.108].

Since Eastern and Western cultures tend to have different
views of robots and other technologies (Lee et al., 2012), we
were also interested in comparing participant responses across
origin lines. Robot users from Eastern cultures thought others
would bemore impressed by their possession of Baxter than those
from Western cultures [F(1, 23) = 5.68, p = 0.021, η

2
= 0.104].

Individuals from Eastern cultures also found the robot more
dominant than Western participants [F(1, 23) = 6.81, p = 0.011,
η
2
= 0.0626].

User Comments
While analyzing user comments on each interaction block
survey, we noticed the emergence of the following themes:
motion comments (MC), temporal comments (TC), human
performance comments (HPC), robot performance comments
(RPC), teamwork performance comments (TPC), positive
general comments (PGC), haptic commentary (HC), social
performance comments (SPC), cue suggestions (CS),
comparisons to previous experience (CPE), and additional
clarifications about how users were reading survey questions
(AC). Example comments from each topic code appear
in Table 3. This division of comments seemed interesting,
especially because the frequency of comments in each topic
area shifted from block to block, as pictured in Figure 11. Some
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participants wrote multi-part comments that fit into several
categories, as included in the frequency counts.

Overall, the human-led Block 2 and Block 4 experiences
yielded more comments on the performance of the robot and the
human-robot team than other parts of the experiment. Robot-
led Blocks 1 and 3 led to an emphasis on motion and temporal
commentary, as well as cue suggestions, perhaps because users
were not as occupied with thinking about their own motions and
demonstration success. Some comment frequency progressions
may have occurred due to trial ordering effects; for example,

FIGURE 10 | Differences in responses to TLX-related survey questions over

interaction block. Shaded boxes are significantly different from at least one

other condition.

the motion commentary may have decreased over the course
of the experiment because users became accustomed to Baxter’s
movements. Other comments seem related to who was leading
a trial, returning whenever a leadership condition occurs. The
game spontaneity condition did not greatly affect user comments.
Furthermore, the breakdown of comments in the canned “perfect
robot improvement” performance of Block 2 is quite similar to
that of Block 4, during which Baxter often still made mistakes in
the final hand-clapping interaction.

Free Play Results
In the free-play interaction following Block 4, all but two users
identified a favorite interaction mode that they wanted to play
again. The participants who chose not to engage in additional free
play were not afraid of the robot; they simply were not interested
in additional interactions at that time. One of them was the user
who refrained from contacting the robot during the main blocks
due to the robot’s sound, and the other stated that they were more
pedagogically curious about the robot than interested in the social
aspects of play with it. All other participants played at least one
more game repetition with Baxter during the free-play segment
(2.2 game repetitions on average, with a range of 0 to 5 repetitions
across the participant pool).

Participants varied in the types of additional interactions they
wanted to perform with Baxter. Seven users both learned from
and taught Baxter during the free-play time. Eleven users chose
to only teach Baxter, while four opted to only learn from Baxter.

Classifier Results
Another goal of this bimanual hand-clapping study was to
evaluate the performance of the motion classifier described
in section Hand Motion Classification. Data recording errors
occurred during the first four sessions of this experiment,
so our classifier evaluation omits these participants. In the
data recordings of the remaining 20 users, the following pre-
processing steps were applied before evaluating the accuracy of
Baxter’s real-time motion labeling in the bimanual gameplay:

TABLE 3 | Example comments from each interaction block topic code.

Topic Code Example Comment

Motion Comments (MC) “The ‘Up Five’ and ‘Down Five’ were a little low, making those interactions a little more awkward/unsafe feeling. That

also probably has to do with the fact that the motions of the robot is much larger.”

Temporal Comments (TC) “A small delay between Baxter’s demonstration and actual task would have made it easier.”

Human Performance Comments (HPC) “I was pretty bad at first (and at the end too) but improved with each trial.”

Robot Performance Comments (RPC) “Robot made mistakes in the first round just like me! He finally learned it in the end, whew.”

Teamwork Performance Comments (TPC) “The interaction was still fun, but I was confused as to whether or not I had shown Baxter the motions clearly enough

or if Baxter just had trouble replicating that motion at that time.”

Positive General Comments (PGC) “That one was fun!”

Haptic Commentary (HC) “Claps felt a little soft, though not limp.”

Social Performance Comments (SPC) “I am not sure how a robot could be energetic. I did not feel that it was dominant or pleasing.”

