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In this paper, we investigate influence maximization, or optimal opinion control, in a
modified version of the two-state voter dynamics in which a native state and a controlled
or influenced state are accounted for. We include agent predispositions to resist influence
in the form of a probability q with which agents spontaneously switch back to the native
state when in the controlled state. We argue that in contrast to the original voter model,
optimal control in this setting depends on q: For low strength of predispositions q, optimal
control should focus on hub nodes, but for large q, optimal control can be achieved by
focusing on the lowest degree nodes. We investigate this transition between hub and
low-degree node control for heterogeneous undirected networks and give analytical and
numerical arguments for the existence of two control regimes.
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1. INTRODUCTION

Processes of opinion formation play a role in a variety of real-world problems, ranging from political
elections tomarketing and product adoption, seeCastellano et al. (2009), Sîrbu et al. (2017) for recent
reviews. Very often, these processes involve peer-to-peer interaction (Easley and Kleinberg, 2010)
and thus take place on social networks. In this context, the natural question arises how an external
party with a certain amount of resources at its disposal can steer such a social system in a desired
direction, maybe either with the intent of maximizing the adoption of products (Kempe et al., 2003;
Bharathi et al., 2007, 2010; Goyal et al., 2014) or for the purposes of political influence in the so-called
campaign problem (Hegselmann et al., 2015).

Starting with the seminal study of Kempe et al. (2003) on influence maximization, work in
this area has strongly focused on the independent cascade model or related versions of threshold
models, which have been studied in competitive and non-competitive settings (Kempe et al., 2003;
Bharathi et al., 2007, 2010; Goyal et al., 2014). In the independent cascademodel, influencing parties
strategically distribute seeds, which can then cause cascades of influence spread. However, while
allowing for neat solutions using optimal percolation (Morone andMakse, 2015), in the independent
cascade model, agent behavior is assumed to be fixed once committed to a certain opinion, thus not
allowing for dynamical change subject to competing internal or external influence over time.Models
of this type thus appear not suitable for a range of applications (Kuhlman et al., 2013) in which the
interest is in dynamic opinion change.
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Recognizing this limitation of the independent cascade model,
recent work has also started to consider opinion control in
dynamic models of binary opinion change, which appear more
suitable to capture dynamic phenomena of opinion change if
agents don’t have strong commitment to decisions. Research in
this area so far has considered models based on the kinetic Ising
model (Liu and Shakkottai, 2010; Laciana and Rovere, 2011;
Lynn and Lee, 2016), a variant of the AB model (Arendt and
Blaha, 2015), which results in majority-like dynamics, and the
voter dynamics (Kuhlman et al., 2013; Yildiz et al., 2013; Masuda,
2015).Whereas in the kinetic Isingmodel, agents change opinions
according to a majority-like dynamics, in the voting dynamics
agents adopt opinions of randomly selected neighbors (Clifford
and Sudbury, 1973; Holley and Liggett, 1975). In contrast to,
e.g., the Glauber dynamics underlying the kinetic Ising model,
opinion changes of agents in the voting dynamics are caused
by the pressure of the majority of their neighbors only in an
averaged sense and the state of the majority does not play a direct
role when making updating decisions. With differing effects of
majority pressure, one thus finds differences in model behavior
(Castellano et al., 2009). Nevertheless, of interest for our study
below, for the kinetic Ising model, recent work has pointed out
that optimal influence allocations may shift from focusing at
high-degree nodes to low degree nodes depending on the social
temperature of opinion change (Lynn and Lee, 2016). The work
of Lynn and Lee (2016) demonstrates that hub control may not
be optimal for all types of social contagion processes and hub
nodes may play different roles at different stages of the dynamics
(Quax et al., 2013). However, the focus of the present study is
on the voting dynamics. In this context, Mobilia was first to
investigate the impact of an agent favoring one opinion, a so-
called “zealot” (Mobilia, 2003;Mobilia andGeorgiev, 2005), which
was later extended to considerations of inflexible voters (Mobilia
et al., 2007). Zealots, or partisan voters, can be interpreted as
external influence on the system. Whereas in the voting dynamics
consensus is typically reached (Castellano et al., 2009), the mutual
presence of multiple opposing zealots can lead to the co-existence
of different opinions in equilibrium (Mobilia and Georgiev, 2005;
Mobilia et al., 2007). Effects of zealotry in the voting dynamics are
of considerable interest in the literature and have been studied
in various settings. For instance, considerations of error-prone
zealots have been addressed in Masuda et al. (2010), Masuda and
Redner (2011). Further recent studies include voter models with a
large number of states (Waagen et al., 2015), extensions to the non-
linear q-voter model (Mobilia, 2015), an exploration of the role of
mass media in multi-state voter models (Hu and Zhu, 2017), or,
more recently, a study on the role of noise in the mean-field voter
model with zealots (Khalil et al., 2018). However, none of the latter
studies consider the role of strategically placed zealots.

