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Unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) collaboratively
play important roles in crowd tracking for applications such as border patrol and crowd
surveillance. Dynamic data-driven application systems (DDDAS) paradigm has been devel-
oped for these applications to take advantage of real-time monitoring data. In the DDDAS
paradigm, one crucial step in crowd surveillance is crowd dynamics modeling, which is
based on multi-resolution crowd observation data collected from both UAVs and UGVs.
Data collected from UAVs capture global crowd motion but have low resolution while
those from UGVs have high resolution information of local crowd motion. This paper pro-
poses an information–aggregation approach for crowd dynamics modeling by incorporating
multi-resolution data, where a grid-based method is developed to model crowd motion
with UAVs’ low-resolution global perception, and an autoregressive model is employed to
model individuals’ motion based on UGVs’ detailed perception. A simulation experiment is
provided to illustrate and demonstrate the effectiveness of the proposed approach.

Keywords: multi-resolution data, crowd tracking, DDDAS, grid-based, UAVs and UGVs, surveillance

INTRODUCTION
Crowd surveillance and control is one of the most important
tasks for border patrol activities. It involves multiple coordinat-
ing modules, such as sensory data collection and processing, target
detection and classification,object movement tracking,and vehicle
path planning and coordination (Khaleghi et al., 2013). To ensure
the effectiveness of crowd surveillance, crowd dynamics models
need to be developed as the basis for tracking crowd movement
and devising various crowd control strategies. With advancement
of robotics and sensing technology, traditional stationery sur-
veillance equipments, such as ground sensor and light tower, are
gradually upgraded into mobile surveillance equipments, such as
unmanned aerial vehicles (UAVs) and unmanned ground vehi-
cles (UGVs), for better mobility, flexibility, and larger search-
ing/monitoring area. Such hardware advancements also make real-
time dynamic data (e.g., sensory data of UAVs and UGVs) readily
available and create great potentials to improve crowd dynamics
modeling and subsequent model-based decision-making.

To take advantage of the real-time dynamic monitoring data
available in modern crowd surveillance systems, dynamic data-
driven application systems (DDDAS) paradigm has been devel-
oped recently to improve data acquisition, processing, and mod-
eling. The essential concept of DDDAS paradigm is the ability
to dynamically incorporate data into application systems and in
reverse, the ability to dynamically steer measurement processes
(Darema, 2004). DDDAS has been successfully applied to vari-
ous application areas, such as supply chain management (Celik
et al., 2010), wildfire prediction (Denham et al., 2012; Rodriguez-
Aseretto et al., 2013), traffic management (Lin et al., 2012), fluid-
thermal system modeling (Knight et al., 2006), electricity dispatch
control (Celik et al., 2013), and robotics (McCune et al., 2013; Peng
et al., 2014). In crowd surveillance and control, DDDAS has also

demonstrated its great potential in improving system modeling
and management (Khaleghi et al., 2013; Wang et al., 2013).

In DDDAS-based crowd surveillance and control via UAVs and
UGVs, a key system performance enhancer is the multi-resolution
data collected from UAVs and UGVs. Direct combination of such
data is obviously problematic and integrating them in a coher-
ent manner is an important yet challenging task. Specifically, to
obtain a global view of the crowd, UAVs need to fly at a high alti-
tude, capturing low-resolution data containing information such
as shape and location of the whole crowd. At a high altitude, it
is extremely difficult, if not possible, to detect individuals from
aerial images, because the individuals are shown as vague pixels
in the images. To capture the detailed information of individuals
in a crowd, UGVs can be deployed close to the crowd. However,
UGVs may not observe all the individuals in the crowd due to
their limited detection range. For further illustration, an exem-
plary scenario from a top-down view is given in Figure 1A. In the
figure, individuals (including people and two vehicles) are tracked
by one UAV and three UGVs. The UAVs detection range is illus-
trated as a solid circle. UGVs are illustrated as solid squares, and
their detection ranges are illustrated as sector-shaped areas. Note
that these UGVs only detect a small portion of individuals. A low-
resolution data collected by UAVs has a broad coverage of the
crowd, but does not contain detailed information, as shown in
Figure 1B. Such low-resolution images cannot be utilized alone
to accurately model crowd dynamics. The high-resolution data
collected by UGVs, as shown in Figure 1C, contain detailed infor-
mation of individuals, but cannot be directly used for modeling
the dynamics of the entire crowd due to UGVs’ limited coverage
range of the crowd. As shown in Figure 1D, it will be desirable to
collect high-resolution data from UGVs to compensate the limita-
tion of using low-resolution data alone. To achieve this objective,
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Yuan et al. DDDAS-based crowd dynamics modeling

FIGURE 1 | Crowd tracking using UAVs and UGVs. (A) White UAV symbol
represents UAV’s position, black circle is UAV’s detection range. Red small
squares represent UGVs and the red solid sectors represent their detection

range. (B) Black cloud-like pixels represent the UAVs’ detection image.
(C) Black dots represent the individuals detected by UGVs. (D) Dots and
cloud-like pixels represent aggregated information from both UAV and UGVs.

a DDDAS-based information–aggregation approach is proposed
to utilize multi-resolution data for the improvement of the crowd
dynamics modeling.

