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Radiation therapy typically begins with the acquisition of a CT scan of the patient for
planning, followed by multiple days where radiation is delivered according to the plan.
This requires that the patient be reproducibly positioned (set up) on the radiation therapy
device (linear accelerator) such that the radiation beams pass through the target. Modern
linear accelerators provide cone-beam computed tomography (CBCT) imaging, but this
does not provide sufficient contrast to discriminate many abdominal soft-tissue targets,
and therefore patient setup is often done by aligning bony anatomy or implanted fiducials.
Ultrasound (US) can be used to both assist with patient setup and to provide real-time
monitoring of soft-tissue targets. However, one challenge is that the ultrasound probe
contact pressure can deform the target area and cause discrepancies with the treatment
plan. Another challenge is that radiation therapists typically do not have ultrasound
experience and therefore cannot easily find the target in the US image. We propose
cooperative control strategies to address both the challenges. First, we use cooperative
control with virtual fixtures (VFs) to enable acquisition of a planning CT that includes
the soft-tissue deformation. Then, for the patient setup during the treatment sessions,
we propose to use real-time US image feedback to dynamically update the VFs; this
co-manipulation strategy provides haptic cues that guide the therapist to correctly place
the US probe. A phantom study is performed to demonstrate that the co-manipulation
strategy enables inexperienced operators to quickly and accurately place the probe on
a phantom to reproduce a desired reference image. This is a necessary step for patient
setup and, by reproducing the reference image, creates soft-tissue deformations that are
consistent with the treatment plan, thereby enabling real-timemonitoring during treatment
delivery.

Keywords: cooperative control, virtual fixtures, human-in-the-loop image servoing, robot-assisted radiotherapy,
ultrasound-guided radiotherapy

1. INTRODUCTION

Image-guided radiation therapy (IGRT) is commonly used as a treatment for cancer. The goal
is to direct sufficient radiation to kill the tumor cells, without harming the healthy surrounding
tissue. IGRT begins with simulation, where a CT image of the patient is acquired and used to plan
the radiation delivery, followed by multiple treatment days where the goal is to set up (position)
the patient so that the tumor is in the path of the radiation beams. Modern linear accelerators
(LINACs) typically include cone-beam computed tomography (CBCT) to assist with patient setup.
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But, CBCT does not provide sufficient contrast to discriminate
many abdominal soft-tissue targets, and therefore patient setup
is often done by aligning bony anatomy or implanted fiducials.
For example, Trakul et al. (2014) report on the use of surgically
implanted fiducialmarkers for the treatment of pancreatic tumors,
which yield a margin of 2–5mm for patient setup. In addition,
CBCT images cannot be acquired during radiation delivery and
thus cannot monitor the target during treatment. To attempt to
overcome these deficiencies, several commercial products and
research systems have been developed to incorporate ultrasound
(US) imaging in the radiation therapy process. The commercial
systems include BATCAM (Best NOMOS, PA, USA), SonArray
(ZMED, now Varian Medical Systems, CA, USA), and Clarity
(Resonant Medical, now Elekta AB, Stockholm, Sweden). BAT-
CAM and SonArray use US imaging only for patient setup,
whereas the Clarity System addresses both patient setup and real-
time target monitoring but is suitable only for the prostate. In the
research domain, US imaging was used by Troccaz et al. (1993) to
measure the actual position of the prostate just before irradiation,
and by Sawada et al. (2004) to demonstrate real-time tumor track-
ing for respiratory-gated radiation treatment in phantoms. Harris
et al. (2010) performed “speckle tracking” to measure in vivo
liver displacement in the presence of respiratory motion, and Bell
et al. (2012) applied the technique with a higher acquisition rate
afforded by a 2D matrix array probe. Other potential tracking
algorithms are benchmarked by De Luca et al. (2015).

Two telerobotic systems for US monitoring of radiotherapy
were developed by Schlosser et al. (2010, 2011) at StanfordUniver-
sity, with the latter being commercialized by SoniTrack Systems
(Palo Alto, CA, USA). Another telerobotic research system for
US monitoring of radiotherapy was developed at Lubeck Uni-
versity by Kuhlemann (2013) and has been tested on the hearts
of healthy human subjects. The two Stanford University systems
and the system at Lubeck University are detailed in the studies
by Western et al. (2015) and Ammann (2012). However, none
of these telerobotic systems are intended to assist with patient
setup. Furthermore, the systems that do assist with patient setup
(such as Clarity) require radiation therapists to be trained in
ultrasonography, which is generally not the case. We believe that
our system is the first robotic system that usesUS imaging for both
patient setup and treatment monitoring, is applicable to multiple
abdominal organs, and can be used by radiation therapists with
little or no ultrasound experience.