In the context of opinion control in the voter model (Kuhlman
et al., 2013) investigated control strategies focused on the highest-
degree nodes, attempting to minimize control costs to achieve
given threshold opinion shares. In other related work, Yildiz
et al. (2013) proposed a new algorithm to find optimal control
strategies, but mainly focused on the evaluation of the algorithm.
Closest to the presentwork is the study ofMasuda (2015), inwhich
methods from linear algebra are used to explore optimal opinion

control in the voter model. Masuda (2015) analyzes steady-state
solutions of the master equation and then carries out numerical
optimization to investigate optimal control strategies for artifi-
cially generated scale-free Barabási–Albert networks (Albert and
Barabási, 2002) and a range of empirical social networks, includ-
ing email-communication, co-authorship, and directed online
social networks, finding that control protocols that focus on the
highest-degree nodes are generally successful in heterogeneous
undirected networks, but not necessarily in the case of directed
networks. Findings of previous work on opinion control in the
voter model thus seem to generally agree that optimal control on
undirected social networks should generally be focused but not
exclusively be concentrated on high-degree nodes (Kuhlman et al.,
2013; Masuda, 2015). However, while proposing new algorithms
and proving analysis of optimal opinion control for certain net-
work topologies, up to our best knowledge, no previous study has
investigated the role of the strength of predispositions to resist
change on strategies for optimal opinion control.

Studies like Masuda (2015) have assumed the presence of two
external influencing parties and investigated optimal strategies of
an active optimizer competing against a passive strategy that does
not actively pursue optimal control. Here, we propose a slightly
different variant of the voter model, which may be closer in spirit
to the independent cascade model but still allows for dynamic
change of opinions. Instead of assuming the presence of a passive
party, we consider a setting in which an active party attempts to
align the system toward a goal, but agents are “fickle” in the sense
that theymight also spontaneously revert to the uninfluenced state
with some probability. The inclusion of such fickleness allows us
to study the dependence of opinion control on the strength of
predispositions of agents to resist change. As we shall argue below,
optimal control strategies are indeed very different in low and high
predisposition settings on undirected networks, pointing out that
previous findings like those of Kuhlman et al. (2013) and Masuda
(2015) might not apply in all settings.

With the inclusion of predispositions, we aim to provide a
framework that agrees with empirical evidence from recent work
on social networks, in which it was observed that influence prop-
agation follows a complex contagion dynamics (Centola and Macy,
2007; Centola et al., 2007; Centola, 2010; Hill et al., 2010; Romero
et al., 2011). Complex contagion describes a process whereby
repeated exposure is required for the adoption of opinions, behav-
ioral patterns, products, etc. Such a process is enhanced by com-
munities, in which individuals are repeatedly exposed to the same
ideas. This contrasts with simple contagion (modeled, for example,
by independent cascades), in which similarly to disease spreading,
only one contact is required to spread a message. An immediate
consequence of such different dynamics is that hubs typically
represent the best influencer under a simple contagion dynamics,
whereas targeting low-degree nodes may yield a larger spread for
complex contagion (Alshamsi et al., 2017). By including predis-
positions to resist change in our model nodes can spontaneously
revert to the uninfluenced state. Therefore, the proposed model
reflects the repeated exposure needed in complex contagion to
influence a node with high probability. Alshamsi et al. (2017) has
recently shown that it may be best to influence low-degree nodes
in complex contagion in a setting in which nodes are committed
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to a state once adopted. Our results complement these findings in
dynamic settings and show further conditions under which it is
best to target low-degree nodes instead of hub nodes.

Our study is organized as follows. In Section 2, we give a
detailed description of the model employed and describe analyt-
ical and numerical methods to find optimal control strategies.
Section 3 then gives our main findings and we finish with a
summary and discussion in Section 4.