Extensive methods have been developed for crowd dynamics
modeling. Zhan et al. (2008) and Jacques et al. (2010) presented
comprehensive reviews of methods developed for crowd analy-
sis and dynamics modeling. These methods can be categorized
into two groups. The first group focuses on modeling dynam-
ics of individuals in the crowd and relies on effective detection
of individuals from image data. Rittscher et al. (2005) studied
the individual dynamics with autoregressive (AR) models and
investigated the short time occlusion between individuals. Dif-
ferent filtering techniques have been also considered for modeling
dynamics of individuals, such as Kalman filter (Wu and Nevatia,
2007), extended Kalman filter (Masoud and Papanikolopoulos,
2001), unscented Kalman filter (Wan and Van der Merwe, 2000),
and particle filter (Thiran et al., 2004).

Despite these recent advances in tracking individuals in crowds,
effective detection can still be extremely challenging in some sce-
narios. For example, individuals in high-density crowd often suffer
from severe occlusions (Dridi, 2014). In addition, if there is large
distance between the crowd and the camera, the obtained images
may not have enough resolution to distinguish individuals. Both of
these factors will increase the difficulty in detecting individuals and
modeling the crowd dynamics. To consider this scenario, another
method of modeling crowd dynamic is to treat the crowd as a single
object and study its motion. Boghossian and Velastin (1999) stud-
ied the crowd tracking by adopting a non-parametric approach
and assumed continuity in motion of the crowd as a whole. A
procedure for estimating the paths and directions of the crowd

motion was proposed. The procedure utilized a block matching
algorithm to determine the motion, represented by optical flow
method (Horn and Schunck, 1981), of each pixel between con-
secutive video frames. However, the matching algorithm based on
pixel intensity value was very sensitive to image noise. To capture
the interaction forces in the crowd and the effects of environment
on crowd motion, social force model was considered by Mehran
et al. (2009) to identify abnormal motions in the crowd. In this
method, optical flow was calculated for the estimation of social
force.

For crowd dynamics modeling with observations from
UAVs and/or UGVs, existing approaches have the following
limitations:

i. as the observations collected from UAVs are with low res-
olution, it will be difficult to detect individuals. Thus, it is
unrealistic for the existing modeling methods to assume that
the detected individual locations are available inputs,

ii. approaches in modeling the whole crowd motion require opti-
cal flow method as an initial step. Since optical flow method is
sensitive to noise (Srinivasan and Chellappa, 1999), it will not
be effective to work on the low resolution image,

iii. although there was a method (Moseley et al., 2009) that
allowed cooperative tracking using UAVs and UGVs, the
method was proposed for a different scenario where only one
moving target was considered and all the UAVs and the UGVs
could observe the target with enough resolution. It is not
applicable to the crowd dynamics modeling considered in this
paper, since UAVs and UGVs have monitoring observations
with different resolutions.
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Yuan et al. DDDAS-based crowd dynamics modeling

To overcome these limitations, this paper proposes a DDDAS-
based information–aggregation approach to modeling crowd
dynamics with UAVs and UGVs observations. Specifically, the
following contributions are made in this paper.

• A crowd dynamics modeling algorithm is proposed based on
occupancy grid for low-resolution data obtained by UAVs. This
approach aims to take advantage of UAVs’ global perception and
model crowd motion.

• An information–aggregation framework is proposed to fuse
information from both UAVs and UGVs and improve the
performance of crowd dynamics modeling.

This paper is organized as follows: Section “Proposed Method”
explains the proposed approach. Section “Grid-Based Coarse
Crowd-Dynamics Modeling from UAVs’ Data”discusses the crowd
dynamics modeling algorithm, which first discretizes the two
dimensional space where crowd resides into equally sized grid
cells, and then identifies the crowd dynamics through estimat-
ing the probability of cell state occupancy at next time stamp
based on its previous state and corresponding neighboring cells.
Section “Regression-Based Individuals-Dynamics Modeling from
UGVs’ Data”presents the information–aggregation algorithm that
improves modeling performance of UAVs based on aggregated
UGVs’ prediction outcome. A numerical simulation experiment
is discussed in Section “Numerical Simulation Study.” Section
“Conclusion” draws the conclusion of the paper.