US imaging was previously used in robot control by several
groups to automate the US examination process with an external
camera (Meng and Liu, 2015) or to autonomously move the US
probe with US visual servoing. Janvier et al. (2014) used a robotic
system to autonomously reconstruct a 3DUS image of the arteries
from the iliac in the lower abdomen down to the popliteal behind
the knee; Pahl and Supriyanto (2015) used linear robotic stages
to enable autonomous transabdominal ultrasonography of the
cervix; Vitrani et al. (2005, 2007) implemented an US image-
based visual servoing algorithm for autonomous guidance of an
instrument during intracardiac surgery; Mebarki et al. (2008,
2010) utilized the concept of US image moments for autonomous
visual servoing; Novotny et al. (2007) presented a real-time
3D US image-based visual servoing method to guide a surgical
instrument to a tracked target location; Abolmaesumi et al.

(2000) investigated the feasibility of visual servoing for motion in
the plane of the US probe in one dimension; Nadeau and Krupa
developed US image-based visual servoing techniques, which
use image intensities (Nadeau and Krupa, 2013) and moments
based on image features (Nadeau and Krupa, 2010); Sauvée et al.
(2008) introduced visual servoing of instrument motion based
on US images through non-linear model predictive control; and
Stoll et al. (2006) used a line detection algorithm and a passive
instrument marker to provide real-time 3D US-based visual
servoing of surgical instruments. Our approach differs from those
systems because it implements a cooperative control scheme that
fuses the US image acquired by an expert, the US probe position,
and the contact force on the patient to enable reproducible probe
placement – therefore reproducible soft-tissue deformation –with
respect to the target organ.

Because we use US for both patient setup and treatment mon-
itoring, our approach focuses on creating consistent soft-tissue
deformation, due to placement of the US probe, at all stages of
the radiotherapy process. We first require an ultrasonographer to
place the robot-mounted probe during planning. The robot then
holds a CT-compatiblemodel probe at the same position and force
during acquisition of the CT image that is used for radiotherapy
planning. On the treatment days, it is necessary for the radiation
therapist to place the probe on the patient so that it reproduces the
US image recorded by the sonographer on the planning day, which
therefore also reproduces the soft-tissue deformation caused by
the probe. But, radiation therapists typically are not experienced
ultrasonographers, so we developed a co-manipulation strategy
where the robot shares control of the ultrasound probe with the
radiation therapist and provides haptic cues (via virtual fixtures)
to help the therapist to correctly place the US probe. This paper
presents a co-manipulation strategy that incorporates real-time
US imaging in the control loop to update the virtual fixtures
(VFs), which represent an advance over our prior work (Sen et al.,
2013), where the VFs were based on the reference position and
orientation and were not updated. A phantom study is performed
to demonstrate that this strategy enables an operator to quickly
and accurately reproduce a reference US image. As the phantom
does not exhibit realistic soft-tissue deformation, an illustration
of this phenomenon can be found in the in vivo canine study
reported in Bell et al. (2014). Much of the material presented in
this paper is based on the dissertation by Sen (2016).

2. MATERIALS AND METHODS

This section presents the developed robot system, followed by a
description of the use of cooperative control within the proposed
robot-assisted radiotherapy workflow. The contribution of this
paper to the subject of cooperative control is represented by the
dynamic VFs updated by ultrasound feedback, which we describe
as a human-in-the-loop image servoing strategy.

2.1. Robot System
The robot system is shown inFigure 1. It is based on theUR5 robot
(Universal Robots, Odense, Denmark), with a wrist-mounted
Nano25 force/torque sensor (ATI Industrial Automation, Apex,
NC, USA) and a 3D convex ultrasound probe (Ultrasonix, now
Analogic, Richmond, BC, Canada). Accurate positioning of the
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FIGURE 1 | Robot system and experimental setup.

US probe is achieved by tracking an optical marker body attached
to the US probe. The robot software contains an interface to the
optical tracking system (Polaris, Northern Digital Inc., Waterloo,
ON, Canada). In our clinical environment, the interface to the
ceiling-mounted tracking system is provided by a research version
of the Clarity System, as described for the in vivo canine experi-
ments reported in Sen et al. (2015). For the phantom experiments
reported here, we use a direct connection to a tracking system
mounted on a tripod.