2. MATERIALS AND METHODS

In the following, we consider a variant of the voter model (Clif-
ford and Sudbury, 1973; Holley and Liggett, 1975) that accounts
for spontaneous changes of opinions with a probability q. Let
there be N agents with binary states si = 1 or si = 0, i= 1,. . .,N,
which are connected by an unweighted social network given by
its adjacency matrix A = (aij)N

i,j=1. We consider undirected
connections, hence aij = aji = 1 if there is a link between i and j
and aij = aji = 0 otherwise. Additionally, we consider an external
controller with opinion s= 1 which aims to align the system to
its opinion. Control is exerted through the presence of additional
in-neighbors with s= 1, i.e., a controlled node has an enhanced
likelihood of choosing a neighbor with state s= 1 when updating.
The controller thus influences the system through unidirectional
links given by a vector p⃗ = (p1, . . . , pN) where pi = 1 if the
controller influences node i and pi = 0 otherwise. Without loss of
generality, we assume that s= 1 is the desired state into which
the controller wants to guide the system. However, “convinced”
agents in state s= 1 may spontaneously revert to state s= 0.

Inmore detail, after random initialization of voters, the dynam-
ics of opinions are updated as follows: (i) a focus agent x is picked
at random, (ii) with probability (1− q) agent x randomly selects
one of its in-neighbors y and adopts the opinion of y, i.e., sx = sy.
In the opposite case, i.e., with probability q, if in state s= 1 agent
x will spontaneously revert to state s= 0. Steps (i) and (ii) are
repeated until an equilibrium is reached.

The above process allows for analytical solutions. Define ui as
the probability that node i will be in state s= 1. We can then write
down the master equation

u̇i =(1−q)/Σi

(1− ui)

∑
j

ajiuj + pi

− ui
∑

j

aji(1 − uj)

−qui,

(1)
where

Σi =
∑

j
aji + pi (2)

is the in-strength or the sum of influences node i experiences. The
first term in equation (1) captures the typical copying dynam-
ics of the voter model, which occurs with probability 1-q [see,
e.g., Masuda (2015)], and the second term −qui accounts for
spontaneous flips back into the uncontrolled state.

Equilibrium states can be obtained from

(diag(Σi) − (1 − q)A) u⃗∗ = (1 − q)⃗p, (3)

where u⃗∗ = (u∗
1 , . . . , u∗

N) denotes the vector of equilibrium
probabilities and diag(Σi) stands for a diagonal matrix D with

entries Dii =Σi (cf. Appendix A for more detail). Again, following
Masuda (2015), we next note that equation (3) gives a linear
system, which is diagonally dominant for all q. Thus, an efficient
way of solving equation (4) is by Jacobi iteration, where we start
with u(0)

i = 1/2, i= 1,. . .,N and then iterate

u(n+1)
i = (1 − q)/Σi

pi +
∑

j
ajiu(n)

j

, (4)

where superscripts indicate the iteration number. Stationary solu-
tions u⃗∗ then allow to estimate the share of votes influenced by the
controller via X = 1/N

∑
i u∗

i .
From equation (3), we can also read the mean-field solution for

the controlled vote share when controllers are allocated randomly
on an all-to-all connected network, finding

X =
1 − q
ρ + qρ, (5)

where ρ = 1/N
∑

i pi is the density of controlled voters. It
is straightforward to see the limiting cases of q= 0 and q= 1
in equation (5) corresponding to a perfectly controlled system
(X = 1) and an uncontrollable system (X= 0), respectively. We
can thus see that predisposition to resist change in the form of
the flipping probability q quantify how difficult it is to control the
system.

In the following, we are interested in optimal control strategies
(as quantified by p⃗) for the external controller for given net-
works. As a model for social networks, we construct networks
with power-law degree distributions P(k)∝ k−α according to the
configurationmodel (Newman, 2010). For given control resource,
n =

∑
i pi controls p⃗ are then first assigned randomly and

then optimized using a stochastic hill climber. More precisely,
we iterate the following scheme: (i) select a controlled node x
and a yet uncontrolled node y at random, (ii) rewire the control
from x (i.e., px = 1, py = 0) to y (i.e., px = 0, py = 1) if X(px = 1,
py = 0)≤X(px = 0, py = 1). Optimization using steps (i) and (ii)
is stopped once no rewiring of controls has been accepted for a
certain number T of attempts and three different initial control
allocations are explored to reduce the probability of ending up in
local optima with stochastic hill-climbing. For network sizes of
N = 1,000 nodes/voters that we shall investigate below, we typi-
cally set T = 104, which makes sure no substantial improvements
in control can be found any more. If not mentioned otherwise,
we set α= 3 and run experiments with connectivity ⟨k⟩= 3. In
the following, we will explore the dependence of optimal opinion
control strategies on the predisposition parameter q for various
resource allocations n to the controller.