PROPOSED METHOD
As mentioned in Section “Introduction,” UAVs collect low-
resolution data with a broad monitoring range and UGVs col-
lect high-resolution data with a small monitoring range. To take
advantages of both UAVs’ broad perception and UGVs’ detailed
perception, two different crowd-dynamic modeling approaches
are introduced. The information–aggregation method is then
presented to aggregate UAVs’ and UGVs’ prediction.

GRID-BASED COARSE CROWD-DYNAMICS MODELING FROM UAVs’
DATA
The crowd dynamics model characterizes the movement of crowd
and can be used for motion prediction. Based on observations
of the crowd location up to the current time stamp, motion pre-
diction can be made for the location and the speed of a crowd
at a subsequent time stamp. To implement the motion predic-
tion, the crowd dynamics needs to be identified first. One possible
way to identify the crowd dynamics is to identify the dynamics
of all the detected individuals. However, a crowd may be shown
in a UAV image as a group of pixels with different shade, as
shown in Figure 1B. It is difficult to distinguish individuals from
such images. Furthermore, modeling a crowd based on all the
individuals will result in significant computational load and may
delay UAVs’response in critical decision-making. Another possible
method to identify the crowd dynamics is to model the dynamics
of the crowd center. With the UAVs’ low-resolution data, it will be
straightforward to model the dynamics of crowd centers to avoid
demanding computations. By using this method, however, crowd
merging or crowd splitting will not be detected due to information
loss.

Considering the limitations of the above two methods, the grid-
based crowd-dynamics modeling is proposed as a compromising
method. Although UAVs cannot provide detailed information of
individuals, a global perception of crowds, such as their shape and
moving tendency, can be obtained. To utilize such information to
improve dynamics modeling, a grid-based crowd representation
method of crowd location information is firstly introduced. This
research focuses on a two dimensional case and it can be easily
extended into three dimension.

Grid-based crowd state representation
To represent the crowd location, an occupancy grid is created to
divide the two-dimensional plane into equal-sized square cells,
with each cell representing a region with an edge of length l. There
are two and only two possible states for each cell, namely “occu-
pied” state and “empty” state. A cell is considered “occupied” when
the number of individuals in it exceeds a certain threshold λ. As a
result, the cell will become a dense region in the UAV images such
that the computer vision algorithm will conclude a high probabil-
ity of cell occupancy. This computer-vision-based cell occupancy
determination has been extensively studied (Gaszczak et al., 2011;
Khaleghi et al., 2013), and will be assumed as given in this paper.
Figure 2 illustrates a grid with an occupancy threshold λ= 5.
Figure 2A shows the individual locations at time t − τ, t, and
t + τ with a grid in the background. In this paper, the adopted
time unit is τ, which can be set to different values to generically
represent a variety of situations. Specifically,τ is restricted by hard-
ware capability, camera frame time, and crowd speed. Because the
value of τ does not affect the modeling, it denotes all the pos-
sible values of time unit in this paper. The arrows indicate the
moving directions of small subgroups of individuals. From time
t − τ to t+ τ, individuals at the northeast corner move toward
northeast and individuals at southeast corner merge to form a
dense region. Only the dense regions in such UAV images can be

FIGURE 2 | Illustration of crowd motion and UAV detection outcome.
(A) Black dots: individuals in simulation case; dashed circle: small groups of
individuals; arrow: motion trend of individuals; (B) filled square: occupied
cells detected by UAVs.
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Yuan et al. DDDAS-based crowd dynamics modeling

detected and identified as “occupied” cells, as illustrated by dark
cells in Figure 2B.