2.2. Cooperative Control in the
Radiotherapy Workflow
Figure 2 presents an overview of our proposed ultrasound-guided
robot-assisted radiotherapy workflow. The workflow is separated
into a planning day, where the planning images of the patient
are acquired, and multiple (fractionated) treatment days, where
the radiation therapy is delivered. A more detailed discussion of
this workflow can be found in Bell et al. (2014) and Sen et al.
(2015). In this section, we focus on the use of cooperative control
within this workflow. This requires the following three forms of
cooperative control: (1) unconstrained, (2) with static VFs, and
(3) with dynamic VFs updated by US image feedback.

Unconstrained cooperative control is the free space manipula-
tion of theUSprobe. In thismode, the operator holds theUSprobe
and applies a force toward an intended direction of motion. Static
VFs impose motion constraints; in our implementation, they are
in the form of linear and torsional springs, which provide haptic
feedback toward a reference US probe position and orientation, as
described in Sen et al. (2013). The fixtures are called static because
their parameters do not change over time. The dynamic VFs are
created by updating the parameters of the static VFs, based on
real-time feedback from the acquired US images. This mode is
used to guide the operator to find a previously found US image.
Implementation details of the unconstrained cooperative control
and the VFs are presented in the next section.

The planning day of the workflow requires the presence of an
expert ultrasonographer. On this day, unconstrained cooperative
control, which is labeled as “1” in Figure 2, is used when the
ultrasonographer tries to localize the tumor area with the US

1. Record reference US image

2. Record probe position, force 

Planning DeliveryPosition patient 

on couch

Substitute US probe

with model plastic probe

Place US probe

with robot

Place US probe with

robot for imaging
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based on bony anatomy

Treatment 

planning

Acquire CT simulation 

image with deformed tissue

Adjust patient couch 

based on US image

Deliver radiation plan 

while monitoring 
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Place model probe to 

reference position
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2

32

FIGURE 2 | Proposed robotic-assisted ultrasound-guided IGRT
workflow, showing use of (1) unconstrained cooperative control,
(2) static virtual fixtures, and (3) dynamic virtual fixtures. Box (1) is
performed by expert sonographers, and boxes (2) and (3) are performed by
therapists. The dashed arrows represent data transferred from the planning
day to the delivery day.

probe. Once the US image that contains the tumor is found, the
ultrasonographer records the 3D US volume image that contains
the tumor location (the reference US image), the contact force
between the US probe and the patient (the reference force), and
the position and orientation of the US probe with respect to the
room frame (the goal position). Because the US probe creates
artifacts in the CT images, before the planning CT scan, the
ultrasonographer or the therapist retracts the US probe from
the patient skin, replaces it with a geometrically identical plastic
model probe, and places it back to the goal position to recreate
the tissue deformation caused by the real probe. In this step, the
operator utilizes cooperative control with static virtual fixtures
to place the model US probe to the goal position, labeled as
“2” in the planning day workflow. This procedure assumes that
there is negligible motion of the patient during the brief time
between the removal of the US probe and the placement of the
model probe. Note that the VFs are required because ultrasound
image feedback is not available with the model (fake) probe. This
step can be skipped if the CT scanner provides effective artifact
reduction methods, or if the artifact is not expected to interfere
with treatment planning.

On the treatment days, for the beam delivery to be accurate,
the placement of the US probe should create the same soft-tissue
deformation as in the treatment plan. We assume that in order to
achieve consistent deformation, the therapist needs to reproduce
the reference US image; however, therapists are not trained for
US imaging. Therefore, we propose using static VFs and dynamic
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VFs updated by US image feedback, labeled as “2” and “3” in
the treatment day workflow, to provide the necessary guidance.
Specifically, the static VFs are used to guide the therapist to a
reasonable starting point (i.e., the probe location, in room coordi-
nates, recorded during planning); then, once US image feedback
is available, the system begins to dynamically update the VFs, as
described in Section 2.4.