3. RESULTS

In this section, we present ourmain findings.We start by outlining
numerical results in Section 3.1 and then analyze two toy models,
i.e., star networks and chains in Section 3.2. Exact solutions for
the toy models illustrate the main claim of the paper and give
analytical insight into the shift from optimal high- to low-degree
control.
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3.1. Numerical Results
In Figure 1, simulation results on optimal vote control for scale-
free networks of sizeN = 1,000 constructed for a scaling exponent
α= 3 are visualized. Figure 1A compares the dependence of opti-
mal vote shares and average vote shares under random allocation
of control on the controller’s resource endowment n for various
predisposition strengths q. As one would expect, the larger the
resource endowment n and the lower q, the larger the share of
controlled votes. Panel Figure 1B gives a further illustration of
related experiments in which the optimal controller’s resource
endowment was fixed, but the magnitude of q systematically
varied. We again see that larger resource levels allow for tighter
control, but the effects of control decline strongly with q. One
notes that optimal placement of control can considerably improve
vote shares relative to random allocation (Figure 1C), but absolute
improvements due to optimization are very limited when either q
or n are large.Maximum gains achievable by optimization starting
from random allocations tend to be around 40–50% of the initial
vote share.

What are the best resource allocations? We proceed by inves-
tigating the dependence of optimal control strategies on the
strength of predispositions q.Figure 2 gives an illustration of some
first results for a small network of N = 100 nodes where control
was evolved for situations of low (panel A) and high (panel B)

predisposition strength for a controller, which can influence 10
nodes. In the figure, controlled nodes are indicated by red boxes
and the shading of nodes gives their average opinion state u for
the chosen control scheme. Prevailing dark colors of nodes make
it immediately obvious that the network can be strongly influ-
enced in the low predisposition regime visualized in Figure 2A
but largely resists control in the high predisposition regime in
Figure 2B in which light colors dominate.

For a more systematic investigation, we define the average
degree of a controlled node

kcontrolled =
∑

i piki∑
i pi

, (6)

where ki =
∑

j aij is the degree of node i. Similarly, we also
measure the standard deviation (SD)

σ2
k, controlled =

∑
i pi(ki − kcontrolled)

2∑
i pi

. (7)

of the distribution of controlled node degrees. To gain further
insights about the dependence of control on degree, we also esti-
mate likelihoods Pk,controlled of nodes to be controlled depending
on their degrees.

A B C

FIGURE 1 | (A) Dependence of the controlled share of votes X on the resource of the controller n. For each color, the lower curve gives the vote share for random
allocation of control and the upper curve vote shares for optimized allocations. (B) Dependence of optimized vote shares on the predisposition parameter q for
various control resource endowments n. (C) Optimization gain relative to random control allocation for the scenario shown in (B). The data are for networks
composed of N=1,000 nodes constructed for α= 3 and each data point represents an average over 50 randomly sampled network configurations. Error bars are
of the size of the lines/points.

A B

FIGURE 2 | Examples of optimized control for a network of N= 100 nodes and L=288 links for low q= 0.01 (panel A) and high q= 0.5 (panel B). The networks are
constructed via a configuration model with P(k)∝ k−α with α= 3. Red boxes indicate controlled nodes, circles indicate ordinary nodes. Interior colors give relative
control on a sliding scale from white (weakest control) to black (strongest control). The average opinion is ⟨s⟩=0.72 (panel A) and ⟨s⟩= 0.034 (panel B).
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The dependence of all three measures on q are plotted in
Figures 3A–C for various resource endowments n. As also seen in
the example above, the figure suggests the existence of two control
regimes. For small q, control is clearly focused on the highest
degree nodes. The smaller n, the larger the average degree of the
n highest degree nodes, and accordingly, we see relatively lower
average degrees of controlled nodes the larger n. In contrast, for
large q, control is clearly focused on low-degree nodes. In fact, as
we see in the plot of the dependence of SDs of degrees of controlled
nodes vs. the strengths of predispositions q, there is a sharp transi-
tion between the two control regimes, cf. Figure 3B. Starting from
low q up to some critical point in q, the largest degree nodes are
controlled in every instance, but control gradually includes more
and more low-degree nodes (see Figure 3C). Beyond this point,
control suddenly excludes the largest degree nodes and focuses on
a mixture of low-degree nodes before eventually becoming firmly
fixed on low-degree nodes for large q.

The low–high SD regime threshold depends on resource
endowments. To evaluate this dependence, we have measured q-
dependencies of ⟨σk,controlled⟩ for various resource endowments
n and determined critical points from the sharp transitions in
the respective ⟨σk,controlled⟩(q) plots. Results are illustrated in
Figure 4A, where we see that thresholds between the regimes
initially grow with n, then saturate, and decline.