Grid-based crowd state representation provides a flexible way
to model the crowd dynamics. By changing the cells length l, the
model can be adjusted adaptively according to the UAVs’ resolu-
tion, altitude, computation capability, and required response time.
This representation can be used for modeling crowd dynamics.
Specifically, the following notations are introduced and illustrated
in Figure 3. C l,m denotes a cell at the lth row and the mth col-
umn; C l,m(t ) denotes the state of cell C l,m at time t ; C l,m(t )= 1
or 0, representing “occupied” or “empty,” respectively. A neigh-
borhood of C l,m is a block with three (3) rows and three (3)
columns of cells. A neighborhood centered at C l,m is denoted as
Sl,m, where l= 2, . . . , L− 1, m= 2, . . . , M–1, L and M are the total
number of rows and columns of the grid, respectively. The state
of a neighborhood Sl,m at time t is determined by that of the cells
in the neighborhood. It can be modeled with a random vector,
Sl,m(t )= [C l–1,m–1(t ), C l–1,m(t ), C l–1,m+1(t ), C l,m–1(t ), C l,m(t ),
C l,m+1(t ), C l+1,m–1(t ), C l+1,m(t ), C l+1,m+1(t )]T. According to
the definition of Sl,m(t ), it is a vector with nine elements, and
each element can be 0 or 1. For representation simplification, let
Πi represent the value of Sl,m(t ). There are totally 29 possible state
vectors of Sl,m(t ), which correspond to 29 different types of neigh-
borhood patterns. Denote Πi as neighborhood pattern i, where
i= 1, 2, . . ., 29. Note that Πi is the ith possible vector of Sl,m(t ).
Thus, Πi equals to the binary translation of i+ 1. For example, in
Figure 3, S3,4(t )= [0 1 1 0 0 0 0 0 0]T

=Π193. Here, the binary
translation of [0 1 1 0 0 0 0 0 0]T is 192; so, it is the 193th possible
vector, which is denoted by Π193. By using neighborhood pattern,
the value of neighborhood state Sl,m(t ) can be easily represented.

Grid-based crowd dynamic modeling
To predict the positions of an individual, the most common
method is to model its trajectory. However, in the case of crowd
tracking with grid-based representation, it is challenging to model
the dynamics of the occupied cells by forming their trajectories.
This is because the trajectories cannot be uniquely determined,
as illustrated in Figure 4. Figure 4A shows the observations of
two occupied cells at time t and t+ τ. Figure 4A shows that
C3,3(t )= 1, C3,4(t )= 1; Figure 4C shows that C3,3(t+ τ)= 0 and
C3,4(t+ τ)= 0 at time t+ τ, C4,3(t+ τ)= 1, and C4,4(t+ τ)= 1.

FIGURE 3 | Example neighborhood and neighborhood vector. Solid
squares: a neighborhood in a grid map. Filled squares: occupied cells
detected by UAVs.

With these observations, however, there still exists ambiguity on
how the two cells move from time t to t+ τ. Figures 4B,C shows
two possible trajectories, named as “Case 1” and “Case 2”, respec-
tively, where arrows indicate motion directions. It is therefore
uncertain to determine which case corresponds to the true dynam-
ics of the crowd. This uncertainty is also known as data association
issue (Rasmussen and Hager, 2001).

To address the data association issue, this paper proposes to
model the cells’ neighborhood state, instead of modeling the cells’
trajectories. When the crowd follows a certain pattern of move-
ment, C l,m(t ) depends on the neighborhood state of previous
time stamp, Sl,m(t − τ). As shown in Figure 5, the crowd is split-
ting, C3,3(t 1+ τ)=C2,4(t 1+ 2τ)= 1, and it is easy to find that
the corresponding neighborhood at previous time stamp is the
same: S3,3(t 1)= S2,4(t 1+ τ)=Π5= [0, 0, 0, 0, 0, 0, 1, 0, 0] T.
In other words, under this movement pattern in Figure 5, if
Sl,m(t )=Π5, the corresponding cell has a higher probability to
be occupied at next time stamp. The relationship between neigh-
borhood pattern and a cell’s occupancy provides the basis for the
proposed prediction method. In this example S1,5(t 1+ 2τ)=Π5;
According to the same neighborhood pattern in history data,

FIGURE 4 | Uncertainty of cells’ trajectories. (A) Occupancy state at
time t. Filled squares represent occupied cells detected by UAVs. (B) and
(C) are two different possible movements. (D) Occupancy state at time
t+1.

FIGURE 5 | Illustration of neighborhood states and cell occupancy.
Solid squares: neighborhoods at each time stamp. Filled squares: occupied
cells detected by UAVs.
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Yuan et al. DDDAS-based crowd dynamics modeling

C3,3(t 1+ τ)=1| S3,3(t 1)=Π5; C2,4(t 1+ 2τ)=1|S2,4(t 1+ τ)=Π5.
The prediction can be made as C1,5(t 1+ 3τ)= 1. With the
same prediction process, C8,5(t 1+ 2τ) can also be predicted as
occupied.