2.3. Cooperative Control Formulation
Themathematical formulation of unconstrained cooperative con-
trol starts with converting the force sensor measurements into
velocity commands via multiplication by admittance gains using
equation (1):

[−→vF−→wF

]
=


G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · G6

 ·
[−→
fF−→τF

]
(1)

where −→vF and −→wF are the linear and angular velocity vectors in
the force sensor frame, G1 . . . 6 are the elements of the diagonal
admittance gain matrix, and

−→
fF and −→τF are the linear and tor-

sional force measurements in the force sensor frame.We use non-
linear admittance gains to enable fine control for smaller applied
forces, while also allowing faster motions for higher applied forces
(Kazanzides et al., 1992; Sen et al., 2013). Next, we convert the
velocity inputs into the robot frame through the series of trans-
formations shown in Figure 3, in which FR represents the robot
frame, FPr represents the US probe tip frame (the frame origin is
near the center of the convex probe surface but does not need to be
precisely located, as discussed in Section 4), and FF represents the
force sensor frame.Wedefine a rotation from frameFA to FB asRA

B .
Thus, in Figure 3, RPr

R and RF
Pr represent 3× 3 rotation matrices

from FPr to FR and from FF to FPr, respectively. RPr
R can be found

using the forward kinematics of the robot. RF
Pr can be found based

on the mounting of the US probe to the force sensor. Using the
coordinate frame transformations in Figure 3, the velocity can be
expressed in the robot frame as:[−→vR−→wR

]
=

[
RPr
R · RF

Pr 03×3
03×3 RPr

R · RF
Pr

]
·
[−→vF−→wF

]
(2)

In equation (2), −→vF and −→wF are multiplied by a 6× 6 transfor-
mation matrix formed by the multiplication of the rotation matri-
ces RPr

R and RF
Pr on the diagonal. The resulting velocity vectors in

the robot frame are denoted by −→vR and −→wR.
Finally, the velocity command in the robot frame is converted

into angular robot joint velocities using:

−̇→
θ = J−1(

−→
θ ) ·

[−→vR−→wR

]
(3)

where J−1 is the inverse Jacobian matrix that is a function of
the robot joint angles

−→
θ and transforms robot frame velocities

into joint velocities. The output of equation (3) is the desired
joint angular velocity vector,

−̇→
θ , that is provided to the low-level

FIGURE 3 | Unconstrained cooperative control coordinate frames.

controller. The dimension of
−→
θ and

−̇→
θ may vary depending on

the number of motorized joints in the robotic system.
The VF forces and torques,

−→
fvf and

−→τvf, are computed based
on the standard spring model (i.e., Hooke’s Law) given by
equation (4):

[−→
fvf−→τvf

]
=


kx 0 · · · 0
0 ky · · · 0
...

...
. . .

...
0 0 · · · kθz

 ·


∆x
∆y
0

∆θx
∆θy
∆θz

 (4)

where ∆x and ∆y correspond to the linear position differences
and ∆θx, ∆θy, and ∆θz correspond to angular orientation dif-
ferences of the US probe from the goal position and orientation.
We do not apply a virtual spring along the Z direction (probe
axis) because motion in that direction is either unconstrained
during cooperative control or under force control during the final
autonomous motion presented in Section 2.4. The diagonal ele-
ments, ki, correspond to the stiffnesses of the linear and torsional
virtual springs. The directions of the VF forces are always toward
the origin of the virtual springs.

In the last step, the VF forces and torques are integrated with
the unconstrained cooperative control scheme by setting

−→
fF and−→τF in equation (1) as below:[−→

fF−→τF

]
=

[−→
fop−→τop

]
+

[−→
fvf−→τvf

]
(5)

where the VF forces are added to the forces applied by the
operator, now called

−→
fop and

−→τop.

2.4. Human-in-the-Loop Image
Servoing Strategy
We refer to the dynamic VFs as a human-in-the-loop image
servoing co-manipulation strategy because the technical approach
requires the same methods as image (or visual) servoing but
is implemented within a cooperative control framework. This
strategy, shown in Figure 4, assists a radiation therapist, who
might not have received ultrasound training, tomanipulate theUS
probe in order to achieve the reference US image. The underlying
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FIGURE 4 | Block diagram of ultrasound-guided co-manipulation strategy.

paradigm is cooperative control, where the robot holds the US
probe, but moves it in response to forces exerted on the probe
by the therapist. The next control layer provides haptic guidance,
within the cooperative control strategy, by creating VFs in the
form of linear and torsional springs that guide the therapist to the
desired position and orientation, as described in Sen et al. (2013).
However, in this application, the correct position and orientation
are not precisely known in advance. Therefore, the novelty of our
approach is in the higher-level software that dynamically updates
the VFs based on real-time US image feedback. This represents
an advance over our prior work (Sen et al., 2013), where the VFs
were based on the reference position and orientation and were not
updated.