We also investigated dependencies of thresholds on the struc-
ture of the social network to be controlled as quantified by the
degree exponent α. For this purpose, we constructed configura-
tion type models with fixed numbers of links for a range of α-
parameters and again estimated critical points from the respective
⟨σk ,controlled⟩(q) plots. Results are shown in Figure 4B, where we
see that more degree heterogeneous networks generally support a
larger high-degree control regime.

All of the experiments conducted above have been carried
out for networks with given degree heterogeneity, but without
higher order correlations such as clustering or assortativity, which
are typical for real-world networks (Newman, 2010). Because of
the observed strong dependence of optimal control on degree,
the impact of degree-mixing patterns on the optimal control
allocation appears of particular interest. To address this ques-
tion, we have constructed synthetic scale-free networks with dis-
assortative and assortative degree mixing patterns. Such net-
works can be generated by starting from a neutrally assorta-
tive network and then randomly picking two connected pairs
of nodes, ordering the nodes by degree, and rewiring to change
connections toward linking the pair of nodes with highest and
the pair with lowest degree (for increased assortativity) or re-
linking nodes with largest degree differences (for dis-assortative
mixing). Rewiring according to this scheme preserves the overall

A B C

FIGURE 3 | Dependence of optimal strategies for opinion control on the predisposition parameter q: (A) average degree of controlled nodes, (B) degree variance of
controlled nodes. (C) Dependence of the probability of a node to be controlled on degree for control optimized for different values of q for n= 10. The data are for
networks of N= 1,000 nodes with α= 3 and ⟨k⟩=3 and in (A,B), each data point represents an average over 50 samples.

A B

FIGURE 4 | Dependence of the critical predisposition strength at which optimal control switches from hub control to low-degree control on (A) the total resource
endowment of the controller n, (B) network heterogeneity for resource endowment n= 10 for the controller. The data are for networks of N= 1,000 with connectivity
⟨k⟩= 3 and error bars result from the discretization of q-values when constructing σk ,controlled(q ) plots.
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degree sequence and allows to tune degree mixing (Xulvi-Brunet
and Sokolov, 2005). To investigate the role of degree mixing on
control schemes, we have carried out rewiring to tune assor-
tativity until no further reconnection moves could be carried
out, resulting in networks with very strong dis-assortative and
assortative degree mixing with a=−0.37 and a= 0.40 measured
by Newman’s assortativity coefficient (Newman, 2003). Results
for optimal control allocations for such networks are shown in
Figure 5. It becomes apparent that assortativity has a strong
influence on optimal control: Whereas the regime of hub con-
trol is strongly reduced for assortative networks, it is consider-
ably extended for the case of dis-assortative degree mixing. As
we shall see below, for q> 0, nodes are the more difficult to
control, the larger their degree. Thus, in an assortatively mixed
network, hub nodes tend to be surrounded by nodes, which are
difficult to control, making it even more difficult to control the
hub node itself. The effect results in a much lowered threshold
for q at which periphery control becomes optimal. The con-
trary argument applies for disassortative networks. In this case,
hub nodes are surrounded by nodes that can be more easily

controlled, which, in turn, makes them easier to control even at
large q, resulting in an extension of the regime of optimal hub
control.

3.2. A Model of Star Networks and Chains
To understand changes in optimal control strategies depending on
predisposition strengths, we give an analytical argument for a star
network and analyze two control scenarios: control of strength one
focused at the central hub and control of strength one focused on
a single peripheral node, cf. Figures 6A,B, respectively. Note that
Masuda (2015) has also analyzed this toy network for the original
voter model with a passive controller, finding that single node
control should always be focused on the central hub in that case.
As an illustrative example to investigate how the effects of control
change with distance from a directly controlled node, we also
investigate control of an undirected chain by placing a controller
at one of the ends of the chain.

Our arguments below are based on applying equation (3) to the
star network. With some algebraic manipulation (see Appendix B
for a detailed derivation), for control of strengths p0 = 1 applied

A B

FIGURE 5 | Dependence of average controlled degree (A) and SD of controlled degrees (B) on the predisposition to resist for social networks of different
assortativity. The data are for networks of N=1,000 nodes with α= 3 and ⟨k⟩=3 and data points represents averages over 50 runs.