As discussed above, the determination of cell occupancy state
depends on the neighborhood pattern at the previous time stamp.
In general, it is assumed that cell occupancy state depends on
the neighborhood pattern at previous time stamp. Then, the cell’s
occupancy probability is:

Pr
{

Cl,m(t + τ) = 1|Sl,m(t ) = Πi} , (1)

where τ denotes the prediction interval. As illustrated by Figure 5,
when the crowd follows a certain pattern of movement, the prob-
ability of cells’ occupancy only depends on the neighborhood
pattern Πi and prediction interval τ, which is further illustrated by:

Pr
{

Cl1,m1(t1 + τ) = 1| Sl1,m1(t1) = Πi}

= Pr
{

Cl2,m2(t2 + τ) = 1| Sl2,m2(t2) = Πi} . (2)

Eq. (2) shows that for any cell at any time stamp, if a given
neighborhood and prediction interval τ are identical, the proba-
bility of a cell’s occupancy becomes equivalent. So the probability
of cell’s occupancy can be simplified as:

Pr
{

Cl,m(t + τ) = 1| Sl,m(t ) = Πi} = Pτ,Πi , (3)

where Pτ,Πi denotes the probability of a cell’s occupancy for pre-
diction interval τ and a neighborhood pattern Πi. In history data,
there are lots of neighborhoods having the same neighborhood
pattern Πi. For such neighborhoods, the corresponding cells have
the same probability of occupancy at τ times later. Considering
each cell’s occupancy as a Bernoulli trial with the same success
probability Pτ,Πi , the total number of occupied cells follows a
binomial distribution.

The process of estimating Pτ,Πi can be considered as match-
ing neighborhoods with historical data. As shown in Figure 6,
given the neighborhood pattern Π30= [0, 0, 0, 0, 1, 1, 1, 0, 1],
this neighborhood pattern Π30 is matched among historical data.
Every time the pattern Π30 appears, a Bernoulli trail is produced.
The corresponding cell’s occupancy depends on the probability
Pτ,Πi . Denote N (Πi) as the total number of appearances of Πi in
the historical data. As shown in Figure 6, there are two Bernoulli
trails appeared before t 3, i.e., N (Π30)= 2. Denote Z(τ |Πi) the
total number of successful trails in the historical data. Noticed
that a successful trail refers to the corresponding cell to be occu-
pied at τ times later. As shown in Figure 6, there is only one
successful trail at t 2, so Z(τ |Πi)= 1. Z(τ |Πi) follows a bino-
mial distribution with n=N (Πi), and p = Pτ,Πi , i.e., Z (τ|Πi) ∼

Binomial(N(Πi), Pτ,Πi ). Thus, Pτ,Πi can be estimated as:

P̂τ,Πi =

{
Z (τ|Πi)
N (Πi)

, N (Πi) 6= 0

0.5, N (Πi) = 0
(4)

When the data is limited and pattern Πi never appears, i.e.,
N (Πi)= 0, no history knowledge is available for the correspond-
ing neighborhood pattern. Under this situation, the corresponding

FIGURE 6 | Illustration of Bernoulli trials of neighborhood matching.
Solid squares: neighborhoods with the same neighborhood pattern. Filled
squares: occupied cells detected by UAVs. Empty squares: unoccupied
cells detected by UAVs. Dashed squares: corresponding cells associated
with the neighborhoods. Squares with a question mark: unknown cells
which need prediction.

cell’s occupancy probability is considered as 0.5. Based on this
estimation, the prediction of cell’s occupancy can be derived as:

P̂A
l,m(t + τ) = Pr

{
Cl,m(t + τ) = 1|Sl,m(t ) = Πi

}
= P̂τ,Πi , (5)

where the superscript “A” in P̂A
l,m(t + τ) denotes the prediction

based on UAVs’ data and grid-based model. It needs to be distin-
guished from P̂G

l,m(t + τ), which will be introduced in the next
section.

REGRESSION-BASED INDIVIDUALS-DYNAMICS MODELING FROM
UGVs’ DATA
As aforementioned, UGVs can detect individuals in a crowd and
model their dynamics, due to their proximity to the crowd. In
this paper, AR model (Zaidi and Mark, 2011) is adopted for the
modeling purpose. Compared to other modeling approaches, AR
model is suitable for the scenarios where individuals’ locations are
directly observed with ignorable errors. Under this condition, the
model assumes a linear relationship between the individual’s loca-
tions at two consecutive time stamps. Denoting the state of the ith
individual detected by UGVs at time t as a vector Xi(t )= [xi(t ) yi

(t ) vi,x(t ) vi,y(t )]T, where xi(t ) and yi(t ) represent the 2D location
of the individual and vi,x(t ) and vi,y(t ) are the speed in x- and y-
directions, respectively, a lag-1 AR is specified as:

X i(t + 1) = ϕi(t )X i(t )+ Bf (t )f i(t )+ Bu(t )ui(t )+ εi(t ), (6)

where ϕi(t − 1) is the time-dependent AR parameter represent-
ing individual’s changing dynamics (e.g., acceleration/deceleration
and making turns). Vectors f i(t ) and ui(t ) represent the exogenous

www.frontiersin.org April 2015 | Volume 2 | Article 8 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Sensor_Fusion_and_Machine_Perception/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yuan et al. DDDAS-based crowd dynamics modeling

inputs from environment and UGV/UAVs, respectively. Matrix
Bf(t ) and Bu(t ) correspond to the time-dependent effect of these
inputs on the individual’s dynamics. These matrices quantify
the individual’s reaction to obstacles or UAV/UGVs. Vector εi(t )
represents the noise on the state at time t and it is assumed
εi(t ) ~ N (0, σ2).