Cue Suggestions (CS) “Playing a beat like the metronome from the teaching part would make staying on pace easier.”

Comparisons to Previous Experience (CPE) “Baxter’s motion seems more smooth and safe than last time.”

Additional Clarifications (AC) “Any lack of calm is due to the metronome and my anxiety to remember the patterns.”
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FIGURE 11 | Comparison of frequency of comments pertaining to various

topics during different interaction blocks. The topic codes were: motion

comments (MC), temporal comments (TC), human performance comments

(HPC), robot performance comments (RPC), teamwork performance

comments (TPC), positive general comments (PGC), haptic commentary (HC),

social performance comments (SPC), cue suggestions (CS), comparisons to

previous experience (CPE), and additional clarifications about how users were

reading survey questions (AC).

• Our strategy to detect the overall relevant segment of IMU
data in human-led trials required participants to be very
still before and after their motion pattern demonstration.
Some participants were unable to be still, which resulted
in extra motion classifications at the beginning or end of
their demonstration, due to fidgeting or preparatory motions
before the intended demonstration. These extraneous motions
were identified via video review and omitted while evaluating
classifier accuracy.

• Although human users were not allowed to choose the “stay”
motion when teaching Baxter games, Baxter was permitted
to classify human motions with this label. In piloting, we
found that this class label helped Baxter adapt to minor human
pauses or rhythmic inconsistencies; Baxter could pause during
these incidents rather than performing the next most likely
(incorrect) motion. Before comparing the actual and classified
participant motion identities, we removed all of the “stay”
padding occurrences.

• Another algorithmically problematic behavior occasionally
performed by users was motion demonstrations at half of the
suggested demonstration speed. This type of demonstration
usually produced some intermittent “stay” classifications (as
mentioned above) and some double- or triple-registers of
individual motions. Any duplicate registers of motions caused
by half-time hand-clapping demonstrations were identified by
video review and removed from the classification labels before
computing classifier accuracy.

• Lastly, the human experimenter controlled when the data
recording for each demonstration stopped. She sometimes
stopped recording data too soon, clipping the last handmotion
recording and causing one motion label to be missing from
the resulting motion sequence. In these cases, we evaluated
only the prediction accuracy for the first seven demonstrated
motions.

Generally, we were monitoring for the correct sequence of
motions in the recordings, regardless of what occurred between
consecutive moves.

After these data processing steps, we were able to compare
the data processing pipeline’s linear SVM classifications with
the actual identity of each hand-clapping motion demonstrated
by the human user (taken from the specified game sequence
or the demonstrated sequence visible in the video). The overall
accuracy of this classification was 85.9%, and the breakdown
of correct and incorrect motion labels appears in Figure 12.
Although high, this accuracy is to be taken with the caveat that
even when our analysis interpreted 100% classification accuracy
for a particular game, the user may have seen extra moves before
or after their intended game, extra “stay” motions, duplicate
motions, or missing final motions in Baxter’s reciprocal motion
pattern. Participants reacted to these behaviors and classification
errors in a variety of ways, from adjusting their behavior to match
Baxter’s errors to questioning Baxter’s sobriety. Errors that caused
Baxter to perform worse in the consecutive game repetitions
making up one study block were most frustrating to users.

DISCUSSION

The experimental results enable us to test our hypotheses and
plan how to move forward with this spHRI research.

Hypothesis Testing
The H1 prediction that users would enjoy teaching games to
Baxter as much as learning games from Baxter was partially
supported. There was no statistically significant difference in
user ratings of Block 1 vs. Block 2 interactions on the robot
pleasantness scale, but participants rated robot behavior in Block
3 (robot lead, game spontaneous) as more pleasant than Block
4 (human lead, game spontaneous). Despite this pleasantness
difference, users most frequently chose to continue teaching the
robot during the free-play time, rather than continuing to learn
from Baxter. Interaction enjoyment ratings, on the other hand,
did not differ significantly across any of these conditions. This
finding might indicate that teaching to and learning from a
robot that improves consistently (Blocks 1 and 2) are equally

Frontiers in Robotics and AI | www.frontiersin.org 13 July 2018 | Volume 5 | Article 85

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Fitter and Kuchenbecker Teaching a Robot Hand-Clapping Games

FIGURE 12 | Confusion matrix of the linear SVM classifier’s performance in the real experiment setting, after the four mentioned pre-processing steps.

fun and pleasant activities, while a robot that displays different
types of learning patterns is interesting but less pleasant. Another
intuitive difference in robot dominance ratings appeared in the
robot lead vs. human lead trial comparison; participants rated
Baxter as less dominant when the robot was following their game
lead, except in the comparison of Blocks 3 and 4, which did not
yield a significant difference. Robot performance also received
higher ratings for robot-led trials compared to human-led trials.