A B C

FIGURE 6 | Illustration of a star network with control targeted at a central hub (A) and control targeted at a periphery node (B) and dependence of the average
stationary vote shares for both scenarios on q (C) for a star network with one central hub and k= 15 spokes. Average probabilities of being in the controlled state are
labeled u0 for the hub node, u1 for uncontrolled periphery nodes, and u2 for a controlled periphery node.
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A B

FIGURE 7 | Illustration of a chain network with control targeted at node 0 at the left end (A) and dependence of the average stationary vote shares ui depending on
the distance i to the directly controlled node (B) for a chain of length 100 and q= 0.01 calculated based on equation (19).

to the central hub, we obtain u0 = (1− q)/(1+ kq(2− q)) and
u1 = (1− q)u0 and thus

Xcentral =
k(1 − q) + 1

k + 1
1 − q

1 + kq(2 − q) , (8)

where k is the number of spoke nodes. For the periphery con-
trolled scenario, similar calculations yield u1 = (1–p)u0, u0 = (1–
q)/(k–(1–q)2(k–1))u2 and u2 = (1–q)/(2–(1–q)2/(k–1–q)2(k–1))
resulting in

Xperiphery =
f + (1 − q)(k − 1)f + 1

k + 1
1 − q

2 − (1 − q)f , (9)

where
f =

1 − q
(1 − q)2 + kq(2 − q)

. (10)

Comparison ofXcentral(q) withXperiphery(q) reveals changes in the
optimal strategywhen q is increased, cf.Figure 6C, wherewe illus-
trate this scenario for k= 15 and observe that for low q hub control
is optimal whereas for large q periphery control proves supe-
rior. To analyze what control strategy performs better depend-
ing on q, we first note that Xcentral(q= 0)=Xperiphery(q= 0)= 1
and observe that ∂Xperiphery/∂q|q=0 = (1–2k–4k2)/(k+ 1) whereas
∂Xcentral/∂q|q=0 = (–1–4k–2k2)/(k+ 1), i.e., for k≥ 2 after starting
at the same point for q= 0 the effectiveness of central control
initially decays slower with q than the effectiveness of periph-
eral control. Thus, for small q, one has Xcentral >Xperiphery. As
for both control scenarios Xcentral(q= 1)>Xperiphery(q= 1)= 0,
similar analysis of slopes at q= 1 shows thatXcentral >Xperiphery for
q close to 1.

Instead of a not very instructive exact calculation of the critical
point qcrit at which optimal control switches, we limit the analysis
to the case of large k. Figure 6C suggests that qcrit ≈ 1/2 for large
k> 10 in star networks. In fact, expansion of equations (8) and (9)
in leading order in 1/k confirms thatXcentral >Xperiphery for q< 1/2
and Xcentral <Xperiphery for q> 1/2 in the limit of k→∞.

More importantly, calculations in this toy model illustrate why
hub controlweakens at large values of q.Wenote that for any q> 0,
nodes are the more difficult to control the larger their degree. In
fact, while this effect vanishes for q= 0, hub control also becomes
the more difficult, the larger q. However, nodes are also the more

difficult to (indirectly) control the farther away they are in terms
of network distance from the node directly influenced by the
controller. To analyze the latter effect, consider a linear chain of
length l, controlled by influence of strength one applied to either
end, cf. Figure 7A. Equation (3) applied to this situation then
reads

2u0 − (1 − q)u1 = (1 − q) (11)
· · · (12)

2ui − (1 − q)ui−1 − (1 − q)ui+1 = 0
· · · (13)

ul − (1 − q)ul−1 = 0.

To solve the above system of linear homogeneous difference
equations, we use the ansatz ui =Aλi for i= 1, . . ., n–1 and find
eigenvalues

λ1/2 =
1

1 − q (1 ± g), (14)

with g =
√

q(2 − q). General solutions are thus of the form
ui = Aλi

1 +Bλi
2. Matching with the boundary conditions for i= 0

and i= 1 gives two conditions to fix the values of the constants
A and B

2(A + B) − (1 − q)(Aλ1 + Bλ2) = 1 − q (15)

A(λl
1 + Bλl

2) − (1 − q)(Aλl−1
1 + Bλl−1

2 ) = 0. (16)

Solving for A and B one obtains

A = −Bλl−1
2

λl−1
1

g − 1
g + 1

(17)

and
B =

1 − q

1 +
(

1−g
1+g

)l+1 . (18)

We finally obtain

ui =
1

(1 − q)i−1
1

1 +
(

1−g
1+g

)l+1

(
(1 − g)l

(1 + g)l (1 + g)i + (1 − g)i

)
.

(19)
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We observe that for i< l, the second term in equation (19) is
always substantially larger than the first. Noting also that q< g(q)
for q∈ (0,1), it follows that ui is decreasing with i, i.e., the example
of the controlled chain network demonstrates that influence of
indirect control on a node decreases with the distance from that
node, cf. also Figure 7B.