As discussed above, the time unit is set as τ. Then the AR model
is rewritten as:

X i(t + τ) = ϕi(t )X i(t )+ Bf (t )f i(t )+ Bu(t )ui(t )+ εi(t ). (7)

The AR model can be estimated through maximum likeli-
hood estimation. Based on the estimated coefficients ϕ̂i(t −
1), B̂f(t ), and B̂u(t ), the one-step state prediction of individual
i can be calculated as:

X̂ i(t + τ) = ϕ̂i(t )X̂ i(t )+ B̂f (t )f i(t )+ B̂u(t )ui(t ). (8)

The prediction outcome provides detailed locations of individ-
uals in a crowd. This detailed information may compensate the
limitation of using low-resolution information from UAV images,
based on the proposed information aggregation algorithm.

INFORMATION AGGREGATION
The individual dynamics identified from the estimated AR model
based on UGVs’ observations may generate prediction outcome
of cell occupancy. The general idea of the transformation is to cal-
culate the number of individuals in a given cell C l,m predicted by
UGVs. The prediction outcome is calculated as:

P̂G
l,m(t + τ) =

{
1, if

∑NG
j=1 Il,m(

[
x̂j(t + τ), ŷj(t + τ)

]T
) > λ

0, otherwise
(9)

where the vector
[
x̂j(t + τ), ŷj(t + τ)

]T
represents the predicted

locations of the jth individual among all N G individuals tracked
by UGVs. I l,m([x, y]T) is an indicator function defined as:

Il,m([x , y]T) =

{
1, if [x , y]T ∈ Rl,m

0, otherwise
(10)

where Rl,m represents the range of the cell C l,m. It indicates
whether an individual at point [x,y]T is within the range of

cell C l,m;
∑NG

j=1 Il,m(
[
x̂j(t + τ), ŷj(t + τ)

]T
) counts the number of

individuals with predicted location inside the cell C l,m. When
this value exceeds a threshold value λ, the cell is predicted as
“occupied.”

To combine the information collected from both UAVs and
UGVs, the predicted occupancy state from UGVs is interpreted
as a probability quantity and denoted as P̂S

l,m(t + τ). Thus the
combined probability of cell C l,m being occupied is expressed as:

P̂S
l,m(t + τ) = Wl,mP̂A

l,m(t + τ)+ (1−Wl,m)P̂G
l,m(t + τ), (11)

where W l,m is a weighing coefficient to balance the UGVs’ and
UAVs’ prediction on the final prediction. A large value will be

assigned to W l,m if UAVs’ prediction is assumed to have high
accuracy. Otherwise, W l,m will be set as a small value to reduce
effect of UAVs’ prediction on the final prediction. Cell occupancy
can thus be determined as: Cl,m(t + τ) = 1 if P̂S

l,m(t + τ) > 0.5,
and Cl,m(t + τ) = 0, otherwise.

NUMERICAL SIMULATION STUDY
A numerical simulation study is conducted to illustrate and
demonstrate the effectiveness of the proposed approach. In the
simulation study, a crowd of 50 individuals with changing dynam-
ics is generated. The motion of the 50 individuals lasts for 15 time
units. The time unit τ is set to 1 in this simulation. To represent
complex crowd motions observed in reality, the individuals are
simulated with several different motion patterns. These patterns
are illustrated in Figure 7, where all 50 individuals (denoted as
black dots) move toward the east from time stamps 1–4. There are
two UGVs in the scene and their curves in these panels represent
the detection range of two UGVs. In the numeric study, the UGVs’
trajectory is determined by a motion planning module based on
A* algorithm (Khaleghi et al., 2013). Between time stamps 5 and
6, two subgroups of individuals leave the majority of the crowd.
One subgroup moves toward the northeast direction and the other
subgroup moves toward the southeast direction. From time stamp
7 to time stamp 15, the subgroup in the northeast corner of the
crowd continues moving toward the east. The subgroup in the
southeast corner of the crowd merges and forms a dense region.
Before merging, this subgroup has low density and UAVs fail to
detect it.