The above strategy is implemented in a software architecture
that consists of five main components. The first component acti-
vates the wobbler motor inside the US probe. We collect 11
US image slices with a focus depth of 9 cm and a wobbler step
angle of 0.732°. The acquired 2D B-Mode US images are sent
to the second software component, ImFusion Suite (ImFusion,
Munich, Germany), which is a commercial medical imaging soft-
ware that provides visualization and processing of medical data
sets. It reconstructs the received 2D US images to form a 3D
US volume based on the wobbler angle information of each 2D
US image (Karamalis et al., 2009). ImFusion registers the live
3D US volume to the reference US volume that was recorded on
the planning day, using a GPU-optimized mono-modal intensity-
based image registration technique with the similarity measure
set to Normalized Cross Correlation (NCC), the reference US
volume set as a mask, and the optimization algorithm set to
BOBYQA (Powell, 2009) for bound-constrained via quadratic
models. The resulting rigid transformation is sent to the third
component, Robot Control, which combines this transforma-
tion with the optical tracking and force measurements (from the
fourth and fifth components) to generate the desired US probe
motion commands. The mean update rate of the image feed-
back is approximately 2.5Hz. Although the registration method

supports all 6 degrees of freedom, for the experiments reported
here, we enable only the 3 translation parameters. This is con-
sistent with current practice, where many LINAC couches can
only correct for translation errors, and therefore therapists rely
on existing patient positioning methods to reproduce orienta-
tion. Additionally, the small size of the 3D US volume makes
it more difficult to accurately estimate the orientation com-
ponent; if orientation adjustment is needed, a larger 3D vol-
ume should be acquired, at the expense of a slower image
update rate.

In order to dynamically update the VFs with US image feed-
back, the image registration output undergoes a series of trans-
formations between the coordinate frames shown in Figure 5, in
which FR is the robot frame, FPr is the US probe tip frame, Fus
is the frame attached at the US probe wobbler motor center of
rotation, FRef is the reference US image frame, and Freg is the live
US image coordinate frame. As with rotations, we define T A

B to
be a transformation (a rotation and a translation) from coordinate
frame FA to FB. Therefore, to express a tumor location in the robot
coordinates, FR, the transformation between the US image and
the robot coordinates, T us

R , is required, and it is calculated using
equation (6):

T us
R = T Pr

R · T us
Pr (6)

In equation (6), T Pr
R is computed from the forward kinematics

of the robot. For a 3DUSprobe,T us
Pr is a calibrationmatrix that can

be obtained from the probe data sheet. The other transformations
in Figure 5 are considered below.

A more detailed flowchart of the co-manipulation strategy is
given in Figure 6. The process uses the planning day US probe
position as an initial estimate for the goal position (i.e., the origin
of the VFs). On each treatment day, the therapist first brings
the US probe close to the target organ area using cooperative
control with virtual fixtures. Once US images are acquired, the
system begins the image registration process to determine T reg

Ref
(see Figure 5) and, based on the results of the registration, may
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FIGURE 5 | US image feedback coordinate frames. In order to use the US image registration output in the robot control, the transformation between the
registered image frame, Freg, and the robot frame, FR, should be found (red dashed lines).

FIGURE 6 | Treatment day US probe placement process.

update the stiffness and/or origin of the virtual springs or make
small autonomous motions. This behavior is determined by three
different NCC thresholds,NCCl,NCCm, andNCCh. In our exper-
iments, these were heuristically set to 0.65, 0.7, and 0.8, respec-
tively. If the calculated NCC is at least NCCl, the origin of the
virtual springs is changed based on the translation component of
the registration, T reg

Ref , between the current 3D US image and the

reference 3D US image, after applying the following coordinate
transformations to convert the translation to the robot coordinate
system (see Figure 5):

T reg
R = T us

R · T Ref
us · T reg

Ref (7)

Here, T us
R is given by equation (6), and T Ref

us is the transforma-
tion matrix of the reference US volume obtained on the planning
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day. To avoid an abrupt change to the VF, the translation is first
scaled. In our implementation, we used a scale factor of 0.02
(i.e., 2%). Given the relatively slow registration update rate, this
scale factor produced a smooth, gradual motion of the virtual
spring origin. In addition, the spring stiffnesses are updated as
follows:

uki =
{

knomi for NCC ≤ NCCl
2 × knomi × NCC for NCCl < NCC ≤ NCCm

}
(8)