We thus see two opposing effects of hub control. On the one
hand, hubs are themore difficult to control the larger their degree.
On the other hand, because a hub node has more neighbors than
an average node, control of hub nodes provides a controller with
closer access to other nodes in the network, and this improved
access can outweigh the enhanced difficulty of controlling high
degree nodes for low predisposition strengths. In contrast, in
high q settings, the decreased controllability of hub nodes out-
weighs the enhanced access to their respective neighbors that they
provide to the controller.

4. DISCUSSION

In this paper, we have investigated the impact of predispositions
to return to the uninfluenced state on opinion control in a vari-
ant of the voter model. Results have shown that predisposition
strength has a strong influence on optimal control strategies, such
that essentially two control regimes exist. For low predisposition
strength, optimal control is found to be focused on hub nodes,
whereas for large predisposition strength, optimal control should
be focused on low-degree nodes. In the latter situation, controllers
can only gain relatively little total influence over the system, but
strategic allocation can still result in improvements of control
gains of up to 40% relative to random allocation.

Through numerical simulations of the voting dynamics on
scale-free networks and analytical calculations on star networks,
we have established that both regimes tend to be separated by a
transition, with details of the transition depending on resource
endowments of the controller and the heterogeneity of the social
network. Our numerical results suggest that more heterogeneous
networks (i.e., scale-free networks with a smaller scaling exponent
α) support a larger regime of optimal hub control than more
homogeneous networks.

Our main finding, i.e., the existence of regimes in which opti-
mal control strategies should focus on low-degree nodes, differs
markedly from previous investigations of the original voter model
(Kuhlman et al., 2013; Yildiz et al., 2013; Masuda, 2015). A point
thatmay serve to illustrate the reduced effectiveness of hub control
in the present model is that the model can be mapped to the
conventional voter model with a passive opponent who influences
every voter on the social network. To account for the spontaneous
state reversion, which occurs with constant probability for each
node, in the mapped version of the standard voter model, such a
passive controller would have to have control strengths to nodes
proportional to their degree, i.e., exert a much stronger influence
on hub nodes than low-degree nodes (see Appendix C for details).
Thus, it is not surprising that a binary active controllermaywish to
focus on low-degree nodes. In this light, one might wonder why
hub control is optimal for any value of q. As our toy example of
a chain network has illustrated, indirectly controlling nodes that
do not have a direct connection from the controller comes at a

cost that grows with distance from the closest directly controlled
node. Thus, hub nodes can still be optimal because of their central
topological position in the network because of which average
distances from them to other nodes are lower than for low-degree
nodes, potentially outweighing the enhanced difficulty in gaining
control over them.

In the presented model, we have analyzed the case of binary
scenarios in which nodes can either be controlled or not, but
controllers cannot choose the strengths of control. An alternative
scenario could be an allocation scheme in which controllers can
distribute resource in such a way that some nodes are strongly
influenced and others only experience a weak effect. It is thus
possible that our choice of binary control could have affected the
results. One could imagine that even in the low-degree regime in
the binary model, optimal continuous schemes that allocate very
strong control to hubs could outperform evenly balanced control
that aims to influence many low-degree nodes. Investigations of
the continuous scenario represent an interesting avenue for future
work.

Another point worth emphasizing is that we have considered
undirected networks in this study. Results in the voter dynam-
ics may differ markedly on directed networks (Masuda, 2015).
Moreover, on directed networks, in- and out-degrees of nodes
might be uncorrelated such that out-degree hubs are not neces-
sarily in-degree hubs and vice versa. Difficulties in hub-control
as described above relate to the difficulty of node control with
growing in-degree, whereas benefits of node control result from
large out-degrees. One can thus expect a more nuanced picture
for directed networks in the presence of a predisposition to resist,
which should be worth studying in more detail in the future.

On a more speculative note, we remark that predispositions to
return to the uninfluenced state in the present model essentially
introduce a degree-dependent resistance of nodes to align with
the external control. A rewrite of equation (1) shows that a very
similar equation and essentially similar effects can be observed
when not introducing q as a probability to return to the opposed
state when in the influenced state, but as a probability to flip state
in any state. The latter phenomenon corresponds to noise, and
it will be of interest to carry out a more detailed comparison of
results for the voting dynamics in this situation with the results of
Lynn and Lee (2016) for the kinetic Ising model.
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APPENDIX A

Here, we provide a more detailed derivation of equation (3). We
start from equation (1), setting u̇i = 0 to obtain a stationarity
condition. One notes that the quadratic terms proportional to
products uiuj cancel out and after multiplication by Σi, we find

0 = (1 − q)

∑
j

ajiuj + (1 − ui)pi − ui
∑

j
aji

− qΣiui.