To generate these motion patterns, a state space model is used
for all the individuals in the crowd. The state space model is
specified as:

X (t + 1) = A(t )X (t )+W (t ) and Y (t ) = CX (t ), (12)

where X (t ) = [X T
1 (t ), X T

2 (t ), . . . , X T
50(t )]

T
is a stack of the state

vectors of 50 individuals. The time unit and prediction interval τ

are set to one. Matrix A(t ) is the state transition matrix and W(t )
represents the state noise at time t. Matrix C is the measurement
matrix that transforms the state vector to the actual observations
of individual positions. In the simulation, it is assumed that there
is no measurement error associated with the observation Y(t ).
Matrix A(t ) links the state at time t with that at time t. Therefore,
it represents the individual’s own dynamics and also the poten-
tial interactions with other individuals. For example, when A(t ) is
a diagonal matrix, no interaction exists among individuals. This
will lead to a gradual scattering of individuals and eventually a
disappearance of the crowd shape. To prevent this, a non-zero
off-diagonal element is added to matrix A(t ). One example is:

A(t ) = 1N×N ⊗A0+ I4N×4N , with A0 =


0 0 N−1 0
0 0 0 N−1

0 0 0 0
0 0 0 0

 ,

(13)
where matrix 1N × N is an N by N matrix with every element equal
to 1. N is the number of simulated individuals and it equals to 50
in this case. The symbol ⊗ represents Kronecker product. Matrix
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Yuan et al. DDDAS-based crowd dynamics modeling

FIGURE 7 | Simulated motion patterns. Dots: individuals in simulation case study. Arrows: crowd moving directions. Dashed sectors: UGVs’ detection ranges.

I4N × 4N is a diagonal matrix with dimension 4N× 4N. The matrix
A0 adjusts the individual’s speed by assigning the average speed of
all individuals to each one of them. For illustration, consider an
example with N= 2, the product A(t )X(t ) in Eq. (12) becomes:

A(t )X (t ) =



1 0 N−1 0 0 0 N−1 0
0 1 0 N−1 0 0 0 N−1

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 N−1 0 1 0 N−1 0
0 0 0 N−1 0 1 0 N−1

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (14)

It shows that the speed in x- and y- directions of each individual
in the crowd shares the same component, i.e., average speed of all
individuals, apart from noise terms in W(t ). The same matrix A(t )
has been adopted in Gning et al. (2011) to model crowd dynam-
ics. Eq. (13) corresponds to the time stamps 1–4. Between time
stamps 5 and 15, since subgroups of individuals leave the whole
crowd, separate matrices Asub(t ) of size N sub in Eq. (13) is used.
In this case study, both subgroups have the same N sub= 10. The
change of speed of these subgroups is achieved by altering the x-
and y-direction speed component of state vectors of individuals.
Assuming that the observed values are simply the 2D locations of
each individual, the matrix C is given by:

C =


C 0 02×4 · · · 02×4

02×4 C 0 · · · 02×4
...

...
. . .

...
02×4 02×4 · · · C 0

 , where

C 0 =

[
1 0 0 0
0 1 0 0

]
and 02×4 =

[
0 0 0 0
0 0 0 0

]
. (15)

C matrix represents that the x- and y-locations are observed for
individuals detected by UGVs.

In the simulation,one UAV and two UGVs collaboratively mon-
itor the crowd motion. The UAV is assumed to observe all 50
individuals in the crowd and each UGV observes a small subgroup
of individuals. Observations from the UAV have low resolution
and only dense regions are captured. The captured dense regions
form the shaded area, as shown in Figure 8. The location of each

individual within the detection range of UGVs is observed and
represents high-resolution information.

Based on collected observations, the crowd motion prediction
is achieved with the proposed grid-based prediction and informa-
tion aggregation algorithm. In the experiment, the cell length l is
set to 10, and the occupancy threshold λ is set to 5.

In this paper, to balance the computational load and prediction
accuracy, the most recent 10 observations are utilized for UGVs’
prediction. Same settings are considered in the simulation study.
To predict individual’s motion based on UGVs’ simulated obser-
vation, the following AR1 model is fitted recursively by using the
most recent 10 observations.

X i(t + 1) = ϕi(t )X i(t )+ εi(t ). (16)

The one-step predicted locations are combined with UAVs
motion prediction outcomes.