where knomi and uki are the nominal and updated stiffness values
for the ith axis. Essentially, the spring stiffness is increased in
proportion to NCC, which provides haptic feedback of the confi-
dence in the registration. The spring stiffnesses are not changed
if NCC is greater than NCCm because that is the threshold for
the autonomous motion. Specifically, if the calculated NCC is
betweenNCCm andNCCh, the system displays a dialog box on the
GUI to prompt the therapist to let go of theUS probe and the robot
starts to move autonomously to the desired probe position. At
this point, since the system has only one force sensor, it is crucial
that the therapist releases the US probe because the system begins
to compare the measured force to the planning day reference
force, Fref ; for clinical use, a more reliable transition between
cooperative control and autonomous motion would be needed.
Finally, the autonomous motion stops when NCC becomes larger
than NCCh, implying that the live US volume is close enough to
the reference US volume.

3. EXPERIMENTS

We performed six experiments with a single user (graduate stu-
dent with no US training, but with significant experience with
the robotic system) to validate the cooperative control strategy
with dynamic VFs in a simulated radiotherapy workflow. The
experimental setup, shown in Figure 1, consists of a 6-DOF UR5
robot, an Ultrasonix m4DC7-3/40 Microconvex 4D US probe,
an Ultrasonix Sonix CEP US machine, an optical marker frame
attached to the US probe, a plastic abdomen phantom that is an
US examination training model ABDFAN (Kyoto Kagaku, Japan),
an optical marker frame attached to the phantom (only used for
data analysis), and a NDI Polaris optical tracker.

The experimental procedure and the data collected during the
experiment are illustrated in Figure 7. The experimental pro-
cedure consists of a planning workflow, corresponding to the
planning day US probe placement process, and a treatment work-
flow, corresponding to the treatment day US probe placement
process. The net result is the computed couch shift, which is
compared to the ground truth shift measured by the optical
tracker.

The planning workflow starts with positioning the abdomen
phantom in the workspace of the UR5. At this point, the optical
marker position attached to the phantom is recorded in optical
tracker coordinates as the reference phantom position, ref −→P

Opt
Ph .

The US probe is then positioned to find the tumor, and a 2D
B-mode US image and two 3D US images (with different sweep
angles) are acquired. The 2D B-mode image will later be used in
the treatment workflow for the operator’s visual comparison with

the live US image. The larger 3DUS volume is reconstructed from
41 2D B-mode US image slices separated by 0.732° increments. It
contains the entire tumor, thus enabling accurate identification of
the tumor centroid, ref −→P

us
tumor; this will later be used to compute

the couch shift in the treatment workflow. The smaller reference
3D US volume, reconstructed from 11 2D B-mode US image
slices separated by 0.732° angular increments, is registered to the
real-time US image feedback during the treatment workflow. The
number of slices used in the small and the large US volumes
are determined experimentally, taking into account the US image
feedback update rate and the wobbler angle range of the US probe.
Next, the US probe optical marker position and orientation in the
optical tracker coordinates is recorded as a transformationmatrix,
refT Pro

Opt , and is used as the initial estimate for the VF centers in
the treatment workflow. Finally, the phantom is removed from the
workspace.

In the treatment workflow, the optical tracker stays at the
same position as in the planning workflow to emulate the com-
mon room coordinate system between the planning and treat-
ment rooms, each of which has an optical tracker mounted on
the ceiling and calibrated to a defined isocenter. The workflow
starts with the coarse placement of the phantom near the plan-
ning workflow location, and the position of the optical marker
attached to the phantom is recorded as −→P

Opt
Ph . The difference of

the phantom position from the planning workflow emulates the
patient setup error before each treatment session during radio-
therapy. In the experiments, the initial patient setup error was
measured as 47.6± 26.2mm in translation and 5.7 6± 5.2° in
orientation. After that, the operator tries to find the reference
2D B-Mode US image, utilizing dynamic VFs that are updated
whenever the NCC between the registered US volume and the
reference US volume exceeds the NCCl threshold. The system
switches to autonomousmotionwhen theNCC exceeds theNCCm
threshold, and the probe placement process ends when the NCC
exceeds the high threshold, NCCh, as described in Section 2.4.
At this point, a large US volume scan of the target area, with
the same scanning parameters as in the planning workflow, is
acquired. The tumor centroid is localized in this US volume, and
its position is recorded in US image coordinates as −→P

us
tumor; this is

used to compute the couch shift, as described in the next section,
which brings the tumor to the isocenter (i.e., in this experiment,
the tumor position at which the reference image was acquired).
The treatment workflow is repeated for a total of six different
trials.