(A1)
Re-arranging terms and recalling Σi =

∑
j aji + pi yields

−(1 − q)pi = (1 − q)
∑

j
ajiuj − (1 − q)uipi

− (1 − q)ui
∑

j
aji − qui

∑
j

aji − qpiui (A2)

and thus

(1 − q)pi = uiΣi − (1 − q)
∑

j
ajiuj, (A3)

which is equation (3).

APPENDIX B

In this section, we provide some additional detail for the calcu-
lation of equilibrium shares for star networks with central and
peripheral control (cf. Section 3.2 and Figure 6 for a pictorial rep-
resentation of the corresponding networks).We start by analyzing
central control, for which equation (3) reads

(k + 1)u0 − (1 − q)ku1 = (1 − q) (A4)

u1 − (1 − q)u0 = 0. (A5)

From equation (A5), we find u1 = (1− q)u0 and inserting into
equation (A4) yields

u0((k + 1) − k(1 − q)2) = (1 − q). (A6)

We thus find the expression for u0 given in Section 3.2. We
further have

Xcentral =
1

k + 1
(u0 + ku1) (A7)

Xcentral =
u0(1 + k(1 − q))

k + 1
, (A8)

which results in equation (8) in Section 3.2 after inserting u0.
We proceed with details of the calculation to obtain the con-

trolled vote share for a periphery-controlled star. In this case,
equation (3) reads:

ku0 − (1 − q)(k − 1)u1 − (1 − q)u2 = 0 (A9)

u1 − (1 − q)u0 = 0 (A10)

2u2 − (1 − q)u0 = 1 − q. (A11)

We immediately see u1 = (1–q)u0. Inserting into equation
(A9) and solving for u2 gives the expression in Section 3.2
for u2, which can be written in more convenient form using
equation (10)

u2 =
1 − q

2 − (1 − q)f . (A12)

Finally, we have

Xperiphery =
1

k + 1
(u2 + fu2 + (k − 1)(1 − q)fu2), (A13)

which, after inserting u2, results in expression (9) in Section 3.2.

APPENDIX C

In this section, we provide a more detailed argument how the
voting model with predisposition can be mapped to the original
voter model in the presence of two opposing zealots, where the
passive zealot has a control strength, which is proportional to a
node’s degree. In the following, we shall label the active controller
as A and its control influence as pA

i (as opposed to just labeling
its control gain by pi in the rest of the paper), and label the
passive controller as B with control gain pB

i . We shall show that
our equation (1) is equivalent to equation (3) in Masuda (2015)
provided that the strength of the passive controller is proportional
to the influence exerted on an agent by the social network and
the active control, i.e., pB

i = γ(
∑

j aji + pA
i ). We first note that

we can scale time in our equation (1) to obtain an equivalent
condition

u̇i = (1 − q)/Σi

(1 − ui)(
∑

j
ajiuj + pi) − ui

∑
j

aji(1 − uj)


− q/(1 − q)ui, (A14)

We can now rewrite equation (A14) as

u̇i =

∑
j aij + pA

i + pB
i∑

j aji + pA
i

×

(
(1 − ui)

∑
j ajiuj + pi∑

j aji + pA
i + pB

i
− ui

∑
j aji(1 − uj)∑

j aji + pA
i + pB

i

)

− q
1 − q

∑
j aij + pA

i + pB
i∑

j aij + pA
i + pB

i
ui, (A15)

and thus

u̇i = (1 + γ)

(
(1 − ui)

∑
j ajiuj + pi∑

j aji + pA
i + pB

i
− ui

∑
j aji(1 − uj)∑

j aji + pA
i + pB

i

)

− q(1 + γ)
(1 − q)γ

pB
i∑

j aij + pA
i + pB

i
ui, (A16)
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Again rescaling time by a factor (1+ γ), we find

u̇i =

(
(1 − ui)

∑
j ajiuj + pi∑

j aji + pA
i + pB

i

−ui

∑
j aji(1 − uj) + q/(γ(1 − q))pB

i∑
j aji + pA

i + pB
i

)
, (A17)

which corresponds to Masuda’s equation (3) provided we choose
γ = q/(1–q). We thus see that the model with predisposition of
strength q to resist influence is formally equivalent to the origi-
nal controlled voter model with a passive controller who exerts
a given degree-dependent control of strength pB

i = q/(1 −
q)
(∑

j aji + pA
i

)
on all nodes. Aswe consider binary control with

pA
i ∈ {0, 1}, pB

i would have to be essentially proportional to
degree for large degrees.
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