The performance of the dynamics modeling approach is
quantified with coverage percentage ρ(t), defined as:

ρ(t ) =
1

N

∑N

i=1
Ip([xi(t ), yi(t )]) (17)

where N is the total number of individuals (i.e., 50 in the study),
x i(t ) and y i(t ) are the 2D location of the ith individual at time
t. Here I p is defined previously in Eq. (10). Indicator function
I P([x(t ), y(t )]T) outputs 1 if the individual lies within the pre-
dicted region Rp(t ). To demonstrate the advantage of integrating
both high- and low-resolution information, the proposed method
is compared with prediction outcome based solely on UAVs. The
coverage percentages from these two methods are denoted as ρI(t )
and ρA(t ), respectively.

Figure 8 illustrates the simulated crowd location, predicted
location with and without aggregation at time t= 8. Individu-
als are represented as black dots and dense regions are shown as
shaped cells, according to the legend. The predicted outcome from
UAVs has two missed predictions, which have dashed cell bound-
aries. The predicted outcome from UAVs has two missed predic-
tions, which have dashed cell boundaries. Such missed prediction
is due to the restriction of the history data and motion changes
are not predicted correctly. With detailed data collected by UGVs,
these two dense regions are correctly predicted when aggregation is
considered. These two dense regions are correctly predicted when
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Yuan et al. DDDAS-based crowd dynamics modeling

FIGURE 8 | Illustration of simulation outcome at time t = 8. Black filled square: dense region in reality. Gray filled square: predicted region based on UAV’s
data. Dashed square: missed prediction based on UAV’s data. Solid square: corrected prediction with aggregated data from UGVs.

FIGURE 9 | Demonstration of coverage percentage. Black bars: coverage of aggregated prediction. White bars: coverage of prediction with only UAVs’ data.

aggregation is considered. These results are ρA(t ) = 0.42, and
ρI(t ) = 0.76, showing a much higher coverage value.

The coverage percentage throughout the simulation exper-
iment is recorded in Figure 9, where the proposed approach
(“with aggregation”) achieves the same high coverage from time
stamps 1 to 4 as the prediction using UAVs alone (“without
aggregation”). This corresponds to the period where all indi-
viduals move to the east. Starting from time 5, the crowd
changes the motion pattern, and such change is not predicted
correctly due to restriction of history-data-based training. The
proposed approach corrects the prediction with UGVs’ data

and improves the performance. As more complex motion pat-
terns appear, i.e., with two subgroups leaving the main crowd
and one subgroup merging to a dense region, the proposed
approach achieves a significantly higher coverage (i.e., between
time stamps 6–13 and 15). Under DDDAS framework, the
aggregation based on weight Wl,m improves the prediction
result. Such improved prediction guides the UGVs to capture
a better detection over the crowd, thus further improves the
aggregation coverage. Overall, the average coverage percent-
ages with and without aggregation are equal to 0.75 and 0.62,
respectively.
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CONCLUSION
Utilizing UAVs and UGVs in crowd control and surveillance has
received increasing attentions. To take advantage of the real-time
dynamic monitoring data available in crowd surveillance systems,
DDDAS paradigm has been used in an effort to improve data
acquisition, modeling, and execution. In these applications, the
modeling of crowd dynamics plays a key role that allows predicting
the crowd motion for control purpose. Existing crowd model-
ing techniques for prediction purpose are either microscopic or
macroscopic; their application is limited when dealing multi-
resolution data collected from both UAVs and UGVs. To address
the challenge of such multi-resolution data fusion problem, a new
crowd modeling technique is proposed in this paper.

This paper proposes a grid-based modeling approach that maps
2D space into occupancy grid and represents the crowd motion by
the changing state (i.e., occupied and unoccupied) of cells in the
grid. Since existing crowd detection approaches can only effec-
tively detect dense regions with a large number of individuals, the
cell state “occupied” represents the occurrence of a dense region. A
grid-based model is used to get the cells’ occupancy probabilities,
given its neighborhood state vector in the previous time stamp.
For regions where high-resolution observations are collected, the
modeling could be improved by utilizing both low- and high-
resolution information. To achieve this, an AR model is adopted
in this paper to model dynamics of individuals detected by UGVs.
Based on estimated model coefficients, individuals’ location at a
future time stamp could be predicted. The predicted location is
converted into a predicted probability of cell occupancy. The pre-
dicted probability from both UAVs’ and UGVs’ observations is
incorporated through an information aggregation step, which lin-
early combines the probabilities by assigning weights to them. The
combined probability value determines the outcome of the crowd
motion. Through the simulation study, the proposed approach,
which includes grid-based modeling and information aggrega-
tion, is demonstrated to be effective in modeling crowd dynamics.
This grid-based model is not only applicable to UAVs’ and UGVs’
multi-resolution data, but is also applicable to other data types,
such as satellites’ data and road test data; and population survey
and individual survey.
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