There was less evidence to support H2’s predicted preference
for spontaneous hand-clapping activities. Overall, no block
survey response difference emerged from the comparison of
scripted and unscripted game experiences. When Baxter taught
games to the user, the person never knew whether Baxter’s
motion sequence was pre-set, so it makes sense that the human
perception of these game activities was fairly uniform. We
thought that users might enjoy creating their own clapping game
in the fourth experiment block, but experimenter notes show
that some people were eager to undertake this task while others
were quite intimidated by having to compose their own pattern.
Participants who liked being able to teach Baxter commented
that “it was fun to watch the robot trying to move in the way
[they] created and taught,” “making up [their] own motion and
seeing [Baxter] learn it made the experience more exciting,” and
“it was more fun leading than learning from the robot.” Less
enthusiastic users noted that they “had trouble teaching Baxter,”
felt “anxiety from [...] memorizing the pattern of clapping,” and
wondered “whether or not [they] had shown Baxter the moves
clearly enough.” These two viewpoints may have contributed
to the lack of overall differences between Block 2 and Block 4
ratings.

Our hypothesis H3 was correct. Users rated their
perception of Baxter differently on the pre- and post-
experiment surveys. Participant felt more understood by
the robot after the experiment, and they also became more
willing to follow Baxter’s example. The overall feelings of
reciprocity between participants and Baxter grew during the
experiment as well, indicating that the robot successfully
achieved at least a rudimentary form of social-physical
interaction.

The final hypothesis H4 predicted that our machine
learning pipeline would perform well and help Baxter to
understand human motion demonstrations throughout human-
led interactions. We especially hoped that the classifier would
work well in Block 4, during which Baxter had no information
about the motion sequence that the human user would
demonstrate. The classifier was able to label human hand-
clapping moves with 85.9% accuracy. This recognition rate is
lower than the 97.0% achieved on the testing set, and it has
some additional caveats. Mainly, the data processing pipeline’s
motion parsing technique required users to demonstrate games
at a specific constant tempo with no errors or hesitations.
We acknowledge the need to improve classifier robustness
and have additional new users test the system to confirm
the redesign’s success. Fortunately, the IMU data recorded
throughout this study gives us a new prospective training set
for improving our classifier’s robustness to pauses and variable
demonstration tempo in future bimanual clapping interactions.
We hope to determine the maximum human motion recognition
accuracy that can be achieved using IMUs in a natural
setting.
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Major Strengths and Limitations
This study represents the most complex and natural-feeling
HRI that we have investigated, and we were pleased with the
promising and informative results. All participants successfully
completed the study, and although one user never contacted
Baxter through an entire cycle of hand-clapping motions, this
individual’s interaction displeasure arose from the timing of the
noises Baxter produced, rather than concerns about the safety
of the robot. This person wrote that “there seemed to be some
feedback missing (for example, a sound to accompany the hands
clapping), which damaged any sense [of] rhythm that might have
driven the pace of the game.” Additionally, all but two of the
users identified a free-play interaction that they wanted to try and
engaged in that activity with Baxter during at least one additional
round of hand-clapping gameplay.

This study interaction led to improved user opinions of the
robot and several reports of fun interacting with Baxter. Notable
positive comments included that one user “was surprised and
impressed at how fast and fluid[ly] the robot was able to move”
and another “liked how [Baxter] appears to get excited to play”
when switching from the yellow neutral face to the purple happy
face. The safety ratings of Baxter were also uniformly high,
despite Baxter’s occasional motion interpretation errors. Other
strengths of this work are findings on the ability to influence
how people think about working with Baxter via different leading
and following roles. Users thought a lot about teamwork with
Baxter during human-lead trials, sharing more comments about
Baxter’s performance, their own performance, and the hand-
clapping teamwork. Experiences varied from easy (“I really liked
how easily he learned my game”) to medium (“I may not have
been the best teacher, but Baxter still learned a lot by round 3”)
and even challenging/adverse situations (“the first time we were
perfect, and that was super exciting. But once we did well, the
mistakes in the next round were that much more devastating”).
Nevertheless, users seemed to want to succeed in teaching Baxter,
and some empathetic users even adjusted their motion sequence
to fit Baxter’s errors during the post-demonstration interactive
play. In the broader social robotics picture, this experiment
also provoked a number of complex emotional responses from
people. Especially in the Block 4 interactions, users expressed joy
at successes, and they also exhibited occasional cheeky responses
to Baxter’s errors. One non-technical user even talked to the
robot, asking “Are you drunk, Baxter?” when the robot did a poor
job reciprocating the demonstrated motion pattern.