4. DATA ANALYSIS

The coordinate systems used in the evaluation of the patient setup
accuracy are shown in Figure 8, where FOpt is the optical tracker,
FPh is the abdomen phantom optical marker, FPr is the US probe
tip, FPro is the US probe optical marker, and Fus is the US image
coordinate frame. Note that the US probe “tip” is a point near the
center of the convex probe surface but does not correspond to a
specific physical feature; it provides a reference for probe position
and orientation measurements with respect to the patient, as in
equation (13) below. Based on the recorded data, the ground
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FIGURE 7 | Experiment workflow for testing US image-based patient setup.

truth for the couch shift is determined by tracking the abdomen
phantom position in the planning workflow and in the treatment
workflow and taking their difference as in equation (9):

−→
dtrue =ref −→P Opt

Ph − −→P Opt
Ph (9)

where −→P
Opt
Ph is the translation component of the transformation

matrix T Ph
Opt.

Then, we calculate a couch shift in optical tracker coordinates
based on the position differences of the tumor centroids between
the reference US volume and the final US volume using:

−→
d = T Pro

Opt · T Pr
Pro · T us

Pr ·
(
ref−→P us

tumor − −→P us
tumor

)
(10)

where the transformations, T Pro
Opt , T

Pr
Pro , and T us

Pr are shown in
Figure 8, and they are the transformations between the optical
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FIGURE 8 | Experimental setup transformation map. During the
experiments, the camera frame, FOpt, and the transformations T Pr

Pro
and T us

Pr

remained fixed, and the transformations T Pro
Opt and T Ph

Opt were moving.

tracker and the probe optical marker, the probe optical marker
and the probe tip, and the probe tip and the US image coordinates,
respectively. For a 3D US probe, R us

Pr (the rotation component of
T us
Pr ) changes at everywobbler scan angle by a pure rotation around

the lateral direction of the US probe, as given in equation (11):

R(θw) =

 cos(θw) 0 sin(θw)
0 1 0

−sin(θw) 0 cos(θw)

 (11)

where θw corresponds to the wobbler motor angle.
The transformation between theUSprobe and the probe optical

marker, T Pr
Pro , is determined by the active echo US probe calibra-

tionmethod described inGuo et al. (2014). Lastly,T Pro
Opt is provided

by the optical tracker.
Next, the patient setup error is found by subtracting the couch

shift vectors calculated from equation (9) and (10), and taking
the magnitude of the resulting position difference vector as in
equation (12):

error =
∥∥∥−→
dtrue −

−→
d

∥∥∥ (12)

Additionally, because the phantom has not physically changed,
the user’s US probe placement should ideally be the same as
the reference probe placement. Thus, we can assess the subject’s
probe placement performance by computing the transformation
between the US probe tip and the phantom optical marker, T Ph

Pr ,
and comparing it to the true (reference) US probe tip transforma-
tion,

(
T Ph
Pr

)
true

, as follows:

Tdiff = T Pr
Ph ·

(
T Pr
Ph

)−1

true
(13)

FIGURE 9 | Reference US image used in the experiments.

Because the US probe tip is defined as a point near the cen-
ter of the convex probe surface, intuitive measures of the probe
position and orientation differences are calculated from Tdiff by
taking the norm of the translation part and by finding the angu-
lar rotation from the axis angle representation of the rotation
component.

5. RESULTS

We performed the planning workflow to locate a tumor in the
phantom liver; Figure 9 shows the 2D B-mode image that was
saved as the reference image. Figure 10 shows the middle slice
of the final US volumes acquired during the treatment workflow
for experiments 1 through 6. These US image slices are the result
of the operator’s attempt to reproduce the reference 2D B-Mode
US image shown in Figure 9. Additionally, the US image-based
patient setup errors for the experiments are presented inTable 1. It
is seen that the overall mean patient setup error of the experiments
is less than 1.8mm. Finally, the US probe placement position and
orientation differences are presented in Table 2.

6. DISCUSSION

The performed experiments evaluate the patient setup accuracy
of the proposed clinical workflow, which uses US imaging for
improved visualization of soft-tissue targets. The results show that
the final US volumes acquired at the end of the treatment work-
flow can be used to accurately place the tumor at the planning day
position, which corresponds to the isocenter of the radiotherapy
beams. Specifically, the mean US image-based patient setup error,
utilizing dynamic virtual fixtures updated by US image feedback,
is 1.8mm. This phantom study does not include the effects of
breathing or other physiologic motion, so clinical results are likely
to be less accurate.

