AUTHOR=Joachimczak MichaƂ , Suzuki Reiji , Arita Takaya TITLE=Improving Evolvability of Morphologies and Controllers of Developmental Soft-Bodied Robots with Novelty Search JOURNAL=Frontiers in Robotics and AI VOLUME=2 YEAR=2015 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2015.00033 DOI=10.3389/frobt.2015.00033 ISSN=2296-9144 ABSTRACT=

Novelty search is an evolutionary search algorithm based on the superficially contradictory idea that abandoning goal-focused fitness function altogether can lead to the discovery of higher fitness solutions. In the course of our work, we have created a biologically inspired artificial development system with the purpose of automatically designing complex morphologies and controllers of multicellular, soft-bodied robots. Our goal is to harness the creative potential of in silico evolution, so that it can provide us with novel and efficient designs that are free of any preconceived notions a human designer would have. In order to do so, we strive to allow for the evolution of arbitrary morphologies. Using a fitness-driven search algorithm, the system has been shown to be capable of evolving complex multicellular solutions consisting of hundreds of cells that can walk, run, and swim; yet, the large space of possible designs makes the search expensive and prone to getting stuck in local minima. In this work, we investigate how a developmental approach to the evolution of robotic designs benefits from abandoning objective fitness function. We discover that novelty search produced significantly better performing solutions. We then discuss the key factors of the success in terms of the phenotypic representation for the novelty search, the deceptive landscape for co-designing morphology/brain, and the complex development-based phenotypic encoding.