The study design also had some shortcomings. Although the
user behavior in this experiment was more naturally situated
than in our previous spHRI work, the interaction could still be
more natural; we required quite a bit of structured behavior from
users to help Baxter interpret their motions. This requirement
was especially problematic for users who were not adept at
keeping a constant tempo. The chosen motion parsing and
classification strategy further leads to a delay between when the
user demonstrates each motion and when each move is classified.
The system transparency could also be better. An additional
robot thinking face while Baxter processes the participant motion
data, for example, would help users understand the robot’s state.
Participants often recommended sound effects and experiment

flow changes in the block surveys. Some wanted “a beat like
the metronome from the teaching part” throughout their entire
clapping experience with Baxter or a “clearer indication of
[when] learning and playing phases start and stop, perhaps via
audio” to help them focus their visual efforts on tracking Baxter’s
movement. Several users also requested a brief pause during
robot-led conditions between Baxter’s demonstration and the
interactive human-robot play, perhaps inspired by the time the
robot took to “think” about the demonstrated movements during
the human-led trials. Furthermore, a few of the hand-clapping
motions, especially DF and UF, were awkward for tall users. Our
future research would benefit from automatically adjusting clap
contact location based on user height.

Other drawbacks arose from the setting and the user
population of the study. The experiment participant pool was
fairly small and consisted mostly of young technical students.
Within this group, we found that female users had amore positive
impression of the robot than male users; this difference could
the fact that most of our non-technical participants were also
female. The study also took place in a lab setting that is different
from future natural environments where humans and robots
might interact. To ensure broader generalizability, we would need
to run the experiment on a more diverse population in a less
controlled everyday environment. The within-subjects design
of the experiment may have exaggerated differences between
conditions due to demand characteristics (Brown et al., 2011).
We also must consider the fixed block ordering of the experiment
when interpreting results and note the possible ordering effects
on any condition differences. For example, participants might be
more interested in the first block due to novelty effects and less
engaged in the final block when the interaction has become more
familiar. Users might also compare each subsequent block related
to the previous experience, which is the same for each person in
this study design. Hence, ratings might be better balanced in an
experimental design with a varied trial ordering. A final challenge
arising from the largely technical, robotics-savvy population of
the experiment was that some people assumed that Baxter was
using a vision algorithm to classify their motions. This belief
is not inherently problematic, but it may have influenced the
way people moved when demonstrating motions to Baxter, thus
affecting Baxter’s motion classification accuracy and attempted
game pattern reciprocation. One user stated their belief in how
the classifier worked explicitly, noting that there were “some
mistakes during the training process, but [that] the accuracy
was pretty good (considering [the algorithm] must differentiate
between different hand poses quickly with the other hands
somewhere in the background).”

Key Contributions and Future Work
Next research steps would involve trying to improve the
robustness of Baxter’s motion classification ability. The machine
learning pipeline could be updated using the study data
recordings of how people move and behave when in front of
an actual robot. There may also be opportunities to improve
user demonstration performance by offering advice on how
to move during motion demonstrations, training additional
bigrams, encouraging games that involve only bigrams of motion
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encapsulated in our original training and test datasets, and/or
giving users a way to provide feedback to Baxter to enable
reinforcement learning. Other improvement steps include adding
more social feedback and auditory cues to the experiment, as
suggested in user comments.

Overall, we are energized by signs of user fun and increasingly
social opinions of Baxter over the course of the study. This
work may be applicable to future HRI efforts on manipulating
what users think about during interactions, considering how
to get a person’s attention, and designing future spHRI with
appropriate cueing. The hand-clapping interaction itself may
be a good way to help people learn how robots move and to
break the ice when forming human-robot teams. Other future
research directions from this bimanual clapping work include
trying the sensing system on populations who are undergoing
physical therapy formotor rehabilitation. Our findings, especially
those on the classifier accuracy and social user responses to
bimanual hand-clapping with a robot, can guide future spHRI
research.
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