Possible sources of error in these experiments includeUS probe
calibration (Guo et al., 2014), which is on the order of 1mm, and
manual detection of the tumor centroids. Furthermore, determin-
ing couch shift based on the difference in centroids is reasonable
for the mostly spherical tumors present in the phantom, but
a more sophisticated method is likely to be needed in clinical
practice, where tumor shapes may be more complex.
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Şen et al. Ultrasound Guidance for Radiotherapy

A B

C D

E F

FIGURE 10 | Final US images found after treatment workflow. US images (A–F) correspond to experiments 1–6, which are all similar to the reference US image
shown in Figure 9.

TABLE 1 | US image-based 3D positional patient setup errors for
experiments 1 through 6.

Experiment number Error (mm)

1 1.60
2 1.47
3 1.65
4 2.16
5 2.03
6 1.88
Overall (mean±SD) 1.79±0.27

An interesting observation during the experiments is that
the proposed co-manipulation strategy truly became a part-
nership between human and machine. While the machine
updated the virtual fixtures to guide the human toward the
goal, we also observed cases where the intensity-based registra-
tion algorithm got stuck in a local minimum. In those cases,
the human could easily detect a poor feature match between
the current and reference US images and, by pushing against the

TABLE 2 | US probe placement position and orientation difference.

Experiment Position (mm) Orientation (deg)

1 5.1 0.8
2 4.3 1.6
3 14.7 0.8
4 14.9 1.0
5 6.4 2.1
6 6.4 4.5
Overall (mean±SD) 8.64±4.86 1.79±1.45

The last row shows the mean, µ, and the SD, σ.

virtual springs, was able to dislodge the system from the local
minimum.

Lastly, it is seen in Table 2 that the US probe placement differ-
ence is 8.64± 4.86mm in translation and 1.79± 1.45° in rotation.
The rotation difference is lower than the translation difference
because the phantom is designed to lay flat on a table and therefore
removing and replacing it (to emulate patient setup) does not
cause significant orientation changes. The translation and rotation
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differences may be clinically important, depending on the margin
that was assumed around the US probe during planning of the
treatment beams. For example, if the treatment plan includes a
beam that passes within 5mm of the US probe, it is necessary for
the position difference to be less than 5mm, and thus theUS probe
should be moved closer to the reference position and orientation
to avoid irradiating the probe. In this case, after applying the
couch shift, there would be a second phase of probe positioning
where the therapist moves the probe toward the reference pose
and attempts to achieve an acceptable compromise between repro-
ducing the reference US image and placing the US probe within
the margins specified during treatment planning. This could be
implemented with yet another variation of cooperative control;
specifically, the probe motion could be constrained by a line VF
between the current position and the recorded reference position.
Note that it is possible to command the robot to move the US
probe to the reference position and orientation, which would
achieve a measured placement difference of 0 (of course, there
would still be a small placement difference due to calibration
errors). The key point is that there may exist a trade-off between
reproducing the reference US image and bringing the probe back
to the reference position and orientation. This trade-off must be
resolved by the therapist based on the treatment requirements,
including the positioning of beams with respect to the US probe.

7. CONCLUSION

This paper presented a novel cooperative control strategy with US
image feedback for the integration of US imaging in the planning
and radiation treatment phases of image-guided radiation therapy
for soft-tissue targets, especially in the upper abdomen. The novel
control algorithmprovides real-time guidance to locate soft-tissue
targets for radiotherapy, enabling users with minimal US experi-
ence to find an US image that was previously found by an expert.
The algorithm is intended to provide accurate and repeatable
patient setup on each radiotherapy treatment day. The guidance
to the users is in the form of haptic feedback, utilizing VFs whose
parameters are tuned by real-time US image feedback during the
placement of the US probe. After the US probe placement, the US
imaging is used to improve the patient setup by visualizing the

soft-tissue target, rather than by relying on the bony anatomy that
is visible in CBCT images.

The robot control algorithm was validated by performing
experiments with a plastic abdomen phantom. Our results show
that the US image-based patient setup error utilizing dynamic
virtual fixtures updated by US image feedback remains less than
2.2mm, which is promising as an alternative to current clinical
practice with bony anatomy-based patient setup. The results are
important because the robotic guidance with US image feedback
can eliminate the need for clinicians with US expertise during
treatment. Our future work includes performing a multiuser
study to compare the performance of the proposed method with
dynamic VFs to a baseline case of free-hand probe placement.
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